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Abstract

Broiler chickens are among the main livestock sectors worldwide. With individual treatments
being inapplicable, contrary to many other animal species, the need for antimicrobial use
(AMU) is relatively high. AMU in animals is known to drive the emergence and spread of
antimicrobial resistance (AMR). High farm biosecurity is a cornerstone for animal health
and welfare, as well as food safety, as it protects animals from the introduction and spread
of pathogens and therefore the need for AMU. The goal of this study was to identify the
main biosecurity practices associated with AMU in broiler farms and to develop a statistical
model that produces customised recommendations as to which biosecurity measures could be
implemented on a farm to reduce its AMU, including a cost-effectiveness analysis of the
recommended measures. AMU and biosecurity data were obtained cross-sectionally in 2014
from 181 broiler farms across nine European countries (Belgium, Bulgaria, Denmark,
France, Germany, Italy, the Netherlands, Poland and Spain). Using mixed-effects random for-
est analysis (Mix-RF), recursive feature elimination was implemented to determine the biose-
curity measures that best predicted AMU at the farm level. Subsequently, an algorithm was
developed to generate AMU reduction scenarios based on the implementation of these mea-
sures. In the final Mix-RF model, 21 factors were present: 10 about internal biosecurity, 8
about external biosecurity and 3 about farm size and productivity, with the latter showing
the largest (Gini) importance. Other AMU predictors, in order of importance, were the num-
ber of depopulation steps, compliance with a vaccination protocol for non-officially controlled
diseases, and requiring visitors to check in before entering the farm. K-means clustering on
the proximity matrix of the final Mix-RF model revealed that several measures interacted
with each other, indicating that high AMU levels can arise for various reasons depending
on the situation. The algorithm utilised the AMU predictive power of biosecurity measures
while accounting also for their interactions, representing a first step toward aiding the
decision-making process of veterinarians and farmers who are in need of implementing
on-farm biosecurity measures to reduce their AMU.

Introduction

Antimicrobial use (AMU) is known to drive the emergence and spread of antimicrobial resist-
ance (AMR) at the human-animal-environment interface [1]. However, therapeutic AMU in
livestock is an essential component of animal health and welfare [2]. Regrettably, in several
parts of the world, antimicrobials are still used as growth promoters [3]. Prudent use of anti-
microbials is essential for optimising their efficiency by minimising the associated risks of
AMR. As AMU in animals also leads to contamination of animal-derived products with
drug residues, AMU risks do not only include antimicrobial resistant infections per se, but
also various negative effects for human health and the environment [4].

Previous studies have estimated that 73% of all antimicrobials sold globally are used in live-
stock farming [5]. In 2017, global consumption of all antimicrobials in food-producing ani-
mals (chicken, cattle and pigs) has been estimated at 93 309 tons and has been projected to
reach 104 079 tons by 2030 if no measures are taken [6], with a considerable portion of this
increase being attributed to poultry [7]. Specifically, for the same year it has been estimated
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that chickens consumed about 68 mg/PCU (population correc-
tion units) of antimicrobials, on average, and that the sector
will contribute to 33% of the estimated global increase in AMU
by 2030 [6]. This is because worldwide, and especially in low-
and middle-income countries, poultry is one of the most rapidly
growing farm animal sector and is expected to expand even fur-
ther as poultry farming continues to be intensified, a practice
that is closely linked to the need for AMU [8–10].

Due to these concerns, there is a growing interest in promoting
farm-level practices in the poultry sector that minimise (the need
for) AMU and consequently, (the emergence/spread of) AMR
and the likelihood of antimicrobial residues contaminating the
food chain as well as the environment. Key components of such
practices are internal and external farm biosecurity, vaccination,
water and feed quality, special attention to day-old chick develop-
ment and micro-climate conditions within the barn, among others
[11, 12]. While information on these key components is available in
the literature, very few studies exist that have assessed the association
of these practices with AMU in poultry farming and even less in
broilers specifically [13–15]. Due to considerable variation in
AMU in poultry flocks, both within and between countries [16],
the effects of some of those practices vary substantially from one
farm to another. Therefore, confusion and uncertainty may arise
when recommendations are to be given on which farm-level inter-
ventions would be most suitable to reduce AMU in a given situ-
ation. This variation has also been observed in studies regarding
specific on-farm practices and introduction or spread of zoonotic
pathogens. For example, varying hygiene procedures of the catching
crews influence the risk of colonisation with Campylobacter when
partial depopulation is applied [17]. Similarly, disinfection baths
have also been found to be inadequate biosecurity measure unless
paired with appropriate hygienic practices, such as scrubbing visible
manure before soaking in a clean disinfection bath for the
by-the-manufacturer-recommended time [18]. These observations
not only show the importance of biosecurity in reducing disease
burden, but also the significance of accounting for farm-specific set-
tings, as the interaction between varying biosecurity practices deter-
mines whether an individual measure will be effective or not.
Although little research exists on the relationship between specific
biosecurity measures and AMU, previous studies on groups of mea-
sures, or internal and external biosecurity more generally, have
shown that they can reduce AMU on broiler farms [19, 20]. The
implementation of farm-specific interventions in these studies indi-
cates that quantifying the effects of different AMU reduction
options for a given farm is important to curtail AMU in a feasible
and pragmatic manner. These effects, along with their economic
impact assessment, provide a foundation for decision making on
the development of customised AMU reduction plans.

The aim of this study was to identify and quantify the main
biosecurity measures (as defined by the Biocheck.UGent™ broiler
survey) associated with AMU in broiler farms across nine
European countries. Moreover, based on these biosecurity mea-
sures, we aimed at developing an algorithm that generates
farm-specific AMU reduction plans, which include the best set
of biosecurity measures (in terms of AMU reduction) to imple-
ment on the farm and their respective estimated costs. The ana-
lysis was therefore composed of three parts: (i) a risk factor
analysis of biosecurity measures associated with AMU in broiler
farms, (ii) the development of a scenario-based algorithm that
identifies the best interventions for a given farm and quantifies
their effect on AMU reduction, (iii) a cost-effectiveness analysis
of the proposed biosecurity measures. This algorithm is a first

step toward the development of an assistive advising tool for
veterinarians and/or farmers and possibly also regulatory bodies
when plans need to be made to reduce AMU at the farm-level.

Materials and methods

Data collection

This study used data collected within the EFFORT project
(Ecology from Farm to Fork Of microbial drug Resistance and
Transmission; http://www.effort-against-amr.eu/). For a detailed
description of the study design, including farms selected, data col-
lection methods and the specific information collected, we refer to
[21]. Briefly, in May–June 2014, AMU data were collected at 181
farms located in nine European countries (Belgium, Bulgaria,
Denmark, France, Germany, Italy, the Netherlands, Poland and
Spain); 20 farms were sampled in each country (except in
Belgium; n = 21), using a cross-sectional study design. Eligibility
criteria for farms were defined in agreement with local farming
organisation and convenience (e.g., distance). Consequently, the
sample of farms in each country cannot be considered represen-
tative for the broiler production in that specific country, but
altogether these farms provide a snapshot of the situation across
the nine countries in question. Biosecurity data for the farms
were collected using the Biocheck.UGent™ survey for broilers
[15]. Additionally, AMU was recorded as treatment incidence
(TI) based on Defined Daily Dose (DDDvet) per 1000 animal-
days at risk. TIDDDvet can be read as the percentage of time
that a broiler is treated with antimicrobials in its life. For example,
when TIDDDvet on a farm equals 150, the broilers on that farm
were treated during 15% (i.e. 150/10) of their life. The method
used for the quantification of AMU is described in detail by
[16]. In this study, the relationship between the biosecurity related
factors with the total sum of TIDDDvet on farm (based on sales
data) was assessed. For the analysis, TIDDDvet values were trans-
formed using Equation (1) [22] to deal with the presence of a
handful outliers, as it avoids zero values becoming infinite in con-
trast to the standard natural logarithm transformation.

y = ln x +
�������
x2 + 1

√( )
(1)

The number of workers and average number of broilers per
round were transformed using the natural logarithm due to a
few outliers in the former and for rescaling in the latter.
The biosecurity related factors with more than 10% missing
values or less than 15% variation were excluded from all analyses,
as done before by [23]. For the rest of the missing data the missing
indicator method was used. Table S1 shows the descriptive
statistics of these factors. All farms were anonymised to ensure
that results could not be traced back to individual farms.
Country was also anonymised, as this was required by the farming
organisations, as done in other studies based on the EFFORT data
[16, 21, 24] .

Risk factor analysis

A Random Forest (RF) analysis was conducted to identify risk
factors for AMU. Specifically, given the clustered nature of the
data, a mixed-effects RF model [25] was used, i.e. mixed-effects
random forest (Mix-RF) [26], with a random intercept at the
country level. An advantage of RF is its ability to capture
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interaction effects without the need of defining them [27].
Variable selection was implemented with the Recursive Feature
Elimination algorithm for automatic determination of optimal
feature subsets in the RF setting (RF-RFE) [28]. The RF-RFE algo-
rithm allows for an automated selection of feature subsets that is
optimised for prediction based on Gini Importance and a
goodness-of-fit metric, in this case the Root Mean Square Error
(RMSE). The exact steps of the RF-RFE are visualised in
Figure 1. