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A low-order vortex model has been developed for analysing the unsteady aerodynamics
of airfoils. The model employs an infinitely thin vortex sheet in place of the attached
boundary layer and a sheet of point vortices for the shed shear layer. The strength and
direction of the vortex sheet shed at the airfoil trailing edge are determined by an unsteady
Kutta condition. The roll-up of the ambient shear layer is represented by a unique point
vortex, which is consistently fed circulation by the last point vortex of the free vortex
sheet. The model’s dimensionality is reduced by using three tuning parameters to balance
representational accuracy and computational efficiency. The performance of the model
is evaluated through experiments involving impulsively started and heaving and pitching
airfoils. The model accurately captures the dynamics of the development and evolution of
the shed vortical structure while requiring minimal computational resources. The validity
of the model is confirmed through comparison with experimental force measurements and
a baseline unsteady panel method that does not transfer circulation in the free vortex sheet.
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1. Introduction

Flying animals display impressive abilities in controlling the flow surrounding them.
By flapping and clapping their wings, insects and small birds demonstrate high lift
performance and can undertake manoeuvres whose mechanics are not fully understood
yet. Such agility is mainly attributed to a leading edge vortex attached to the suction side of
the flyer’s wings (see Ellington 1984; Dickinson & Gotz 1993) even though other transient
phenomena are thought to play a role in their manoeuvrability (see Dickinson, Lehmann
& Sane 1999). Despite the vast amount of experimental and computational studies on the
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effect of wake vorticity on the aerodynamic loads of wings and airfoils in unsteady motion
(e.g. see Birch & Dickinson 2001; Wang, Birch & Dickinson 2004; Taira et al. 2007), there
is still a need for inexpensive models able to produce results in real time.

In that context, vortex methods have been successfully applied to the prediction of the
flow separation from an airfoil at high Reynolds number. Their very formulation indeed
makes their use as reduced order models quite seamless for such flows, enabling substantial
computational savings with respect to a classical Navier–Stokes solver. This is especially
due to the underlying flow discretization of the method: a set of discrete compact vortex
elements, whose evolution is governed by the Biot–Savart law (see Giesing 1968; Katz
1981; Pullin & Wang 2004; Li & Wu 2015; Xia & Mohseni 2017).

As time progresses though, the flow is represented by a growing number of vortex
elements, which requires the resolution of increasingly larger n-body problems. This
growth in dimensionality makes the investigation of long-term flow behaviour impractical.

To alleviate the increase in complexity, Tchieu & Leonard (2011) and Wang & Eldredge
(2013) proposed to avoid the production of a vortex element at each time step by a
process called impulse matching, i.e. feeding vorticity into already existing point vortices,
keeping the most coherent vortical structures only. Because the natural instability of shear
layers favours the formation of larger scale structures, such models fail at representing
flows at long horizon times with accuracy. Another technique relies on merging a pair
of neighbouring vortices into one another. In the work of Xia & Mohseni (2013), the
merging operation is carried out under the condition that the Taylor expansions of both
near- and far-field are not altered by the amalgamation. This double condition translates
into a modification of both position and velocity of the point vortex resulting from the
merging operation. More recently, Darakananda & Eldredge (2019) corrected the velocity
of the resulting vortex to exactly cancel the spurious force induced by the local change
of circulation around the vortex pair. They qualified their model as hybrid since the
proportion of the vortex sheet to lump into the roll-up point vortex depends on a parameter
left at the discretion of the user. Even though this model seems more attractive because
it does not rely on Taylor expansions of the velocity field, a spurious moment on the
flat plate appears. With this framework, spurious force and moment cannot be cancelled
simultaneously.

All of the aforementioned efforts have led to lower-order models that are applicable to
the case of a flat plate. To the best of the authors’ knowledge, the sole effort towards the
handling of a generic airfoil geometry is the derivation by Eldredge (2019) of a complex
analysis expression for vorticity amalgamation (see (7.45) of aforementioned reference).
The present work aims at filling this gap through a work on the real-valued expressions
of impulse matching and from there, the construction of a numerical scheme capable
of handling generic airfoil geometries with a finite angle trailing edge. For the sake of
straightforwardness, we only treat the case of a single shedding source, i.e. at the trailing
edge; this allows us to base our shedding scheme on the unsteady Kutta condition derived
by Xia & Mohseni (2017). Finally, as the target applications lie in biolocomotion and
unsteady aerodynamics, we derive control-volume based expressions for the forces that
are more numerically stable than formulations involving the budget of fluid impulse.

The remainder of the paper is organized as follows. In § 2, we present the methodology
used for the unsteady panel method. Section 3 addresses the transfer of circulation between
the wake vortex sheet and the roll-up vortex generalized for flows around airfoils with a
wedge-shaped trailing edge. Section 4 shows the validation of our framework through
comparisons with computational and experimental results: cases of impulsively started
and heaving and pitching airfoils are studied. We summarize and discuss the results in § 5.

977 A22-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.997


A lightweight vortex model for unsteady motion of airfoils
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Figure 1. Discretization of an airfoil in an inviscid fluid. The trailing edge and shed panels are cropped by an
infinitesimal ε to avoid the singularity that would result from the discontinuity of the vortex sheet strength.

2. Unsteady panel method

We develop the mathematical tools necessary to build the flow model for wake-shedding
airfoils. The present model is closely related to the framework proposed by Xia & Mohseni
(2017).

2.1. Model formulation
Let us consider a region of inviscid fluid Vf internally bounded by a body surface Sb.
The body is moving in this volume with a velocity ub and thereby generates vorticity: an
infinitely thin boundary layer forms at the body surface and a wake is shed from its trailing
edge of finite angle θTE. Vorticity is compact and captured by a set of three types of vortex
elements. They are:

(i) a collection of Np panels with linear strength located on Sb to model the infinitely
thin boundary layer;

(ii) a unique panel in the very near wake Ss with length bs and uniform strength γs;
(iii) a series of Nv point vortices in the wake shed by the airfoil. These point vortices are

regularized with the low-order algebraic kernel (see Rosenhead 1930)

K∗(x) = − x
2π(|x|2 + δ2)

, (2.1)

where δ is the blob radius. Figure 1 summarizes this flow discretization where the
uniform shed vorticity is unknown and so are the Np + 1 bound vortex strengths.

This vorticity field enables the computation of the velocity everywhere in Vf \Sb thanks
to the Biot–Savart integral which becomes

v(x) =
∫
Sb+Ss

K(x − y) × γ (y) ds(y) +
Nv∑

k=1

K∗(x − xk) × Γ k

+
∫
Sb

[K(x − y) × (n(y) × ub(y) − K(x − y)(n(y) · ub(y))] ds(y), (2.2)

where xk and Γ k are the position and circulation of point vortex k, respectively; K is the
singular planar velocity kernel and n is the normal pointing towards Vf . The limit of this
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equation as we approach Sb is (see e.g. Eldredge (2019))

− 1
2

n(x) × γ (x) − −
∫
Sb

K(x − y) × γ (y) ds(y) −
∫
Ss

K(x − y) × γ s ds(y)

=
Nv∑

k=1

K∗(x − xk) × Γ k − 1
2

ub(x)

+ −
∫
Sb

[K(x − y) × (n(y) × ub(y)) − K(x − y)(n(y) · ub(y))] ds(y), (2.3)

where the symbol −
∫

denotes the Cauchy principal value. In the particular case of uniform
flows, the Cauchy integral of the right-hand side of (2.3) simplifies to −1

2 ub(x).
We then can impose at the same time:

(i) the no-flow-through condition at the centre (i.e. collocation point) of the Np bound
panels. This condition corresponds to the normal component of (2.3);

(ii) Kelvin’s theorem for conservation of circulation

−
∫
Sb

γ ds =
Nv∑

k=1

Γ k +
∫
Sb

n × ub ds; (2.4)

