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Abstract

Some major companies have the policy of annually giving numerical scores to their
employees according to their performance, firing those whose performance scores are
below a given percentile of the scores of all employees, and then recruiting new employees
to replace those who were fired. We introduce a probabilistic model to describe how this
practice affects the quality of employee performance as measured over time by the annual
scores. Let n be the number of years that the policy has been in effect, and let Fn(x)

be the distribution function of the evaluation scores in year n. We show, under certain
technical assumptions, that the sequence (Fn(x)) satisfies a particular nonlinear difference
equation, and furnish estimates of the solution of the equation and expressions for the
quantiles of Fn. The mathematical tools that are used include convex functions, difference
equations, and extreme value theory for independent and identically distributed random
variables.
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1. Introduction and summary

In recent years some major companies have introduced annual performance testing of
employees for the purpose of evaluating and improving performance. When the first annual test
is given, all employees are evaluated in some uniform manner and are given a numerical test
score. On the basis of the scores, a predetermined proportion of employees are fired and are
replaced by new employees over the course of the year. The employees who are fired are those
with scores that fall below a predetermined quantile of the distribution of the scores. During
the year following the annual test, some employees who passed the test leave voluntarily, and
are also replaced by new employees. Thus, at the end of the second year, the employees who
take the second annual test fall into one of two categories:

(A) those taking the annual test for the first time;

(B) those who passed the previous test and are now taking the second annual test.

For a specified α, 0 < α < 1, let α and 1 − α represent the proportions of employees in
categories (A) and (B), respectively.

This process is repeated every year: the employees who fail an annual test are fired and
replaced by new employees, and those who pass an annual test and voluntarily leave during the
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Probabilistic analysis of the efficacy of periodic testing of employees 1175

year are also replaced by new employees. The proportions α and 1 − α in categories (A) and
(B), respectively, are assumed to remain the same for each year.

Let F(x) be the distribution function of the numerical scores of those taking the annual test
for the first time. We call this the ‘basic score distribution’:

F(x) = proportion of employees with scores less than or equal to x.

The population of employees is assumed to be very large so that, as is the convention in
the mathematical analysis, we assume, for convenience, that F(x) is strictly increasing and
continuous on {x : 0 < F(x) < 1}.

We recursively define a sequence of distribution functions (Fn(x)), where Fn(x) represents
the score distribution for the nth annual test, for n ≥ 1. By definition we have F1(x) = F(x).
We propose a mathematical model that defines Fn(x) in terms of F(x). Consider the case in
which n = 2. The distribution function F2 of the scores on the second test is a weighted sum
of the distribution functions of scores in categories (A) and (B), with weights α and 1 − α,
respectively.

The score distribution for employees in category (A), i.e. those taking the test for the first
time, is assumed to be the basic score distribution F . Now we define the score distribution for
employees in category (B), i.e. those who passed the previous test. It is the composite function
G(F(x)), where G is a distribution function satisfying

G(y), 0 ≤ y ≤ 1, is continuous and convex, G(0+) = 0, and G(1−) = 1. (1.1)

It now follows that the weighted sum representing the score distribution for the second test is

F2(x) = αF(x) + (1 − α)G(F(x)). (1.2)

Now we explain the relevance of the assumption that G is convex. The convexity of G

implies that [G(x2) − G(x1)]/(x2 − x1), x1 < x2, is nondecreasing in x1 for fixed x2 and
nondecreasing in x2 for fixed x1. (See [4, p. 3].) Therefore, for any distribution function F(x),

G(F(x2)) − G(F(x1))

F (x2) − F(x1)
(1.3)

is similarly nondecreasing in x1 and x2 for fixed x2 and x1, respectively, for x1 < x2. If X

and Y are random variables with distribution functions F and G(F), respectively, then (1.3)
represents the ratio

P(x1 < Y ≤ x2)

P(x1 < X ≤ x2)
.

The fact that this ratio is nondecreasing in x1 and x2 for fixed x2 and x1, respectively,
represents a strong form of a stochastic order relation between the random variables X and Y .
These two random variables represent randomly drawn individuals from categories (A) and (B),
respectively, and the bimonotonicity property of P(x1 < Y ≤ x2)/ P(x1 < X ≤ x2) signifies
that Y is stochastically larger than X in the sense that we defined the order relation.

Remark. The conventional definition of the relationship ‘Y is stochastically larger than X’
is defined by the inequality G(F(x)) ≤ F(x), a weaker assumption than the one introduced
through (1.3).

https://doi.org/10.1239/jap/1294170528 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170528


1176 S. M. BERMAN

Set
Fn(x) = score distribution on the nth annual test.

We will extend (1.2) to

Fn(x) = αF(x) + (1 − α)G(Fn−1(x)) for n ≥ 2, (1.4)

with F1(x) = F(x). This relation describes the score distribution as a weighted sum of the score
distribution of employees taking the test for the first time, which we assume to be the same as
the basic score distribution F , and the score distribution of employees who passed the previous
annual test (the (n−1)th test). The latter distribution is defined as G(Fn−1(x)), where Fn−1(x)

is the score distribution on the (n − 1)th test. Here we assume that the weights (α, 1 − α)

remain the same for all tests and that the score distribution on the nth test for employees who
passed the (n − 1)th test is the composition G(Fn−1), with the same G. The latter assumption
is meant to express the fact that the scores on an annual test for employees who passed the
previous test are stochastically larger than the scores of all employees who took the previous
test. (The latter group includes employees who failed the previous test.)

