Bull. Austral. Math. Soc.
VoL. 72 (2005) [45-52]

A REMARKABLE CONTINUED FRACTION

David Angell and Michael D. Hirschhorn

We study a particular oscillating continued fraction, and find its two limit points.

Let $\left\{a_{k}\right\}_{k \in \mathbb{N}},\left\{b_{k}\right\}_{k \in \mathbb{N}}$ be sequences of positive integers, and consider the continued fraction

$$
\frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\frac{b_{3}}{a_{3}}+\cdots
$$

The convergents p_{k} / q_{k} to this continued fraction are defined recursively,

$$
p_{k}=a_{k} p_{k-1}+b_{k} p_{k-2}, \quad q_{k}=a_{k} q_{k-1}+b_{k} q_{k-2}
$$

with the initial conditions $p_{-1}=1, p_{0}=0, q_{-1}=0, q_{0}=1$. It is then easy to show that

$$
\frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\frac{b_{3}}{a_{3}}+\cdots \frac{b_{k}}{a_{k}}=\frac{p_{k}}{q_{k}}
$$

that q_{k} increases without limit as $k \rightarrow \infty$, and that

$$
\begin{equation*}
\frac{p_{k}}{q_{k}}-\frac{p_{k-1}}{q_{k-1}}=\frac{(-1)^{k} b_{k} b_{k-1} \cdots b_{1}}{q_{k} q_{k-1}} \tag{2}
\end{equation*}
$$

Since a_{k} and b_{k} are positive, the convergent

$$
\frac{p_{k}}{q_{k}}=\frac{a_{k} p_{k-1}+b_{k} p_{k-2}}{a_{k} q_{k-1}+b_{k} q_{k-2}}
$$

lies strictly between p_{k-1} / q_{k-1} and p_{k-2} / q_{k-2}; it is easy to check that the second convergent is less than the first, and so

$$
\frac{p_{2}}{q_{2}}<\frac{p_{4}}{q_{4}}<\frac{p_{6}}{q_{6}}<\cdots<\frac{p_{5}}{q_{5}}<\frac{p_{3}}{q_{3}}<\frac{p_{1}}{q_{1}} .
$$

It follows immediately that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{p_{2 k}}{q_{2 k}} \text { and } \lim _{k \rightarrow \infty} \frac{p_{2 k-1}}{q_{2 k-1}} \tag{3}
\end{equation*}
$$

Received 7th February, 2005
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.
both exist. If every b_{k} is 1 , then from (2) we have

$$
\lim _{k \rightarrow \infty}\left(\frac{p_{k}}{q_{k}}-\frac{p_{k-1}}{q_{k-1}}\right)=0
$$

and so $p_{2 k} / q_{2 k}$ and $p_{2 k-1} / q_{2 k-1}$ approach a common limit. In the general case, however, this need not be true. The continued fraction (1) is said to converge if the two limits (3) are the same, and to oscillate if not. A simple sufficient condition for convergence is that $a_{k} \geqslant b_{k}$ for all large k, and a necessary and sufficient condition may be found in [1]: the continued fraction (1) converges if and only if at least one of the series

$$
\frac{a_{1}}{b_{1}}+\frac{a_{3} b_{2}}{b_{3} b_{1}}+\frac{a_{5} b_{4} b_{2}}{b_{5} b_{3} b_{1}}+\frac{a_{7} b_{6} b_{4} b_{2}}{b_{7} b_{5} b_{3} b_{1}}+\cdots
$$

and

$$
\frac{a_{2} b_{1}}{b_{2}}+\frac{a_{4} b_{3} b_{1}}{b_{4} b_{2}}+\frac{a_{6} b_{5} b_{3} b_{1}}{b_{6} b_{4} b_{2}}+\cdots
$$

diverges. From this result it is easy to see that the continued fraction given by $a_{k}=1$, $b_{k}=2^{k}$

$$
\frac{2}{1}+\frac{4}{1}+\frac{8}{1}+\frac{16}{1}+\cdots
$$

oscillates, but it seems difficult to evaluate the two limit points of p_{k} / q_{k}. We made the surprising discovery that if we tweak the b_{k} just a little, we obtain a tractable problem. Indeed we prove

Theorem. For the continued fraction given by $a_{k}=1, b_{k}=2^{k}+2$,

$$
\frac{4}{1}+\frac{6}{1}+\frac{10}{1}+\frac{18}{1}+\cdots \frac{2^{k}+2}{1}+\cdots
$$

we have

$$
\lim _{k \rightarrow \infty} \frac{p_{2 k}}{q_{2 k}}=1 \text { and } \lim _{k \rightarrow \infty} \frac{p_{2 k-1}}{q_{2 k-1}}=2
$$

Proof: We have

$$
\begin{align*}
p_{0}=0, & p_{1}=4,
\end{align*} \quad p_{k}=p_{k-1}+\left(2^{k}+2\right) p_{k-2}, ~ 子, ~\left(q_{1}=1, \quad q_{k-1}+\left(2^{k}+2\right) q_{k-2} .\right.
$$

The first few p_{k}, q_{k} are given by the table

k	0	1	2	3	4	5	\cdots
p_{k}	0	4	4	44	116	1612	\cdots
q_{k}	1	1	7	17	143	721	\cdots

It is not hard to show from (4) that

$$
\begin{equation*}
p_{k}=\left(2^{k}+2^{k-1}+5\right) p_{k-2}-\left(2^{2 k-3}+2^{k}+2^{k-1}+4\right) p_{k-4} \tag{5}
\end{equation*}
$$

and, of course, the same recurrence holds for the $\left\{q_{k}\right\}$. Thus,

$$
\begin{aligned}
p_{k} & =p_{k-1}+\left(2^{k}+2\right) p_{k-2} \\
& =p_{k-2}+\left(2^{k-1}+2\right) p_{k-3}+\left(2^{k}+2\right) p_{k-2} \\
& =\left(2^{k}+3\right) p_{k-2}+\left(2^{k-1}+2\right) p_{k-3} \\
& =\left(2^{k}+3\right) p_{k-2}+\left(2^{k-1}+2\right)\left(p_{k-2}-\left(2^{k-2}+2\right) p_{k-4}\right) \\
& =\left(2^{k}+2^{k-1}+5\right) p_{k-2}-\left(2^{2 k-3}+2^{k}+2^{k-1}+4\right) p_{k-4} .
\end{aligned}
$$

So we have

$$
\begin{equation*}
p_{2 k}=\left(2^{2 k}+2^{2 k-1}+5\right) p_{2 k-2}-\left(2^{4 k-3}+2^{2 k}+2^{2 k-1}+4\right) p_{2 k-4} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2 k+1}=\left(2^{2 k+1}+2^{2 k}+5\right) p_{2 k-1}-\left(2^{4 k-1}+2^{2 k+1}+2^{2 k}+4\right) p_{2 k-3} \tag{7}
\end{equation*}
$$

and the same recurrences hold for $q_{2 k}, q_{2 k+1}$ respectively.
We now define

$$
\begin{aligned}
& P_{e}(x)=\sum_{k \geqslant 0} p_{2 k} x^{k}, \quad P_{o}(x)=\sum_{k \geqslant 0} p_{2 k+1} x^{k}, \\
& Q_{e}(x)=\sum_{k \geqslant 0} q_{2 k} x^{k}, \quad Q_{0}(x)=\sum_{k \geqslant 0} q_{2 k+1} x^{k} .
\end{aligned}
$$

From (6) it follows that

$$
\begin{align*}
P_{e}(x)-5 x P_{e}(x)+4 x^{2} P_{e}(x)-6 x P_{e}(4 x)+24 x^{2} P_{e}(4 x) & +32 x^{2} P_{e}(16 x) \tag{8}\\
= & p_{0}+\left(p_{2}-11 p_{0}\right) x=4 x
\end{align*}
$$

while from (7)

$$
\begin{align*}
& P_{\circ}(x)-5 x P_{\circ}(x)+4 x^{2} P_{\circ}(x)-12 x P_{\circ}(4 x)+48 x^{2} P_{\circ}(4 x)+128 x^{2} P_{\circ}(16 x) \tag{9}\\
&=p_{1}+\left(p_{3}-17 p_{1}\right) x=4-24 x
\end{align*}
$$

Similar relations hold for $Q_{e}(x), Q_{o}(x)$ respectively.
(8) and (9) can be written

$$
\begin{align*}
& P_{e}(x)=\frac{4 x}{(1-x)(1-4 x)}+\frac{6 x}{(1-x)} P_{e}(4 x)-\frac{32 x^{2}}{(1-x)(1-4 x)} P_{e}(16 x) \tag{10}\\
& P_{o}(x)=\frac{4-24 x}{(1-x)(1-4 x)}+\frac{12 x}{(1-x)} P_{o}(4 x)-\frac{128 x^{2}}{(1-x)(1-4 x)} P_{o}(16 x) \tag{11}
\end{align*}
$$