(iii) the unsteady Kutta condition (see Xia & Mohseni 2017) linking the shedding angle
of the shed panel and its strength,

γs = γ1 cos (θ+) + γNp+1 cos (θTE − θ+), (2.5)

where θ+ is the angle between the upper trailing edge panel and the shedding
direction given by

θ+ = arccos

(
u2+ + u2

3 − u2−
2u+u3

)
, (2.6)

u+ and u− being the fluid velocities in the reference frame of the body above and

below the trailing edge, respectively, and u3 = −
√

u2+ + u2− + 2u+u− cos (θTE). It
is worth noting that vorticity is always shed in the sector defined by the trailing
edge panels, as was originally observed by Poling & Telionis (1986). In the cases
where u+ = 0 or u− = 0, the shedding angle matches the angle of the lower or upper
trailing edge side, respectively. In the case of a steady flow, the shedding direction
bisects the trailing edge angle since no vorticity is shed in this particular case.

These three conditions lead to a linear system of size Np + 2 with as many unknowns
and can be represented by block matrices:⎡

⎢⎢⎣
A a

kT 2bs

κT −1

⎤
⎥⎥⎦
⎡
⎣γ

γs

⎤
⎦ =

⎡
⎢⎢⎣

χ

−Γ

0

⎤
⎥⎥⎦ . (2.7)

The first line enforces the no-flow-through condition with Aij the influence of vortex
strength j and ai the influence of the shed panel at panel i. On the right-hand side, χi holds
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the normal component of the right-hand side of (2.3) computed at the collocation point
of panel i. The second and third lines impose the Kelvin theorem and Kutta condition,
respectively. Additionally, Γ is the third component of the right-hand side of (2.4). The
solution of (2.7) provides the distribution of circulation on the profile γ as well as the
strength γs of the shed panel. Once the system is solved, we have all the elements at our
disposal to compute forces on the body, update its location and convect the wake point
vortices.

At the end of a time step, the shed panel is transformed into a point-vortex at its centre
and thus has zero length. In this specific case, the last column of the left-hand side matrix
is filled with zeros except for its last element. In other words, the strength γs has no
contribution over the bound vortex sheet whatsoever and the Kutta condition is trivially
satisfied by the existing set of point vortices. Hence, the system is reduced to⎡

⎣ A

kT

⎤
⎦

︸ ︷︷ ︸
Ã

[ γ ] =
⎡
⎣ χ

−Γ

⎤
⎦ . (2.8)

The present approach differs from the model of Xia & Mohseni (2017) in two ways. First,
the quantity γ in our model balances vorticity associated with non-uniform body motion,
which explicitly appears as a surface integral in the right-hand side of (2.3). In spite of
the equivalence of both approaches in the end result, this difference results in a dissimilar
formulation for the total impulse in the flow and also yields an alternative flow inside of
the body volume. The nature of this internal flow is however irrelevant to the simulation
purposes. The second minor difference is the use of a fourth-order Runge–Kutta numerical
scheme for the time marching procedure in lieu of a forward Euler method.

2.2. Aerodynamic force and torque
Following a straightforward approach, the force applied on the airfoil can be retrieved
from the rate of change of total linear impulse in the fluid. One can readily derive a
vorticity-based expression for this quantity:

F = − d
dt

(∫
Sb

x × (n × u) ds +
Nv∑

k=1

xk × Γ k

)
, (2.9)

where u = γ × n + ub consequentially to the no-flow-through condition. The torque can
be obtained in a similar way using the rate of change of angular impulse in the inertial
frame of reference:

T = −1
2

d
dt

(∫
Sb

x × [x × (n × u)] ds +
Nv∑

k=1

xk × (xk × Γ k)

)
. (2.10)