Since, by assumption, F(x) is continuous and increasing on the closure of {x : 0 <

F(x) < 1}, and G(y) is continuous and convex on the closure of {y : 0 < G(y) < 1}, it
follows from (1.2) that F2(x) is continuous and increasing on the same set. By (1.4) and
induction on n, it follows that the same holds for all Fn, n ≥ 1; hence, for every y, 0 < y < 1,
the y-quantile F−1

n (y) is well defined.
Now we define the ‘critical quantile’, denoted by q: it is the smallest solution y of the

equation

G(y) = y − α

1 − α
, α ≤ y ≤ 1. (1.5)

Note that such a solution always exists because y = 1 is a solution and the right-hand member
of (1.5) is negative for y < α.

Set
z = sup(x : F(x) < 1), (1.6)

where z ≤ ∞. It will be shown that z = sup(x : Fn(x) < 1) for all n ≥ 2. Thus, we can think
of z as the common perfect score on all the tests. It will be shown that (Fn(x)) is a nonincreasing
sequence for each x, and so has a limit Q(x). The critical quantile q plays a crucial role in the
form of Q. Indeed, Q(x) is continuous and increasing for all x such that Q(x) < q, and it is
equal to 1 for all x such that Q(x) ≥ q; hence, it has a jump of magnitude 1 − q at the point
x = Q−1(q). The latter result can be formulated in an equivalent way in terms of the quantile
functions: F−1

n (y), 0 < y < 1, is a nondecreasing sequence and has the limit Q−1(y), which
is an increasing function of y for 0 < y < q, and Q−1(y) = z for q ≤ y ≤ 1. The statistical
interpretation of this result is that the quantile function F−1

n (y) converges to a continuous limit
for y-values below the critical quantile q and converges to the ‘perfect score’ z for y-values at
or above the critical quantile. This implies that the long-run proportion of perfect (or nearly
perfect) scores is 1 − q, and the complementary set of scores is distributed according to the
distribution function Q for Q(x) < q. The relation between the quantiles of Q and the basic
score distribution is given by (2.4) below.

While these limit results are of mathematical interest, the rate of convergence to the limits is
of more practical interest because employers are generally seeking improvement over relatively
short time periods, e.g. five or ten years. Thus, we investigate the solutions of the system of
equations (1.4) for fixed n. Since these equations are generally nonlinear (because G is not
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necessarily linear), the system does not have an explicit solution. However, upper and lower
bounds for the solution can be obtained by replacing G by linear upper and lower bounds,
and explicitly solving the corresponding linear equations. Formulae (3.15) and (3.16) below
express these bounds in terms of α, F , and the Radon–Nikodym derivative of G. In the special
case where G(y) is linear for w ≤ y ≤ 1 for some w > 0, we obtain an explicit solution for
Fn and provide numerical illustrations in the extreme cases q = α and q = 1.

Next we turn to the determination of the asymptotic form of the quantile F−1
n (y) for n → ∞

and for y at least equal to the critical quantile q. (As indicated above, F−1
n (y) → z ≤ ∞.) The

analysis is based on the classical extreme value theory concerning the limiting distributions of
the partial maxima of independent and identically distributed (i.i.d.) random variables. For this
purpose, we assume that the basic score distribution F belongs to the domain of attraction of
one of the three types of limiting extreme value distributions. Let H(x) represent an extreme
value distribution of a given type; the well-known forms are given in Section 5. In Section 4
we construct sequences (An), An > 0, and (Bn), based on α, G, and F , such that

lim sup
n→∞

F−1
n (y) − Bn

An

≤ H−1(ey−1)

for q ≤ y < 1. Similarly, we construct sequences (An), An > 0, and (Bn) such that, under an
additional condition on G, the inequality above, in reversed form, holds with lim sup replaced
by lim inf. It follows as a corollary that if there exists w, q ≤ w < 1, such that if G is linear
on [w, 1] then, for all y, w ≤ y < 1,

lim
n→∞

F−1
n (y) − Bn

An

= H−1(ey−1).

The actual sequences are constructed in Section 5.
We note that the difference equations (1.4) represent an extended form of the classical

difference equations for the extinction probabilities xn in the basic branching process, xn =
G(xn−1), where G is a generating function of the distribution of the number of offspring of
a single individual. (See [3, p. 296].) Set yn = Fn(x) in (1.4), so that the equation is of
the form yn = αy1 + (1 − α)G(yn−1). This represents a generalization of the branching
process equation. Indeed, the latter is a restriction of (1.3) to the particular case where α = 0
and G(x) is a probability generating function (which is necessarily continuous, convex, and
nondecreasing), while (1.3) holds for any G satisfying (1.1) and for α not necessarily equal
to 0.

The problem that is analyzed in this work was motivated by an article that the author read
in the New York Times [1] about a court case that arose as a result of the use of annual testing
by large companies. The author first considered the simple mathematical model where G is
the uniform distribution on [α, 1], and proposed it as a problem to Hartono Tjoe, a master’s
degree candidate at the Courant Institute, New York University, whose thesis [5] contained the
solution of the difference equations in that particular case. His result is included in the special
case considered in Example 3.1.