Iteration of (10) leads to to the following, which we prove by induction.

$$
\begin{align*}
& P_{e}(x)=\sum_{k=0}^{n} \frac{\left(2^{k^{2}+3 k+3}-2^{k^{2}+2 k+2}\right) x^{k+1}}{(1-x)(1-4 x) \cdots\left(1-4^{k+1} x\right)} \tag{12}\\
& \quad+\frac{\left(2^{n^{2}+3 n+3}-2^{n^{2}+2 n+1}\right) x^{n+1}}{(1-x) \cdots\left(1-4^{n} x\right)} P_{e}\left(4^{n+1} x\right) \\
& \quad-\frac{\left(2^{n^{2}+5 n+6}-2^{n^{2}+4 n+5}\right) x^{n+2}}{(1-x)(1-4 x) \cdots\left(1-4^{n+1} x\right)} P_{e}\left(4^{n+2} x\right)
\end{align*}
$$

First, (12) is true for $n=0$ by (10). Also, if we put $4^{n+1} x$ for x in (10), we obtain

$$
\begin{align*}
P_{e}\left(4^{n+1} x\right)=\frac{4^{n+2} x}{\left(1-4^{n+1} x\right)\left(1-4^{n+2} x\right)}+ & \frac{6 \times 4^{n+1} x}{\left(1-4^{n+1} x\right)} P_{e}\left(4^{n+2} x\right) \tag{13}\\
& -\frac{32 \times 4^{2 n+2} x^{2}}{\left(1-4^{n+1} x\right)\left(1-4^{n+2} x\right)} P_{e}\left(4^{n+3} x\right)
\end{align*}
$$

If we suppose (12) true for some $n \geqslant 0$, and we substitute (13) into (12), we obtain

$$
\begin{align*}
& P_{e}(x)= \sum_{k=0}^{n} \frac{\left(2^{k^{2}+3 k+3}-2^{k^{2}+2 k+2}\right) x^{k+1}}{(1-x)(1-4 x) \cdots\left(1-4^{k+1} x\right)} \\
&+\frac{\left(2^{n^{2}+3 n+3}-2^{n^{2}+2 n+1}\right) x^{n+1}}{(1-x) \cdots\left(1-4^{n} x\right)} \tag{14}\\
& \times\left\{\frac{4^{n+2} x}{\left(1-4^{n+1} x\right)\left(1-4^{n+2} x\right)}+\frac{6 \times 4^{n+1} x}{\left(1-4^{n+1} x\right)} P_{e}\left(4^{n+2} x\right)\right. \\
&\left.-\frac{32 \times 4^{2 n+2} x^{2}}{\left(1-4^{n+1} x\right)\left(1-4^{n+2} x\right)} P_{e}\left(4^{n+3} x\right)\right\} \\
& \quad-\frac{\left(2^{n^{2}+5 n+6}-2^{n^{2}+4 n+5}\right) x^{n+2}}{(1-x)(1-4 x) \cdots\left(1-4^{n+1} x\right)} P_{e}\left(4^{n+2} x\right) \\
&=\sum_{k=0}^{n+1} \frac{\left(2^{k^{2}+3 k+3}-2^{k^{2}+2 k+2}\right) x^{k+1}}{(1-x)(1-4 x) \cdots\left(1-4^{k+1} x\right)}
\end{align*}
$$

$$
\begin{aligned}
& +\frac{\left(2^{(n+1)^{2}+3(n+1)+3}-2^{(n+1)^{2}+2(n+1)+1}\right) x^{n+2}}{(1-x)(1-4 x) \cdots\left(1-4^{n+1} x\right)} P_{e}\left(4^{n+2} x\right) \\
& -\frac{\left(2^{(n+1)^{2}+5(n+1)+6}-2^{(n+1)^{2}+4(n+1)+5}\right) x^{n+3}}{(1-x)(1-4 x) \cdots\left(1-4^{n+2}\right) x} P_{e}\left(4^{n+3} x\right)
\end{aligned}
$$

Here we have used the facts that

$$
\begin{aligned}
4^{n+2}\left(2^{n^{2}+3 n+3}-2^{n^{2}+2 n+1}\right) & =2^{(n+1)^{2}+3(n+1)+3}-2^{(n+1)^{2}+2(n+1)+2} \\
6 \times 4^{n+1}\left(2^{n^{2}+3 n+3}-2^{n^{2}+2 n+1}\right)- & \left(2^{n^{2}+5 n+6}-2^{n^{2}+4 n+5}\right) \\
& =2^{(n+1)^{2}+3(n+1)+3}-2^{(n+1)^{2}+2(n+1)+1} \\
32 \times 4^{2 n+2}\left(2^{n^{2}+3 n+3}-2^{n^{2}+2 n+1}\right) & =2^{(n+1)^{2}+5(n+1)+6}-2^{(n+1)^{2}+4(n+1)+5}
\end{aligned}
$$

That is, (12) is true for $n+1$. So (12) is true for $n \geq 0$ by induction. If we let $n \rightarrow \infty$ we find

$$
\begin{equation*}
P_{e}(x)=\sum_{k \geqslant 0} \frac{\left(2^{k^{2}+k+1}-2^{k^{2}+1}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)} \tag{15}
\end{equation*}
$$

In the same way, we can show that

$$
\begin{aligned}
& P_{o}(x)=\sum_{k \geqslant 0} \frac{\left(2^{k^{2}+2 k+1}-2^{k^{2}+k}\right)\left(4-24 \times 4^{k} x\right) x^{k}}{(1-x)(1-4 x) \cdots\left(1-4^{k+1} x\right)} \\
& Q_{e}(x)=\sum_{k \geqslant 0} \frac{\left(2^{k^{2}+k+1}-2^{k^{2}}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)} \\
& Q_{o}(x)=\sum_{k \geqslant 0} \frac{\left(2^{k^{2}+2 k+1}-2^{k^{2}+k}\right) x^{k}}{(1-x)(1-4 x) \cdots\left(1-4^{k+1} x\right)}
\end{aligned}
$$

It is not hard to show that

$$
\begin{align*}
& P_{o}(x)=\sum_{k \geqslant 0} \frac{\left(3 \times 2^{k^{2}+2 k+1}-2 \times 2^{k^{2}+k}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}, \\
& Q_{o}(x)=\sum_{k \geqslant 0} \frac{\left(3 \times 2^{k^{2}+2 k}-2 \times 2^{k^{2}+k}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)} \tag{16}
\end{align*}
$$

For instance,

$$
\begin{aligned}
P_{o}(x) & =\sum_{k \geqslant 0} \frac{\left(2^{k^{2}+2 k+1}-2^{k^{2}+k}\right)\left(6\left(1-4^{k+1} x\right)-2\right) x^{k}}{(1-x)(1-4 x) \cdots\left(1-4^{k+1} x\right)} \\
& =\sum_{k \geqslant 0} \frac{6\left(2^{k^{2}+2 k+1}-2^{k^{2}+k}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}-\sum_{k \geqslant 0} \frac{2\left(2^{k^{2}+2 k+1}-2^{k^{2}+k}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)} \cdot\left(1+\frac{4^{k+1} x}{1-4^{k+1} x}\right) \\
& =\sum_{k \geqslant 0} \frac{4\left(2^{k^{2}+2 k+1}-2^{k^{2}+k}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}-\sum_{k \geqslant 0} \frac{\left(2^{k^{2}+4 k+4}-2^{k^{2}+3 k+3}\right) x^{k+1}}{(1-x) \cdots\left(1-4^{k+1} x\right)} \\
& =\sum_{k \geqslant 0} \frac{4\left(2^{k^{2}+2 k+1}-2^{k^{2}+k}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}-\sum_{k \geqslant 1} \frac{\left(2^{k^{2}+2 k+1}-2^{k^{2}+k+1}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)} \\
& =\sum_{k \geqslant 0} \frac{\left(3 \times 2^{k^{2}+2 k+1}-2^{k^{2}+k+1}\right) x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}
\end{aligned}
$$

Now let

$$
\begin{align*}
& A(x)=\sum_{k \geqslant 0} \frac{2^{k^{2}+k} x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}=\sum_{k \geqslant 0} a_{k} x^{k}, \\
& B(x)=\sum_{k \geqslant 0} \frac{2^{k^{2}} x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}=\sum_{k \geqslant 0} b_{k} x^{k}, \tag{17}\\
& C(x)=\sum_{k \geqslant 0} \frac{3 \times 2^{k^{2}+2 k} x^{k}}{(1-x) \cdots\left(1-4^{k} x\right)}=\sum_{k \geqslant 0} c_{k} x^{k}
\end{align*}
$$

Then

$$
\begin{array}{ll}
P_{e}(x)=2 A(x)-2 B(x), & P_{o}(x)=2 C(x)-2 A(x) \\
Q_{e}(x) & =2 A(x)-B(x), \quad Q_{o}(x)=C(x)-2 A(x) \tag{18}
\end{array}
$$

from which it follows that

$$
\begin{equation*}
p_{2 k}=2 a_{k}-2 b_{k}, \quad p_{2 k+1}=2 c_{k}-2 a_{k}, \quad q_{2 k}=2 a_{k}-b_{k}, \quad q_{2 k+1}=c_{k}-2 a_{k} \tag{19}
\end{equation*}
$$

We have

$$
\begin{align*}
& A(x)=\frac{1}{1-x}+\frac{4 x}{1-x} A(4 x), \quad B(x)=\frac{1}{1-x}+\frac{2 x}{1-x} B(4 x) \tag{20}\\
& C(x)=\frac{3}{1-x}+\frac{8 x}{1-x} C(4 x)
\end{align*}
$$

or,

$$
\begin{align*}
& A(x)=1+x A(x)+4 x A(4 x) \\
& B(x)=1+x B(x)+2 x B(4 x) \tag{21}\\
& C(x)=3+x C(x)+8 x C(4 x)
\end{align*}
$$

It follows that

$$
\begin{array}{ll}
a_{0}=1, & a_{k}=a_{k-1}+4^{k} a_{k-1}=\left(4^{k}+1\right) a_{k-1} \\
b_{0}=1, & b_{k-1}+2 \times 4^{k-1} b_{k-1}=\left(2 \times 4^{k-1}+1\right) b_{k-1} \tag{21}\\
c_{0}=3, & c_{k}=c_{k-1}+8 \times 4^{k-1} c_{k-1}=\left(2 \times 4^{k}+1\right) c_{k-1}
\end{array}
$$

It follows that

$$
\begin{align*}
& a_{k}=(4+1)\left(4^{2}+1\right) \cdots\left(4^{k}+1\right), \\
& b_{k}=(2+1)(2 \times 4+1) \cdots\left(2 \times 4^{k-1}+1\right), \tag{22}\\
& c_{k}=3(2 \times 4+1)\left(2 \times 4^{2}+1\right) \cdots\left(2 \times 4^{k}+1\right) .
\end{align*}
$$

Note that $c_{k}=b_{k+1}$, so (19) becomes
(23) $\quad p_{2 k}=2 a_{k}-2 b_{k}, \quad p_{2 k+1}=2 b_{k+1}-2 a_{k}, \quad q_{2 k}=2 a_{k}-b_{k}, \quad q_{2 k+1}=b_{k+1}-2 a_{k}$.

Observe the table

k	0	1	2	3	4	5	\ldots
p_{k}	0	4	4	44	116	1612	\ldots
q_{k}	1	1	7	17	143	721	\ldots
a_{k}	1	5	85	5525	1419925	1455423125	\ldots
b_{k}	1	3	27	891	114939	58963707	\ldots

Now,

$$
\begin{equation*}
\frac{b_{k}}{a_{k}}=\frac{(2+1)}{(4+1)} \cdots \frac{\left(2 \times 4^{k-1}+1\right)}{\left(4^{k}+1\right)} \leqslant\left(\frac{3}{5}\right)^{k} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{k}}{b_{k+1}}=\frac{1}{(2+1)} \frac{(4+1)}{(2 \times 4+1)} \cdots \frac{\left(4^{k}+1\right)}{\left(2 \times 4^{k}+1\right)} \leqslant \frac{1}{3}\left(\frac{5}{9}\right)^{k} . \tag{25}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
1>\frac{p_{2 k}}{q_{2 k}}=1-\frac{b_{k} / a_{k}}{2-b_{k} / a_{k}} \geqslant 1-\frac{(3 / 5)^{k}}{2-(3 / 5)^{k}} \geqslant 1-\left(\frac{3}{5}\right)^{k} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
2<\frac{p_{2 k+1}}{q_{2 k+1}}=2+\frac{2 a_{k} / b_{k+1}}{1-2 a_{k} / b_{k+1}} \leqslant 2+\frac{(2 / 3)(5 / 9)^{k}}{1-(2 / 3)(5 / 9)^{k}} \leqslant 2+2\left(\frac{5}{9}\right)^{k} . \tag{27}
\end{equation*}
$$

The result follows.

References

[1] G. Chrystal, Algebra (Chelsea Publishing Co., New York, 1964).

School of Mathematics
UNSW
Sydney NSW 2052
Australia

