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Summary

The paper considers the queueing system GI/G/l with a type of customer
impatience, namely, that the total queueing-time is uniformly limited.
Using Lindley's approach [10], an integral equation for the limiting waiting-
time distribution is derived, and this is solved explicitly for Af/G/1 using
an expansion of the Pollaczek-Khintchine formula. It is also solved, in
principle for £,/G/l, and explicitly for EJEJl. A duality noted between
GIAI*)IGIHX)I1 a n d GIB(x)IGAU}ll relates solutions for GI/EJ1 to EJG/l.
Finally the equation for the busy period in GI/Gjl is derived and related
to the no-customer-loss distribution and dual distributions.

1. Introduction

This paper discusses the following single-server queueing system with
a certain type of customer impatience. The customers Co, Cx, • • •, Cn, • • •
arrive at instants Jo, Tlt • • •, Tn, • • -, and for complete service require
attention for times s0, slt • • •, sn, • • •, the server attending them in order
of arrival. The sequences {tn} of inter-arrival times tn = Tn+1—Tnt

n = 0, 1, 2, • • •, and {sB} are assumed to be independent sequences of
independent non-negative random variables with distribution functions
A (x) and B(x) respectively, .4(0) = 0. The waiting-time wn of customer
CB is the time between his arrival at Tn and the instant where he starts
to receive service; if the server is free at Tn, the service of CB begins im-
mediately.

The customer impatience is such that the total time spent in the
system by each customer is uniformly limited by a constant K. Because
Pr(tH > 0) = 1— 4̂(0) = 1 and the customers are served in order of
arrival, every waiting-time wn is strictly less than if (with probability one),
and customers leaving the system impatiently do so by cutting short the
time spent with the server. Thus, Cn receives service for a time
min(sB, K—wn).
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490 D. J. Daley [2]

Using the technique first developed by Lindley [10], it follows that the
waiting-time sequence {wn} satisfies

m »»fi = [wn+min (sn, K-wn)-tn]+
U = [min K + s B , #)-*„]+

where [*]+ = max (0, x). {wn} is thus a Markov chain with state space
Q = [0, K].

Define Wn(x) = Pr (wn ^ a;) as the distribution function of wn,
P, (t) as the probability that at time t there are / customers in the system,
and write W(x) = limB-00 Wn{x) and P, = lim^^ Pt(t) when the limits
exist.

Barrer [2] and Kovalenko [8] found both the distribution {Pd} and
W(x) for the models M/M/l and MjM/s respectively by means of birth-
and-death equations (Barrer) and a multi-dimensional Markov process
(Kovalenko). Kovalenko claimed that his results disagreed with Barrer's
in the single-server case (s = 1), but it appears to be a misunderstanding
of notation; our results below concerning W(x) agree with both. Barrer [1]
also discussed M/M/l with random order of service. The model has a
finite dam analogue (see § 2 below) and in this context Prabhu [14] and
Ghosal [5] have solved the system £,/!>/1 explicitly. Kovalenko [9] has
used Takacs' [17] approach through the virtual waiting-time to study
the queue M/G/1 with a general scheme of customer impatience. Our model
is a special case of this general scheme, and equation (9) below for M/G/1
may be deduced from Kovalenko's general equation.

2. Analogous models

A finite dam model due to Moran [13] and a two-barrier model for the
moving server problem also lead to equation (1).

The storage Zt of a dam of finite capacity K is defined for discrete
time t = 0, 1, 2, • • \ In the interval (t, t+1) suppose an amount Xt flows
into the dam, filling it to the level min (Zt+Xt, K), any water in excess
of the dam's capacity K being lost over the spillway. Just before the
instant t + l a demand for an amount Yt occurs, and this is met as fully as
possible by the release of the quantity min [Yt, min (Zt+Xt,K)] =
min (Yt, Zt+Xt,K). This leaves an amount Zt+1 in the dam, where

Zt+1 = min (Zt+Xt,K)-min (Yt, Zt+Xt, K)
= [min(Zt+XtlK)-Yt]+.

This equation is of the same form as (1) if {Xt} and {Yt} are assumed to
be independent sequences of independent non-negative random variables
with distribution functions B(x) and A(x) respectively.
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The model is most easily visualized by supposing the dam to be located
in a region with distinct wet and dry seasons; then Zt is the lowest level
of the dam, and occurs at the end of the dry season. {Zf} remains a Markov
chain if we allow the demand Yf to depend on the input Xt immediately
preceding it.

In the moving server model we propose there is an assembly line
moving at uniform unit speed with items requiring service spaced along
it at intervals sB. The single server attends the items for times tn, where
{sB} and {tn} are independent sequences of independent non-negative random
variables with distribution functions B(x) and A (x) respectively. The server
may start on a given item only when it has passed a certain point called
the entrance gate, and if he has not finished serving an item by the time
it reaches a point K further along the line called the exit gate, the whole
line is stopped and a disruption occurs. As soon as he finishes each item,
the server instantaneously moves back along the line to the next item or
to the entrance gate, whichever the nearer.

Define un as the distance from the exit gate at which service of the
«th item finishes. Then

wB+1 = [min («n+sn, K)-tn]+

which is of the same form as (1).
The function investigated in the literature [6] and [12] is {pn{x)},

the probability distribution of serving exactly n items before disruption,
given that service on the first item begins when it is a distance x away
from the exit gate (i.e., the absorbing barrier). The entrance gate we
have introduced above is not included in the model used in [6] and [12],
and the one-barrier model is therefore analogous to an infinite dam or
the standard queueing system (K = oo). Since A{x) was assumed to be
negative exponential, these earlier workers could exploit the analogy with
Takacs' work [17] on the busy period in M/G/l.

3. Dual of the waiting-time

In the model under consideration there exists a sequence {v„} of random
variables which is the dual of {wn} in the sense that the functional dependence
of {wn} on {$„} and {*„} is the same as that of {vn} on {<„} and {sn+1}.

Put vn equal to the difference between K, the maximum total queueing-
time for any customer Cn, and his actual queueing-time min(wB+sB, K), i.e.,

(2) vn = tf-min K + s B , K)
{ ' = [K-wn-sm]+.
Recall (1):
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wn+1 = [min (wn+sn,K)-tn]+
= [K-vn-tn]+

so

vn+1 = [K+min (vn+tn-K, 0)-sB+1]+
= [mm(vn+tn,K)-sn+1]+

which is the dual of (1) and proves our assertion.
Define the distribution function of vn by Vn(x) = Pr(vn ^ a;), noting

that Vn{K) = 1 for all n = 1, 2, • • • (and indeed, WB{K) = 1 also). Using
(2), Vn{x) and Wn(x) are related by

Vn(x) = \ -

Similarly,

Wn+1(x) = 1 -

whence the following result is evident:

LEMMA 1. Lim,,.,^ Wn(x) = W(x) exists if and only if l in ing Vn(x) = V(x)
exists, in which case they are related by

(3) V(x) = 1 - $«-* W(K~x-y-O)dB(y).

and its dual

(4) W(x) = 1- j*-*V(K-x-y-O)dA(y).

The importance of (3) and (4) is that in any given algebraic situation,
W(x) (for example) may be more simply found by the techniques outlined
below whereas V(x) may be the function of greater interest.

In terms of the finite dam model of § 2, the interpretation of the dual
{FJ of {Zt} is as the volume of the dam remaining to be filled at the end
of the wet season.

4. Integral equation for the stationary waiting-time distribution

THEOREM 1. Unless sn = tn = constant <K, a unique stationary waiting-
time distribution function W(x) = lim,,.,^ Wn(x) exists, is independent
of the initial state of the system, and satisfies the equation for 0 5g x ^ K,

(5) W{x) = 1-A {K-x-0)+ \K^dA [u-x) j^ W{u-y)dB(y).

PROOF. From (1), for x ^ 0,
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Wn+1(x) = Pr [min (wn+sn, K)-tn ^ x]

(6) = Pr[tn>K-x] + Pr[wn+sn^x+tn<K]

= I-A{K-x-0) + j^°dA (u-x) Jo" Wn{u-y)dB{y)

which determines the entire sequence {Wn(x)} given the initial w0 (or,
W0(x)). (5) is the obvious formal limit of (6); we now prove the existence
of W(x) with the properties asserted.

If sB = tn = constant = M say, then if M <K, wn = w0 if
0 ^ w0 < K—M, while for other w0, wn — K—M; otherwise (M 2: K),
wn = 0 for all n = 1, 2, • • • irrespective of w0. These assertions follow
directly from (1).

Define
xa = min (K, g.l.b. {x : A (x) > 0}),

xA = l.u.b. {a:: A {x) < 1, x g /C}

and, similarly, xt, xB in terms of B(x). Excluding the case xa = a^ = *„= *f l

which means either sn = tn = constant < i? which has been discussed
already, or xa = • • • = xB = K in which case the theorem is trivial, there
are two cases: (i) xA > xb; (ii) xA ̂  a;6 and xa=£xB, implying xB> xa.
(ii) is thus the dual of (i), so by Lemma 1 it suffices to prove the theorem
in case (i).

Choose positive a, 0, y such that x+0+y = 1, and with A = xA—xb,
set a = A(xA—aA), b = B(xb+pA). Then by definition of xA and xb,
a < 1 and b > 0, so c = (1—a)6 > 0. For any positive integer n and any

= $) = Pr (min

(
Similarly, iV(wB+2 S [f-2yJ]+|M;B = f) ^ c2, and so on. LetiV be the least
integer greater than KjyA, so that JV is finite. Then [f — NyA]+ = 0 for
S eii, and hence, for arbitrary positive n and arbitrary I i3

n+N = 0|^B = I) ^ c^ > 0.

Define a measure v on the Borel field 39 over Q by v(/l) = 0 if 0 £ .4,
v(A) = 1 if 0 e A, where i e J ^ . Then v(Q) = 1 < oo, and for 0 < e < c^,
if y(^4) ̂ £ (so 0$A), the iV-step transition probability

p"{$, A) g /A(f ^3-0) ^ 1-c^ < 1-e,

so Doeblin's condition (Doob [3], pp. 192 ff., and pp. 197 — 8 in particular)
is satisfied. Therefore a unique stationary probability measure on 3S exists,
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it is independent of the initial state of the system, and from (6), it satisfies
(5). This proves the theorem.

Remarks. 1. Doeblin's condition leads in fact to exponentially fast
convergence. We could alternatively have used a recent result of Finch [4]
to prove the theorem, and, indeed, a special case of our result is one of
his examples for which he has calculated the exponential bounds.

2. For w0 — 0 it is easy to show from (6) by forming an integral
equation in [Wn+l[x) —Wn(x)] that Wn(x) converges to W(x) monotonically
from above. This monotone convergence starting from w0 = 0 also follows
from recent work of Loynes [11] from whose Lemma 1 there may be proved
the stronger result that monotone convergence exists when {Un} = {(sn, tn)}
is a stationary sequence of random variables. That is, the assumptions
concerning {sn} and {tn} are weakened, and stationarity of {Un} is sufficient.

5. Solution for the system Af/G/1

In a system in which the inter-arrival times have the negative ex-
ponential distribution

A(x) = l-e-Xx, z^O, A>0,
we obtain

THEOREM 2. The stationary waiting-time distribution function W(x) in
the queueing system Af/G/1 with uniformly limited total queueing-time is
given by

n_o Jo— n\

PROOF. Substituting for A (x) in (5) yields that for 0 £ x £ K,

(8) W{x) = *-*<*-«>+ f*te-H"~*>du Jo" W(u-y)dB{y).

W(x) is therefore differentiate on [0, K] with

W'(x) = W{x)-X \xW(x-y)dB{t)).
J 0

Consider now the following equation for a function F(x), x ^ 0:

(9) F'{x) = XF{x)-X Jo
x F(x-y)dB(y)

(the existence of such a function is proved below). F(x) = 0 is a trivial
solution of (9). If any non-trivial solution exists, then its Laplace-Stieltjes
transform,
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if it exists, satisfies

where

is the Laplace-Stieltjes transform of B(x). Rewriting the equation,

(io, m - -JIR-.
\j — /^ —|— Jlp 1(7 j

This formula, in the case where F(x) is a distribution function, is the well-
known Pollaczek-Khintchine formula for the standard (K = oo) queueing
system M/G/l with p = EsJEtn < 1, when F(0) = 1—p (see e.g. Kendall
[7]). It is known further that for this case (see e.g. Prabhu [15]) the series
expansion below for <f>(6) is valid:

where /?"*(0) is the transform of the w-fold convolution of B(x) with itself,
setting B°*[x) = 0 or 1 as x < or 2: 0. The expansion is in fact valid for
all 0 in the half-plane Re (0) > 2X. It may be inverted term by term there
to yield

(12) F(x) = .F(O)

Now for any F(0), (12) satisfies (9). Determine F(0) by x = K in (12)
and F(if) = 1, and set W(x) = JF(a;), O g ^ J f , so that (8) is then
satisfied by W(x) as in (7). The theorem is proved.

For the finite dam model analogue, Prabhu [14] solved the systems
MjDjl and EJD/l by a method using repeated substitution, and (7) with
B(x) = 0 or 1 as x < or 5? M agrees with his solution. Such substitution
in (7) is the easiest method of solving (8) when B(x) is deterministic, but
when B(x) has a rational transform /?(0), direct inversion of (10) is an easier
method, as given in an example shortly.

In the example below and again in § 6 the polynomial

(13) P(z) = ( l -yz) ' ( l+«)*- l

occurs, with z = djfi and y = fi\X. Theorem 3 contains results concerning
P(z) which are in no sense new; the use of Rouche's theorem to prove
them is well-established (see e.g. Takacs [18]) and the proof is omitted.
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We recall that the queueing system EtjEkj\ with parameters A, / and /i,
k has traffic intensity p — Xkffij = kjyj.

THEOREM 3. If p = kjyj — 1, then P(z) defined by (13) has a double-
zero at z = 0 and all its other j-\-k—2 zeros are distinct. If p # 1, all the j+k
zeros of P(z) are distinct and are distributed as follows: if p < 1, j lie within
or on the circle |1— yz\ = 1 and the other k lie within the circle | l+z | =
k(l+y)jy{j+k); if p > 1, / lie within the circle \\—yz\ = k(\+y)ly{j+k)
and the other k lie within or on the circle \\--\-z\ = 1.

Example. M/EJl.
For S(*) = l - r " 2 S K / » l , x 2j 0, fi > 0, 0(0) = (1+0//*)-*.

Substituting in (10),

9F(0) A[ l - ( l

where the polynomial in the denominator is a particular case of (13). We
shall assume p = Xkj(i ^ 1, so that by Theorem 3, all the k+1 zeros,
/So = 0, /?!,-•-, pk, of the denominator are distinct. The partial fraction
expansion

0F(O) A 0-0,

where the constants At are evaluated by 1'Hopital's rule

At = lim -

is therefore vahd. We note that using the zeros a,, = 0, a,, • • •, a.k of
gives the alternative expression for Ait

(15)

Inverting the transforms in (14),

and on using the boundary condition- F(K) = 1 and identifying W(z)
with F(x) on O^x^K,

(16) W(a;) = i Atef*'l 2 ^ ^ ^ O^x^K.
/
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With p < 1, the zeros /S1; ••-,/?* have negative real part, so by letting
K -*• oo in (16), the model becomes the standard queueing system MjGjl
with no impatience, Ao = 1/(1—p) by (15), and hence

which is as quoted by Saaty [16], p. 212.
We mention finally that by using transforms of W(x) [not F(x)), the

following moments of the distribution function W(x) may be calculated:

E(w) =,K[l-A0

Var (w) = W(0) 2

which for K -+• oo give

and

Var (w) = -W{0) 2 Atlfi
!=1

where PF(O) = 1— p and the ^4/s are given by (15).

6. Solution for the system j

When the inter-arrival time distribution function is Erlang instead
of negative exponential, the same formal processes as used for MjGfl lead
to a solution of the integral equation (5). Some of the steps below need
further justification; we shall indicate where this is required.

We write
i-i

A(x) = l-e~Xx 2 {XxYJil, x>0, /. > 0

where
a,{u) = te-*«(Xu)>-ll(j-l)l, j= 1, 2, 3, • • •, u ^ 0.

It is easy to verify that as(u) and its derivatives aJB)(«) satisfy for
n = 0, I , . . - , / - l ,

and
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Substituting for A (x) in (5), W(x) satisfies for 0 ^ x ^K,

W(x) = f°° <*,(#-:«;+«)<*«+ [* aj{u-x)du {"W(u-y)dB(y)
JO J x JO

showing W(x) to be differentiable. In fact, W{x) is / times differentiable,
and for i = 0, 1, • • •, /—1,

(19) (-)< W<«(a>) = J~ <#>(£-*+«)<*«+J* aj" («-x)i« Jj TF(M-y)iB(y)

with

(20) W(K) = 1, W«»(X) = 0, » = 1, 2, • • •, / - I ,

using (17) with (19) to establish the conditions (20) on the derivatives.
Multiplying (19) by v~') A~", summing over i = 0,1, • • •, /— 1, and using (18)

X I' \ (_A)-*W<"(a;) = Xe-W^+k*" e~Xudu W(u-y)dB(y).
i-0 \ * / Jz Jo

Differentiate for the /th time. Then on rearrangement,

£ f) (-X)-'W^{x) = rW{x-y)dB(y)-W(x).
-1 \*/ Jnt-l W

We now assume that there exists a function F(x) which coincides with
W{x) on 0 ^ x ^ K, so that it satisfies (21) and (20), and that it also
satisfies (21) for all positive x. Assuming furthermore that the Laplace-
Stieltjes transform </>(d) of F(x) exists for 0 in some half-plane, we have

/•oo i

Jo+ r=O

This identity enables us to take transforms in (21) (with W(x) replaced
by F{x)) which yields on simplification

(22)

In the case / = 1, (22) reduces to (10). Were we to be rigorous, we
should now try and find an expansion as we did for (10) in order to justify
the assumption of the existence of a function F(x) with the required
properties.
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Example. Ej)Ek)l.
We outline the steps in determining F(x), and hence W(x), from (20)

and (22) when

B(x) = 1— e~'* 2 (/*#)'/*'!>
i=0

so that /3(0) = {\-\-djfi)-k. We seek therefore to invert

=0 i=r+l

Assuming p = AA/j«/ ^ 1 and appealing to Theorem 3, the j-\-k zeros
/?,-, * = 1, 2, • • •, j-\-k, of the denominator are distinct, the numerator is a
polynomial of degree /+&—1 (at most), so the following partial fraction
expansion is valid:

where the constants B4 are obtained by l'Hdpital's rule:

Bi =

using the j-j-k zeros a.t of P(z) defined in (13).
Inverting the transform,

F(x) = | Bte>'-,
•=i

and the derivatives for n = 0, 1, • • •, /—1 are

Using the condition (20), we obtain

i+k

P ^ ^ = 0, n = 1,2,
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These j equations are in fact / linear equations in the unknowns xr = F1'"11 (0),
r = 1, 2, • • •, ;, and substituting for the Bt, they may be written

where 6nl is the Kronecker delta, and for i = 1, 2, • • •, j+k,

The set of linear equations may be written in matrix form as ABCx = d1

where the /-rowed vectors x and d1 have elements xr and drl, the typical
(r, s)th elements of A, B, C are

Q -A)"' if r^s, cr, = 0

otherwise, and A is / x (/+A), B is (/+£) X /, C is / X / and lower triangular;
AB is / X / and symmetric. By inspection, C is of full rank, and intuitively
we should expect AB to be of full rank (i.e., of rank /). Assuming the latter,
a unique non-zero solution x exists, and the constants Bt are finally computed
from

observing that 2»=r/^c» ' s the typical (i, s)th element of the (j-\-k)xj
matrix BC

We note that the probability of zero waiting-time is

The following moments for w may be found, supposing /?j = 0 to be
the zero of P(z) at the origin:

1

Var (w) =

It may be noted also that the constants Bt here are dependent on the
boundary values F("'(0), whereas in the example MjEJl the constants
At are independent of F(0).

Having obtained a solution for EJEJl, there remains the question
(and we leave it open) of the relation between this case and DjEJl (or by
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duality, EJD/1). It may be conjectured that since E,-+D as j->oo
(such that j'/A remains constant), so this behaviour should be reflected in
the function W(x). Results in this direction should then link up with
Prabhu's work [14].

7. The busy period and loss-free sequences

We consider finally the question of the busy period of the server,
and the related (though not dual) concept of the number of customers in
succession who do not leave the system impatiently. In the dam model
analogue, the corresponding ideas are of the number of years in succession
in which the dam does not run dry, and in which it does not overflow,
respectively.

Define {pn(x, K)} as the conditional distribution of the number of
customers served in a busy period given that the first customer has waiting-
time x, 0 sS x :£ K. Then the distribution of the number of customers served
in a busy period is {pn{0, K)}, and for n = 1, 2, • • •,

(23) pn{x, K) = Pr {w, > 0, i = 1, 2, • • •, n-\, wn = Q\w(t = x).

We use the generating function

P(x, K,z)= f pn(x, X ) * - i
n = l

noting that P(x,K, 0) = p^x.K).
By relating pn+1(x, K) to pn(x, K) we derive an integral equation for

P(x, K, z) which in the case of a negative exponential service time distribu-
tion admits a formal solution via an integro-differential equation and ex-
tension of the range of definition of P(x, K, z) to all x 2̂  0, both of which
techniques we have used earlier.

The case K -*• GO reduces to the moving server problem with an ab-
sorbing barrier (see § 2) for which it has been shown that in M/G/l (see [6]
and [12]) P(x, z) = limK-O0 P(x, K, z) satisfies

P(x, z) = exp {-kc[l-z j~P(t, z)dB(t)}}

with A(x) = 1— e~Xz, x ^ 0, A > 0.
We state our result in

THEOREM 4. In the queueing system GIjGjl with uniformly limited total
queueing-time the conditional busy period distribution generating function
P(x, K, z) satisfies the equation
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P(x, if, z)-P(x, if, 0) = z[l-B(K—x)] [KP{K~t, K, z)dA{t)
(24) Jo

+z j'dBto-x) Jo
s P{y-t, K, z)iA (t)

where

(25) P{x,K, 0) = l—A{K)+ j * B{t-z)dA{t).

PROOF. Define G(y, x) = Pr (wx g y \ wa = a;). Then from (6),

G(y,x) = l-A{K-y)+£ B(u-x)dA{u-y)
A(u-y)dB(u~x).

Since P{x, K, 0) = p^x, K) — G(0, z), (25) follows immediately.
From the definition of pn(x, K), for n = 2, 3, • • •,

* = 2, 3, • • -, n - 1 , w, = 0 I » !

and on forming generating functions,

P(a, if, « ) - P ( * . if, 0) = z Jfl* P(y, if, z)dtG{jf, x)

f, if, z)G(K, x)~P{0, K, z)G{0, x)- fa G(y, x)dvP(y,K, *)}.

Now G(if, x) = 1, and on substituting for G(?/, a;) and G(0, x) and changing
the order of integration once again, (24) is deduced. This proves the theorem.

Example. GIjMjl.
Substituting B(x) = 1— <?-**, x ^ 0, /i > 0, in (24) and (25) leads

formally to the solution (27) below. We denote the derivative of P{x, K, z)
with respect to x by P'(x, K, z).

First, from (25),

P{x, K, 0) = \~A{x)- j*e-''*t

whence (iP{x,K, 0)-P'(x,K, 0) = fi[l-A(x)].
Next, from (24),

P(x, if, z)-P(x, K, 0) = ze" fe-** fX P(if~/, if,
(26)

and by differentiating and substituting for /iP(x,K, 0)—P'(x,K, 0),

P'(z, K,z)=n [P(x, if, 2)+^ (*)-!-*|o
x P(*-/, if,
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Assume now that there exists a function P(x, K, z) satisfying this equation
for all x _ 0 (and not merely 0 5S x •£, K), and that its transform
P(d, K, z) = Jg° e~9xP(x, K, z)dx exists for 6 in some half-plane. Writing
<x(0) for the Laplace-Stieltjes transform of A(x), we finally obtain

(27> P i e K z ) -
( 2 7 ) HO.K.Z)-
Inversion of JP(0, K, z) yields P(x, K, z) up to the function P(0, A', z)
which is found from (26) with x — K, namely,

(28) P{K,K,z) - l-A(K)+zj*P(K-t,K, z)dA(t).

For example, in the system M/M/l with A(x) = \—e-Xx, we sub-
stitute a(9)=(l+0/A)-1 in (27) and seek the inverse of

(X+6)P{0,K,z)-,i

This yields P(x,K,z) = C^'+Cge"** where c^ r2 are the zeros of the
denominator (and they are distinct provided k^fi, i.e., p = Xj[ij± 1,
else P(x,K, z) = (C^C^x) e^x), and Cx, C2 are functions of P(0, /iT, 2).
Using the boundary condition (28) leads to

-2r)] tanh

where a = \/[(X+fi)z—Ujuz] and finally,

P(a;, i<", z) = a-iei<'-A»a: cosh (|aa:){P(0, K, z)tO*+A) tanh (|«a;)+«]
— 2/< tanh (|«a;)}

The mean w(a;, iC) of the distribution {Pn(x, K)} is evaluated by

m(x,K) = l+~P(x,K,z)\^l

oz

so the mean number of customers in a busy period, given by wt(O, K), is

m(o,je)-!z£C!

which in the case p < 1, JC-> oo, reduces to 1/(1—p), the well-known result
for the standard system MJMfl.
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The related distribution {qn(x,K)} of the number of customers in
succession who do not leave the system impatiently, given that the first
customer has waiting-time x, is defined for n = 0,1, 2, • • and 0 ;S x sS K by

qn(x, K) = Pr(ze>,+s, ^ K, * = 0, 1, • • • « —1, a>B+sB > 7? | w0 = a;).

Putting @(."c, K, z) = 2£L0 <?«(*> K)zn, we may proceed as in the proof
of Theorem 4 and deduce that for 0 ;S x g Z£, <?(a-, /£, .s) satisfies

The distribution {rn(x, K)} which we define by

rn(x, K) = Pr(i>,+*, ^ A', * = 0, 1, • • •, n - 1 , vn+tn >K\vn = x)

is the dual (cf. § 3) of {qn(x, K)}, and its generating function R(x, K, z) =
2?=o rn(x,K)zn is related to P(x,K,z) by

P(x, K, z) = J* R(K~y, K, z)dB{y),

as may be shown by the methods of this section.
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