Explicit calculations in Section 6 illustrate the progression of selected quantiles of the score
distributions Fn, n = 1, . . . , 10, for two particular convex functions G. These examples
indicate that (i) the improvement in scores is strongly influenced by the choice of the convex
function G, and (ii) the rate of improvement seems to be relatively low, so that there are limits
to the cost effectiveness of the practice in actual applications.
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2. The limit of Fn

In this section we show that the sequence Fn(x) defined by (1.4) has a limit Q(x), and we
describe its essential features.

Theorem 2.1. Let (Fn) be defined recursively by (1.4) with F1 = F . Then Fn(x), n =
1, 2, . . . , is nonincreasing for each x, so that Q(x) = limn→∞ Fn(x) exists, and it satisfies the
equation

Q(x) = αF(x) + (1 − α)G(Q(x)). (2.1)

Furthermore, 0 < Q(x) < 1 if and only if 0 < F(x) < 1 for each x.

Proof. A convex function G satisfying G(0) = 0 and G(1) = 1 also satisfies G(x) ≤ x for
0 < x < 1. It then follows from (1.3) that

F2(x) ≤ αF(x) + (1 − α)F (x) = F1(x).

We extend this by induction to Fn+1(x) ≤ Fn(x). Assume that Fn(x) ≤ Fn−1(x). Then, by
(1.4),

Fn(x) − Fn+1(x) = (1 − α)[G(Fn−1(x)) − G(Fn(x))] ≥ 0.

It follows that the limit Q(x) exists, and, by the continuity of G, (2.1) follows from (1.4).
Since (Fn) is nonincreasing, it follows that Q(x) ≤ F(x); hence, F(x) < 1 implies that

Q(x) < 1. Conversely, if F(x) = 1 then (1.2) implies that F2(x) = 1, and, by induction,
Fn(x) = 1 for all n ≥ 1; hence, Q(x) = 1, and, consequently, Q(x) < 1 if and only if
F(x) < 1. If F(x) = 0 then Q(x) = 0 because Q(x) ≤ F(x) for all x. Conversely, if
Q(x) = 0 then, by (2.1), F(x) is necessarily equal to 0. Therefore, Q(x) > 0 if and only if
F(x) > 0. This completes the proof.

Theorem 2.2. Let z be defined by (1.6). Then Q(x) is strictly increasing and continuous on
{x : 0 < Q(x) < 1}, q (the smallest solution of (1.5)) satisfies

Q(z−) = lim
x↑z

Q(x) = q, (2.2)

and Q(x) has a jump of magnitude 1 − q at x = z.

Proof. By (2.1), Q(x) increases at x if F(x) does; hence, Q(x) increases on the set {x : 0 <

F(x) < 1} because F is assumed to increase on that set. By Theorem 2.1, that set is identical
to {x : 0 < Q(x) < 1} and so Q(x) increases on the latter set.

Let y be any number satisfying 0 < Q(y) < q. Then, by the definition of q,

G(q) = q − α

1 − α
, G(Q(y)) >

Q(y) − α

1 − α
,

so that γ , defined as

γ = (1 − α)
G(q) − G(Q(y))

q − Q(y)
,

satisfies 0 < γ < 1. By the convexity of G we have

(1 − α)
G(s) − G(r)

s − r
≤ γ for all r < s < Q(y). (2.3)
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To prove that Q(x) is continuous at every x < y, assume the contrary, i.e. that x is a point of
discontinuity of Q, so that Q(x−) < Q(x+). Since, by assumption, F is continuous, (2.1)
implies that

Q(x+) − Q(x−) = (1 − α)[G(Q(x+)) − G(Q(x−))].
Since Q is strictly increasing, it follows that G(Q(x−)) < G(Q(x+)) < G(Q(y)); hence,
applying (2.3) with r = Q(x−) and s = Q(x+), we find that

(1 − α)[G(Q(x+)) − G(Q(x−))] ≤ γ [Q(x+) − Q(x−)],
which contradicts the previously displayed equation because γ < 1. Since y is an arbitrary
number with Q(y) < q and x is an arbitrary number less than y, it follows that x is a continuity
point for any x such that Q(x) < q.

Now we prove (2.2). If x < z then F(x) < 1, and so, by (2.1),

G(Q(x)) = Q(x) − αF(x)

1 − α
>

Q(x) − α

1 − α
,

and so Q(x) is not a solution of (1.5), so Q(x) < q. Since x < z is arbitrary, it follows that
Q(z−) ≤ q. On the other hand, Q(z−) is, in fact, a solution of (1.5), because by letting x ↑ z

in (2.1) we obtain Q(z−) = α + (1 − α)G(Q(z−)). Since q is, by definition, the smallest
solution, we have q ≤ Q(z−). From this and the previous (reverse) inequality, we obtain (2.2).

Since, by Theorem 2.1, the sets {x : 0 < F(x) < 1} and {x : 0 < Q(x) < 1} are identical,
Q(z) = F(z) = 1, and so Q has a jump of magnitude 1 − q at z. This completes the proof.

Theorem 2.3. For every y, 0 < y < q,

Q−1(y) = F−1
(

1

α
[y − (1 − α)G(y)]

)
. (2.4)

Proof. By Theorem 2.2, Q−1(y) is well defined for 0 < y < q. For each such y, set
x = Q−1(y) in (2.1):

y = αF(Q−1(y)) + (1 − α)G(y),

which is equivalent to

F(Q−1(y)) = 1

α
[y − (1 − α)G(y)],

and (2.4) follows upon applying F−1 to both sides of the latter equation.

Equation (2.4) relates the quantiles of F and Q: the y-quantile of Q is the quantile of order
(1/α)[y − (1 − α)G(y)] for F .

Theorem 2.4. If G(α) = 0 then

Q(x) =
{

αF(x), x < z,

1, x ≥ z.

Proof. If G(α) = 0 then y = α is a solution of (1.5) and is necessarily the smallest solution,
so q = α. If x < z then, by (2.2), Q(x) < Q(z−) = q; hence, G(Q(x)) ≤ G(q) = G(α) = 0,
and, by (2.1), Q(x) = αF(x). If x ≥ z then Q(x) ≥ Q(z) = 1, which implies that Q(x) = 1.
This completes the proof.
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Theorem 2.5. The sequence F−1
n (y) satisfies

lim
n→∞ F−1

n (y) =
{

Q−1(y), 0 < y < q,

z, q ≤ y ≤ 1.
(2.5)

Proof. By Theorem 2.1, Fn(x) is nonincreasing for each x, so F−1
n (y) is nondecreasing

for each 0 < y ≤ 1; thus, limn→∞ F−1
n (y) exists. Since Q(x) and Fn(x) are continuous and

strictly monotonic on {x : 0 < Q(x) < q}, the convergence of Fn(x) to Q(x) on this set implies
the first equation in (2.5).

Since Q−1(y) is monotonic for 0 < y < 1, it suffices, for the proof of the second equation
in (2.5), to show that Q−1(q) = z, which is equivalent to F(Q−1(q)) = 1. The latter follows
by substituting x = Q−1(q) into (2.1), i.e. we obtain

q = αF(Q−1(q)) + (1 − α)G(q),

which, by (1.5), is equivalent to

0 = αF(Q−1(q)) − α,

which implies that F(Q−1(q)) = 1. This completes the proof.

Corollary 2.1. For q ≤ y < 1,

lim
n→∞ Fn(F

−1
n−1(y)) = α + (1 − α)G(y). (2.6)

Proof. Set x = F−1
n−1(y) in (1.4). Then

Fn(F
−1
n−1(y)) = αF(F−1

n−1(y)) + (1 − α)G(y).

Take the limit for n → ∞, and apply Theorem 2.5, i.e. limn→∞ F(F−1
n−1(y)) = F(z) = 1.

Then (2.6) follows.

Example 2.1. Suppose that G(y) = y2, 0 ≤ y ≤ 1. Then (2.1) takes the form Q = αF +
(1 − α)Q2. Solving for Q we obtain

Q(x) = 1 − [1 − 4α(1 − α)F (x)]1/2

2(1 − α)
(2.7)

as the only solution that is nondecreasing in x. By (1.5), q satisfies the equation

q = α + (1 − α)q2,

whose solutions are

q = 1 ± [1 − 4α(1 − α)]1/2

2(1 − α)
= 1 ± |2α − 1|

2(1 − α)
. (2.8)

If α > 1
2 then the smaller solution is equal to 1 and follows by choosing the minus sign. If

α = 1
2 then q = 1 is the only solution, and (2.7) takes the form Q(x) = 1 − [1 − F(x)]1/2.

If α < 1
2 then the two solutions of q in (2.8) are α/(1 − α) and 1, and so the smaller one is

q = α/(1 − α), which is less than 1. It follows from this analysis that the smallest solution of
(2.8) is

q = min

(
α

1 − α
, 1

)
.
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3. Estimates of the solution of (1.4)

For each x, the system of equations (1.4) recursively express Fn(x) in terms of Fj (x),
j = 1, . . . , n − 1, so that Fn(x) is expressible in terms of F(x). In the case where G is linear
on some interval [r, 1], 0 < r < 1, the system (1.4) is first-order linear and can be explicitly
solved for Fn(x). In this section we consider the case where G is majorized or minorized by
linear functions, and we obtain upper and lower bounds, respectively, for Fn(x) in terms of the
bounding linear functions and F(x).

Lemma 3.1. Let y1, y2, . . . , yn satisfy

yj ≤ a + byj−1, j = 2, . . . , n, (3.1)

for fixed a > 0, b > 0, and b �= 1. Then

yn ≤ a
bn−1 − 1

b − 1
+ bn−1y1. (3.2)

The relation between (3.1) and (3.2) also holds with the reversed inequalities: if

yj ≥ a + byj−1, j = 2, . . . , n,

then

yn ≥ a
bn−1 − 1

b − 1
+ bn−1y1. (3.3)

If b = 1 then the right-hand members of (3.2) and (3.3) are replaced by

a(n − 1) + y1. (3.4)

Proof. Starting with j = 2, we apply (3.1) to obtain

y2 ≤ a + by1,

y3 ≤ a + b(a + by1) = a(1 + b) + b2y1, . . . , yn ≤ a(1 + b + · · · + bn−2) + bn−1y1.

Noting that

a

n−2∑
j=0

bj + bn−1y1 =

⎧⎪⎨
⎪⎩

a
bn−1 − 1

b − 1
+ bn−1y1 for b �= 1,

a(n − 1) + y1 for b = 1,

we obtain (3.2) and (3.4). The reverse inequality (3.3) is obtained by reversing the inequalities
in (3.1). This completes the proof.

For the purpose of the next several proofs, we note that (1.4) is equivalent to

1 − Fn(x) = α[1 − F(x)] + (1 − α)[1 − G(Fn−1(x))]. (3.5)

For arbitrary w, 0 < w ≤ 1, define g(w) as

g(w) =

⎧⎪⎪⎨
⎪⎪⎩

lim
y↓w

G(y) − G(w)

y − w
, 0 < w < 1,

lim
y↑1

1 − G(y)

1 − y
, w = 1.
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These limits exist because G is convex. The convexity of G also implies that

1 − G(y) ≤ (1 − y)g(1), 0 ≤ y ≤ 1, (3.6)

1 − G(y) ≥ (1 − y)g(w), w ≤ y ≤ 1.

For 0 < α < 1, n ≥ 2, and 0 ≤ y ≤ 1, define

Rn(y) =

⎧⎪⎨
⎪⎩

α
[(1 − α)g(y)]n−1 − 1

(1 − α)g(y) − 1
+ [(1 − α)g(y)]n−1 for (1 − α)g(y) �= 1,

1 + (n − 1)α for (1 − α)g(y) = 1.

(3.7)

Theorem 3.1. Let Fn be defined by (1.4). Then,

1 − Fn(x) ≤ [1 − F(x)]Rn(1) for all x, (3.8)

and, for every w, 0 ≤ w < 1,

1 − Fn(x) ≥ [1 − F(x)]Rn(w) (3.9)

for all x satisfying
Fn−1(x) ≥ w. (3.10)

Proof. Setting y = Fn−1(x), and applying the first inequality in (3.6) to the right-hand
member of (3.5), we obtain

1 − Fn(x) ≤ α[1 − F(x)] + (1 − α)[1 − Fn−1(x)]g(1)

for all n ≥ 2. Now apply Lemma 3.1 (first part) with a = α[1 − F(x)] and b = (1 − α)g(1).
This proves (3.8).

Again setting y = Fn−1(x), and noting assumption (3.10), we apply the second inequality
in (3.6) to the right-hand member of (3.5) to obtain

1 − Fn(x) ≥ α[1 − F(x)] + (1 − α)[1 − Fn−1(x)]g(w) (3.11)

for all x satisfying (3.10). Since F1(x) ≥ F2(x) ≥ · · · ≥ Fn−1(x) for each x (Theorem 2.1),
the reasoning used to prove (3.11) implies that the latter inequality can be extended to

1 − Fj (x) ≥ α[1 − F(x)] + (1 − α)[1 − Fj−1(x)]g(w), j = 2, . . . , n.

Now apply the second part of Lemma 3.1 with a = α[1−F(x)] and b = (1−α)g(w) to obtain
(3.9). This completes the proof.

Corollary 3.1. For 0 < y < 1 and n ≥ 2,

1 − F(F−1
n (y)) ≥ 1 − y

Rn(1)
, (3.12)

and, for all 0 < w < 1 and n ≥ 2,

1 − F(F−1
n (y)) ≤ 1 − y

Rn(w)
for w ≤ y ≤ 1. (3.13)
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Proof. For 0 < y < 1, set x = F−1
n (y) in (3.8) to obtain 1 − y = 1 − Fn(x) = 1 −

Fn(F
−1
n (y)) ≤ [1 − F(F−1

n (y))]Rn(1); this implies (3.12).
For any 0 < w < 1, and with w ≤ y < 1, set x = F−1

n−1(y). Then Fn−1(x) = y ≥ w, and
so (3.9) implies that

1 − Fn(x) ≥ [1 − F(x)]Rn(w). (3.14)

Now, for any y, w ≤ y ≤ 1, set x = F−1
n (y). Then Fn−1(x) = Fn−1(F

−1
n (y)) ≥

Fn(F
−1
n (y)) = y ≥ w. Therefore, (3.14) holds for such x, and we obtain (3.13) by this

substitution. This completes the proof.

Note that (3.12) is clearly equivalent to

F−1
n (y) ≤ F−1

(
1 − 1 − y

Rn(1)

)
, 0 < y ≤ 1, (3.15)

and (3.13) is equivalent to

F−1
n (y) ≥ F−1

(
1 − 1 − y

Rn(w)

)
, w ≤ y ≤ 1. (3.16)

If G(y) is linear for w ≤ y ≤ 1 then (3.15) and (3.16) imply that

F−1
n (y) = F−1

(
1 − 1 − y

Rn(1)

)
, w ≤ y ≤ 1, (3.17)

because g(w) = g(1), and so Rn(w) = Rn(1).

Lemma 3.2. If q < 1 then either (1 − α)g(1) > 1 or (1 − α)g(y) = 1 for q ≤ y ≤ 1.

Proof. If q < 1 then, by (1.5), the definition of q, and the convexity of G,

1

1 − α
= 1 − G(q)

1 − q
≤ 1 − G(y)

1 − y
≤ g(1), q ≤ y < 1.

If either of the two inequalities above is strict then (1 − α)g(1) > 1. If both inequalities are
equalities then

1 − y

1 − α
= 1 − G(y), q ≤ y ≤ 1,

and, by differentiation, (1 − α)g(y) = 1. This completes the proof.

Example 3.1. Let G(x) be the uniform distribution on [α, 1]. It is clear that q = α and that
g(y) = G′(y) = (1 − α)−1 for α ≤ y ≤ 1. It follows from (3.7) that Rn(y) = 1 + (n − 1)α.

If Fn−1(x) ≤ α then G(Fn−1(x)) ≤ G(α) = 0, and so, by (1.4), Fn(x) = αF(x). If
Fn(x) ≥ α, it follows from Theorem 3.1 and the fact that Rn(y) is constant on α ≤ y ≤ 1 that
Fn(x) = 1 − [1 − F(x)][1 + (n − 1)α]. Hence, Fn is given by

Fn(x) =
{

αF(x) for Fn−1(x) ≤ α,

1 − [1 − F(x)][1 + (n − 1)α] for Fn−1(x) ≥ α.
(3.18)

By (3.17),

F−1
n (y) = F−1

(
1 − 1 − y

1 + (n − 1)α

)
, α ≤ y ≤ 1; (3.19)
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hence,

F−1
n−1(α) = F−1

(
(n − 1)α

1 + (n − 2)α

)
.

It follows that (3.18) has the equivalent form,

Fn(x) =
{

αF(x) for F(x) ≤ (n − 1)α/(1 + (n − 2)α),

1 − [1 − F(x)][1 + (n − 1)α] for F(x) ≥ (n − 1)α/(1 + (n − 2)α).

Example 3.2. Let G(x) be the uniform distribution on [β, 1], where 0 < β < α; G is linear
on [β, 1] and g(y) = (1 − β)−1 for β ≤ y ≤ 1. Here q = 1 because the smallest solution of
(1.5) for G(y) = (y − β)/(1 − β) is y = 1. The function Rn(y) in (3.7) takes the form

Rn(y) = Rn = α
1 − δn−1

1 − δ
+ δn−1 for β ≤ y < 1, (3.20)

where δ = (1 − α)/(1 − β) < 1. It follows from (1.4), Theorem 3.1, and the form of G that

Fn(x) =
{

αF(x) for Fn−1(x) ≤ β,

1 − Rn(1 − F(x)) for Fn−1(x) ≥ β.
(3.21)

Since G(x) is linear on [β, 1], (3.17) holds for w = β, and, in particular, we obtain

F−1
n−1(β) = F−1

(
1 − 1 − β

Rn−1

)
, n ≥ 2. (3.22)

The inequality Fn−1(x) ≥ β, which is equivalent to x ≥ F−1
n−1(β), implies, by (3.22), that

F(x) ≥ 1 − (1 − β)/Rn−1, so (3.21) is equivalent to

Fn(x) =
{

αF(x) for F(x) ≤ 1 − (1 − β)/Rn−1,

1 − Rn(1 − F(x)) for F(x) ≥ 1 − (1 − β)/Rn−1.
(3.23)

It follows from (3.20) that Rn → α/(1 − δ) for n → ∞, and from the definition of δ that
α/(1 − δ) = α(1 − β)/(α − β). By taking the limits in (3.23), we obtain

lim
n→∞ Fn(x) =

⎧⎪⎨
⎪⎩

αF(x) for F(x) ≤ β/α,

1 − α(1 − β)

α − β
[1 − F(x)] for F(x) ≥ β/α.

4. Asymptotic bounds for F−1
n (y) when F belongs to the domain of attraction of an

extreme value distribution

For a given distribution function F , the limiting behavior of F−1(1 − h), h ↓ 0, has a
central role in the analysis of the limiting distribution of the partial maximum in a sample of
i.i.d. random variables with distribution function F . A brief summary of facts from extreme
value theory that are relevant to this work are included in Section 5. Under the condition that
Rn(w) → ∞, w ≤ 1, the right-hand members of (3.15), (3.16), and (3.17) are of the same
asymptotic form, F−1(1−h) for h ↓ 0. Hence, when F belongs to the domain of attraction of an
extreme value distribution, the corresponding theory can be applied to give explicit asymptotic
forms for F−1(1 − h).
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Suppose that F is in the domain of attraction of the extreme value distribution H(x). Then
there are sequences of numbers (an) and (bn), with an > 0, such that, for every x,

lim
n→∞ Fn(anx + bn) = H(x),

or, equivalently,

lim
n→∞ n[1 − F(anx + bn)] = − log H(x) for all x, (4.1)

or, equivalently, for − log H(x) = t ,

lim
n→∞ n[1 − F(anH

−1(e−t ) + bn)] = t for all t > 0. (4.2)

If (rn) is a positive integer-valued sequence such that rn → ∞, then (4.1) and (4.2) continue
to hold if the index n in these relations is replaced by rn. Hence, if we define

An = arn and Bn = brn, (4.3)

then
lim

n→∞ rn[1 − F(Anx + Bn)] = − log H(x)

and
lim

n→∞ rn[1 − F(AnH
−1(e−t ) + Bn)] = t. (4.4)

Theorem 4.1. Assume that q < 1 and that F is in the domain of H . Set

rn = integer part of Rn(1). (4.5)

Then, for q ≤ y < 1, and with An and Bn in (4.3),

lim sup
n→∞

F−1
n (y) − Bn

An

≤ H−1(ey−1). (4.6)

Proof. By Lemma 3.2, and the definition of Rn(y) in (3.7), it follows that Rn(1) → ∞
under the condition q < 1; the same holds for rn in (4.5).