However, using the budget of total linear (respectively angular) impulse in the flow
not only leads to the computation of the force (respectively moment) applied on all the
immersed bodies, thereby precluding estimations for individual bodies, but it also leads
to numerical complexity and difficulties. Indeed, this formulation involves the numerical
integration of moments of vorticity over its entire support. It is readily seen that this will
be increasingly expensive as the flow develops and will also make the calculation sensitive
to round-off errors.
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We address both those shortcomings through a control volume approach involving
velocity and vorticity fields only, as proposed by Noca, Shiels & Jeon (1999). We further
extend this formulation to retrieve the hydrodynamic moment on the body as well. For
each body, the control volume encloses the infinitely thin attached boundary layer and
undergoes a well-defined flux of vorticity with strength γ s across its surface at position xs
just beyond the trailing edge of the body:

F = − d
dt

∫
Sb

x × (n × u) ds (2.11)

+
∫
Sb

(
1
2

u2n − n · uub

)
ds − ns · (us − ubs)(xs × γ s), (2.12)

T = −1
2

d
dt

∫
Sb

x × [x × (n × u)] ds

+
∫
Sb

x ×
(

1
2

u2n − n · uub

)
ds − 1

2
ns · (us − ubs)[xs × (xs × γ s)], (2.13)

where ns = n(xs), us = u(xs) and ubs = ub(xs).

3. Vortex lumping for general foil geometries

In previous studies, Wang & Eldredge (2013) and Darakananda & Eldredge (2019) have
developed low-order models for the roll-up of the vortex sheets shed by a moving flat plate.
The second of these studies has shown that transferring vorticity from source point xs to
target point xt induces a spurious force due to the local violation of Kelvin’s conservation
of circulation around both points. They proposed to cancel this parasitic force by correcting
the velocity of the target particle:

�ẋt = Γ̇t

Γt

(
dp(xt)

dxt

)−1

[p(xs) − p(xt)], (3.1)

where p(ξ) is introduced as the impulse due to a point vortex of unit circulation located at
ξ :

p(ξ) = ξ × e3 +
∫
Sb

x(s) × γ̂ (s) ds, (3.2)

γ̂ (s) being the so-called unit image vortex sheet caused by this point vortex on Sb.
The main drawback of this strategy is the impossibility to cancel both the spurious force

and moment caused by the displacement of vorticity. Hence, cancelling the spurious force
will inevitably result in a spurious moment given by

�T = −ρΓ̇t

2

[
dm(xt)

dxt

(
dp(xt)

dxt

)−1

[p(xs) − p(xt)] + [m(xt) − m(xs)]
]
, (3.3)

where the unit angular impulse due to a vortex located at ξ is

m(ξ) = ξ × (ξ × e3) +
∫
Sb

x(s) × (x(s) × γ̂ (s)) ds. (3.4)

Darakananda & Eldredge (2019) applied the thin airfoil theory to derive the analytical
velocity correction in the case of the flat plate. However, in the panel-based model, we
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propose that such an analytical derivation is impossible because the Jacobian in (3.1)
must be obtained numerically. In two dimensions, the Jacobian of the unit impulse is the
following:

dp(ξ)

dξ
=
[

0 1
−1 0

]
+
∫
Sb

[
y(s)

−x(s)

]
∇ξ γ̂ (s) ds. (3.5)

The only missing piece in this expression is the gradient of the bound sheet circulation
γ̂ (s) on a contour Sb of general shape. It represents the sensitivity of the bound vortex
sheet to a change in position of a free point vortex of unit circulation.

Because the lumping operation is performed at the end of a time step (i.e. when the shed
panel is replaced by a point vortex), we can take the gradient of (2.8) to obtain ∇ξ γ̂ . Since
the total circulation is conserved throughout the merging of vortices and because matrix Ã
does not depend on ξ but solely on the relative positions of the bound panels, the gradient
on the body surface reduces to

[∇ξ γ̂ ] = Ã−1
[∇ξ χ̂

0

]
, (3.6)

where Ã−1 has already been computed in the no-flow-through condition determining the
bound vortex strength and where the induced normal velocity gradient ∇ξ χ̂ has to be
obtained at the collocation point of each panel. For panel j, we have

∇ξ χ̂j = ∇ξ (nj · (K∗(xj − ξ) × e3)), (3.7)

which is obtained analytically in the frame of reference of panel j.
First of all, the lumping operation is only allowed between vortex elements of the same

sign. Furthermore, even though the merging of point vortices itself is carried out in a
way to cancel spurious forces, the main structure of the flow is altered in the vicinity of
the transfer of vorticity. This change in flow topology results in a different solution for
the motion of vortex elements computed over a time step. This in turn causes both the
global impulse and the force on the airfoil to drift away from the values which would
result from an unperturbed vorticity field. To control this discrepancy and in line with
the work of Darakananda & Eldredge (2019), we use a parameter BF that serves as a
threshold on the force discrepancy observed one time step after the lumping operation
has occurred. This discrepancy is readily evaluated by integrating both the original vortex
sheet and the lumping-affected vortex sheet over a time step. The choice in BF balances
the representational accuracy of the flow with the computational efficiency of the method.
Indeed, low values of BF will result in more resolved vortex sheets while large BF values
are associated with coarser wake structures. One can readily identify a lower bound for Nv:
the number of lumped vortices can go as low as the number of sign changes in the shed
vorticity plus an initial vortex. Once this bound is reached at a particular BF level, further
increasing the threshold no longer has an effect on the structure of the wake. It follows that
the behaviour of Nv with respect to BF will be flow specific.

This model embeds two other parameters: the minimal vortex sheet length, described
by the minimum number of shed point vortices Nmin before which no lumping can occur
whatsoever, and the minimum time interval Tmin, within which no new vortex can be shed
from the tip of the vortex sheet. Parameter Nmin allows to keep unaltered the coherent
structure of the velocity close to the airfoil while Tmin aims at avoiding instabilities in the
vicinity of the vortex sheet tip.
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(a) (b)tU∞/c = 2, BF = 0 tU∞/c = 5, BF = 0

(c) (d )tU∞/c = 2, BF = 10–3 tU∞/c = 5, BF = 10–3

(e) ( f )tU∞/c = 2, BF = 10–2 tU∞/c = 5, BF = 10–2

Figure 2. Comparison of the vorticity distribution predicted for an impulsively started NACA0012 airfoil at
10◦ after two and five chord lengths of travel between the proposed model with different values of the error
threshold BF . The other parameters are fixed to Tmin = Lmin = 25.

4. Experiments and validation

The model presented above is now validated on: (i) an impulsively started NACA0012
and (ii) a heaving and pitching NACA0013. The results obtained are then compared with
the simulations of Xia & Mohseni (2017) and the experimental results from Izraelevitz &
Triantafyllou (2014). In all simulations, the airfoil of chord c, towed at horizontal velocity
U∞, is uniformly discretized with 200 panels of linear vortex strength and a time step of
10−2 × c/U∞ is used. The blob radius δ is set to 10−2c.

4.1. Impulsively started NACA0012
We first compare the influence of the parameter BF of the lumping model on the
aerodynamic loads of the impulsively started NACA0012 at a 10◦ angle of attack (AoA).
Snapshots of simulations at two and five chord lengths of travel are presented in figure 2.
The first case in which BF = 0 corresponds to the standard unsteady panel method, later
referred to as the baseline model. Increasing this parameter yields a dramatic reduction
in the number of point vortices in the wake. At BF = 10−3, the wake is only captured by
means of Lmin + 3 point vortices. Increasing this parameter beyond BF = 10−2 results in
the formation of a unique point vortex corresponding to the starting vortex of the airfoil.

Figure 3 shows the aerodynamic coefficients up to ten chord lengths of travel
computed with these different values of BF. The aerodynamic coefficients are defined as
CD = −2Fe1(ρU2∞c)−1, CL = 2Fe2(ρU2∞c)−1 and CM,1/4 = 2Te3(ρU2∞c2)−1. Because
the lumping operation affects the angular momentum budget in the computational domain,
F and T are computed using (2.11) and (2.13) following the control volume approach.
When parameter BF is equal to or higher than 10−2, the error in drag coefficient is smaller
than 10 %. The model predicts a lift coefficient that is higher by less than 2 % of its final
value while the moment coefficient is not accurately predicted at the early stage of the
simulation.

The small loss of accuracy in lift and drag coefficients comes with a significant speedup
in computational efficiency. Since the time complexity per time step scales quadratically
with the number of vortex particles, limiting their number to Lmin + 1 (instead of a
linear increase up to 1000 at the end of the baseline simulation) keeps the cost constant
throughout the whole simulation. The total speedup in this case is close to 3.5.

Finally, results of computations at various AoAs with BF = 10−2 are compared with the
simulations of Xia & Mohseni (2017) in figure 4. For any configuration, the lift coefficient
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0.9
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−0.005

0

0.005

0.010

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

C
M

,1
/4

tU∞/ctU∞/ctU∞/c

Figure 3. Impulsively started NACA0012 with α = 10◦. (a) Drag, (b) lift and (c) moment coefficients obtained
with the baseline model (blue, —), and the lumping model with Tmin = Lmin = 25, BF = 10−3 (green, -·-·) and
BF = 10−2 (orange, - - -).

0

0.2

0.4
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1.0

1.2
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CL

0
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0.04

0.06

0.08

0.10
(b)(a)

2 4 6 8 10 1 2 3 4 5

θ s
/θ
TE

tU∞/c tU∞/c

Figure 4. Impulsively started NACA0012 airfoil at α = 2◦ (green), α = 6◦ (orange) and α = 10◦ (blue).
Comparison of (a) the lift coefficient and (b) the shedding angle between the lumping model with Tmin =
Lmin = 25, BF = 10−2 (—) and computational results of Xia & Mohseni (2017) (- - -) along with steady values
obtained with a potential flow solver (· · · · · ·). Shedding angle θs is defined with respect to the bisector of the
trailing edge; θs ∈ [−θTE/2, θTE/2].

agrees well with their model with a unique point vortex shed at the trailing edge. As
expected, the shedding angle converges towards the bisector of the trailing edge. However,
this occurs at a slower rate than what Xia & Mohseni (2017) observed.

4.2. Heaving and pitching NACA0013
In this section, we consider a NACA0013 airfoil evolving with constant horizontal velocity
U∞. Its trajectory is characterized by a sinusoidal heaving motion y(t) perpendicular to
U∞ given by

y(t) = hc cos(ωt), (4.1)

and an angular motion about its quarter chord θ(t). The pitch motion is such that the
relative AoA is the sinusoid:

α(t) = θ(t) − arctan
(

ẏ(t)
U∞

)
= αmax sin(ωt). (4.2)
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(a)

(b)

(c)

Figure 5. Heaving and pitching NACA0013 airfoil at St = 0.3, h = c, αmax = 25◦, Tmin = Lmin = 25 and
(a) BF = 0, (b) BF = 10−3 and (c) BF = 10−1. Comparison of vorticity field.

Finally, the dimensionless number linking the frequency and amplitude of the motion is
the Strouhal number defined as

St = ωhc
πU∞

. (4.3)

The motion can now be fully described with the three fixed parameters: h = 1, αmax =
25◦ and St = 0.3. In this situation, Izraelevitz & Triantafyllou (2014) have experimentally
shown the absence of leading edge separation at Reynolds number of 11 000. Therefore,
this choice of motion parameters suits the proposed model.

First, we examine the effect of applying the lumping model on vorticity distribution in
the wake of the airfoil. Figure 5 shows snapshots of simulations where the error parameter
BF is set to either 0, 10−3 or 10−1, captured after one and a half motion periods. Past
the highest tolerance level, the wake can be fully reduced to a pair of vortices of equal
and opposite strength for each motion period. Their arrangement fits the characteristic
structure of a thrust wake (see Oskouei & Kanso 2013). As a point of reference, the original
model would generate 666 vortices per oscillation period with the same set of simulation
parameters (and 27 vortices per period with BF = 10−3). This allows a maximal reduction
in the number of vortices by a factor larger than 300 compared to the baseline model, at
the cost of slightly affecting the aerodynamic coefficients. This is shown in figure 6 where
the lightest model is compared with the baseline, experimental results of Izraelevitz &
Triantafyllou (2014) and computations of Xia & Mohseni (2017). The thrust coefficient
CT is defined here as the opposite of the drag coefficient CD. The error due to the most
severe lumping procedure does not exceed 10 % of the amplitude of the curves obtained
with the baseline. Hence, independently of the choice of the force error threshold BF and
given the specific motion under examination, our lumping-enabled model is able to capture
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Figure 6. Heaving and pitching NACA0013 airfoil with St = 0.3, h = c and αmax = 25◦. Comparison of
(a) thrust, (b) lift and (c) moment coefficients between the model with Tmin = Lmin = 25, BF = 10−1

(blue, —), the baseline model (orange, - - -), computational results of Xia & Mohseni (2017) (· · · · · ·) and
the experimental results of Izraelevitz & Triantafyllou (2014) (�).

accurately the dynamics of the airfoil and produce results complying with the literature
(see figure 5).

5. Conclusions

In this paper, we bring two contributions to the modelling of unsteady airfoil flows. As a
first contribution, we have developed and validated the generalization of the hybrid model
of Darakananda & Eldredge (2019) for modelling flows separating from the trailing edge
of general airfoils in unsteady motions. The model enables a user-controlled reduction
of computational complexity by lumping circulation from one vortex element to another
without introducing any instantaneous force imbalance on the airfoil. This transfer of
circulation could be applied to richer models embedding multiple bodies or/and LEV
separation. To achieve the model extension, we have determined the net effect of the shape
of the airfoil on the impulse of a point vortex. This contribution is computed through
a recycling of the inverse of the matrix used in the standard unsteady panel method
to determine the vortex strength distribution on the profile. This recycling allows a fast
computation of the velocity correction the target vortex has to undergo to avoid spurious
forces on the body. The remaining computational effort lies in calculation of the force
error caused by the transfer of circulation between vortices over a time step.

In addition, we proposed the application and extension of a control volume approach
relying on velocity and its derivatives only (see Noca et al. 1999) to compute aerodynamic
force and moment undergone by a body with an explicit treatment of the singularity in the
wall-vorticity flux in an inviscid flow. To the best of our knowledge, this is the first time
this method is involved in the computation of the aerodynamic moment. This compact
formulation also opens the field to low-order simulations of multiple immersed bodies and
avoids the cost and sensitivity associated with largely populated far-wake vortex sheets.

We have validated this model on two benchmarks: an impulsively started NACA0012
and a heaving and pitching NACA0013 airfoil. In both cases, we showed the effect of
lumping vortices on the vorticity distribution in the wake of the airfoils. The main structure
of the wake was conserved even though far fewer vortex elements were required to describe
it. In the limit of acceptable accuracy, one single point vortex per roll-up core of the
wake vortex sheet is necessary. Such an important dimensionality reduction accompanies
a significant speedup allowing for real-time simulations. In addition, aerodynamic forces
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corroborate results obtained with the unsteady panel method of Xia & Mohseni (2017) as
well as experimental results of Izraelevitz & Triantafyllou (2014). The lumping operation
has shown to only degrade the accuracy in the moment coefficient at early stages of a
simulation if a very large transfer of circulation occurs between the body and the starting
vortex close to the body surface. This significant degradation was not observed in the
case of the heaving and pitching airfoil because the airfoil is initially parallel to its towing
motion and the generation of circulation in the flow is much more progressive than in
the case of the impulsively started airfoil at 10◦ of AoA. Therefore, in cases of unsteady
motion of an airfoil shedding vorticity continuously from its trailing edge and without
leading edge separation, our model is fully capable of capturing essential dynamics of the
flow and predict the aerodynamic loads on the immersed body while offering the user the
freedom to adjust the balance between accuracy and computational time.
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