For fixed y, q ≤ y < 1, let y′ be an arbitrary number such that y < y′ < 1. Then, by (4.4),
with t = 1 − y′,

lim
n→∞ rn[1 − F(AnH

−1(ey′−1) + Bn)] = 1 − y′.

By (3.12),
rn[1 − F(F−1

n (y))] ≥ 1 − y for n ≥ 2.

From the last two relations, it follows that

lim sup
n→∞

1 − F(AnH
−1(ey′−1) + Bn)

1 − F(F−1
n (y))

≤ 1 − y′

1 − y
< 1,

so that, for all sufficiently large n,

F−1
n (y) < AnH

−1(ey′−1) + Bn;
hence,

lim sup
n→∞

F−1
n (y) − Bn

An

≤ H−1(ey′−1).

Conclusion (4.6) follows from this because H−1(ey−1) is monotonic and continuous in y, and
y′ > y is arbitrary.
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Our next step is to derive a reverse inequality corresponding to (4.6), with lim inf in the place
of lim sup, and where the index sequence (rn) is replaced by one that increases more slowly and
the domain of the quantile function F−1

n (y) is restricted to a specified subinterval w ≤ y < 1,
where w is a number in [q, 1] determined by α and G. This is shown in the following lemma.

Lemma 4.1. Let g(y) be the right-hand derivative of G(y), defined in Section 3. If q < 1 then
there exists w, q ≤ w < 1, such that

lim
n→∞ Rn(w) = ∞. (4.7)

Proof. By the definition of Rn(y) in (3.7), it suffices to show that there exists w, q ≤ w < 1,
such that (1−α)g(w) ≥ 1. Assume the contrary, namely, that (1−α)g(y) < 1 for allq ≤ y < 1,
or, equivalently, 1 − (1 − α)g(y) > 0 for q ≤ y < 1. By integration we obtain

0 <

∫ 1

q

[1 − (1 − α)g(y)] dy = 1 − q − (1 − α)[1 − G(q)].

It follows from (1.5) that the right-hand member of the last relation is equal to 0, which obviously
contradicts the stated inequality.

Let w be a number satisfying the conditions in the conclusion of Lemma 4.1, and define, by
analogy to (4.5),

rn(w) = integer part of Rn(w).

Then define (An) and (Bn) as in (4.3), but with rn(w) in place of rn.

Theorem 4.2. Assume, as in Theorem 4.1, that q < 1 and F is in the domain of H . Then, for
any w, q ≤ w < 1, satisfying (4.7), and for (An) and (Bn) as in (4.3) with rn(w) in place of
rn,

lim inf
n→∞

F−1
n (y) − Bn

An

≥ H−1(ey−1) (4.8)

for w ≤ y < 1.

Proof. The proof is analogous to that of Theorem 4.1, with the modification that inequality
(3.13) is used in the place of (3.12). Given y, we choose an arbitrary y′ < y, and find that

lim inf
n→∞

1 − F(AnH
−1(ey′−1) + Bn)

1 − F(F−1
n (y))

≥ 1 − y′

1 − y
> 1,

so that, for all sufficiently large n,

F−1
n (y) > AnH

−1(ey′−1) + Bn,

which implies that

lim inf
n→∞

F−1
n (y) − Bn

An

≥ H−1(ey′−1),

and conclusion (4.8) follows from the continuity and monotonicity of H−1.

Corollary 4.1. Assume that the conditions of Theorem 4.2 hold. If, in addition, G(y) is linear
on [w, 1], then, for w ≤ y < 1,

lim
n→∞

F−1
n (y) − Bn

An

= H−1(ey−1).

Proof. Since G(y) is linear on [w, 1], g(y) is constant on [w, 1], and so rn = rn(w).
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5. Applications to the three domains of attraction

The following results on extreme values appear in many papers and books, but here we
follow one of the classical sources, De Haan [2]. Our notation differs from his in that we
replace his parameter α with γ because we have used α to represent the population proportion
described in Section 1, and we replace his upper bound x0 of the support of F with z, defined
in Section 1.

There are three possible types of distribution H(x). The first type is

�γ (x) =
{

0, x ≤ 0,

exp[−x−γ ], x > 0.
(5.1)

The sequences (an) and (bn) are

an = F−1
(

1 − 1

n

)
, bn = 0. (5.2)

An easy calculation shows that

H−1(ey−1) = (1 − y)−1/γ , 0 < y < 1.

The second type is

�γ (x) =
{

exp [−(−x)r ], x ≤ 0,

1, x ≥ 0.
(5.3)

The sequences (an) and (bn) are

an = z − F−1
(

1 − 1

n

)
, bn = z. (5.4)

For H as in (5.3), we clearly have

H−1(ey−1) = −(1 − y)1/γ , 0 < y < 1.

The third type is
�(x) = exp[−e−x]. (5.5)

The sequences (an) and (bn) are

an = n

∫ z

F−1(1−1/n)

[1 − F(u)] du, bn = F−1
(

1 − 1

n

)
, (5.6)

and H−1(ey−1) is given by

H−1(ey−1) = − log(1 − y), 0 < y < 1.

In order to illustrate the applications of these results to Theorems 4.1 and 4.2, and to
Corollary 4.1, we derive the forms of the ratio

F−1
n (y) − Bn

An

(5.7)

for the three domains of attraction, respectively.
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For the domain of �γ in (5.1), relations (5.2) imply that Bn = 0 and

An =

⎧⎪⎪⎨
⎪⎪⎩

F−1
(

1 − 1

rn

)
in Theorem 4.1,

F−1
(

1 − 1

rn(w)

)
in Theorem 4.2.

For the domain of �γ in (5.3), relations (5.4) imply that Bn = z and

An =

⎧⎪⎪⎨
⎪⎪⎩

z − F−1
(

1 − 1

rn

)
in Theorem 4.1,

z − F−1
(

1 − 1

rn(w)

)
in Theorem 4.2.

For the domain of � in (5.5), relations (5.6) imply that

An =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rn

∫ z

F−1(1−1/rn)

[1 − F(u)] du in Theorem 4.1,

rn(w)

∫ z

F−1(1−1/rn(w))

[1 − F(u)] du in Theorem 4.2.

Example 5.1. Suppose that 1 − F(x) ∼ x−γ for x → ∞ and fixed γ > 0. Then F is in the
domain of attraction of �γ . Then, by (5.2), bn = 0 and an ∼ n1/γ for n → ∞. Thus, the ratio

in (5.7) is asymptotically equal to F−1
n (y)/r

1/γ
n or F−1

n (y)/(rn(w))1/γ under Theorem 4.1 or
4.2, respectively.

Example 5.2. Suppose that z < ∞ and that F satisfies 1 −F(z− x) ∼ xγ for x → 0+. Then
F is in the domain of attraction of �γ , and, by (5.4), bn = z, and it can be shown that

an = z − F−1
(

1 − 1

n

)
∼ n−1/γ for n → ∞.

Thus, the ratio in (5.7) is asymptotically equal to [rn or rn(w)]1/γ [F−1
n (y) − z].

Example 5.3. In contrast to the domains of attraction of (5.1) and (5.3), the asymptotic form of
1−F(x) for x → z is not conveniently related to the conditions for membership in the domain
of attraction of � in (5.5). Hence, we present two examples where F is known to belong to the
domain of � and where F−1(1 − h) has a sufficiently precise asymptotic estimate for h → 0.
First, let F(x) be the standard exponential distribution. It is known to belong to the domain of
�, and, by (5.6), bn = F−1(1 − 1/n) = log n and an ≡ 1. It follows that the ratio in (5.7) is
equal to

F−1
n (y) = log(rn or rn(w)).

Next, let F(x) be the standard normal distribution, which is also known to belong to the domain
of �. A well-known asymptotic formula for F−1(1 − 1/n) is

(2 log n)1/2 − 1

2

log log n + log 4π

(2 log n)1/2 + o((2 log n)−1/2) for n → ∞;
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furthermore, it is known that an in (5.6) has the asymptotic form (2 log n)−1/2. Hence, the ratio
in (5.7) takes the form

(2 log rn)
1/2

[
F−1

n (y) − F−1
(

1 − 1

rn

)]
,

or with rn(w) in place of rn.

6. Numerical illustrations of Examples 3.1 and 3.2

In Example 3.1 take α = 0.1 and let F be the standard normal distribution function. (This
accords with the practice of treating test scores as normally distributed.) For the purpose of
illustrating the effect of annual testing on the corresponding test scores, Table 1 provides the
three quartiles of the score distribution Fn for 1 ≤ n ≤ 10, based on (3.19) with y = 0.25.

Table 2 provides the three quartiles for the score distribution Fn for 1 ≤ n ≤ 10 in
Example 3.2 for α = 0.1, β = 0.05, and F the standard normal distribution.

Table 1: The first three quartiles for Fn, n = 1, . . . , 10.

Quartile
n

First Second Third

1 −0.67 0.00 0.67
2 −0.47 0.11 0.74
3 −0.32 0.21 0.81
4 −0.19 0.29 0.88
5 −0.10 0.37 0.92
6 0.00 0.43 0.95
7 0.08 0.49 0.99
8 0.15 0.55 1.05
9 0.20 0.58 1.08

10 0.28 0.64 1.13

Table 2: The first three quartiles for Fn, n = 1, . . . , 10, ∞.

Quartile
n

First Second Third

1 −0.67 0.00 0.67
2 −0.58 0.05 0.71
3 −0.58 0.05 0.71
4 −0.49 0.10 0.74
5 −0.42 0.15 0.77
6 −0.36 0.19 0.80
7 −0.29 0.22 0.82
8 −0.26 0.26 0.84
9 −0.21 0.28 0.86

10 −0.18 0.38 0.88
∞ 0.27 0.63 1.12
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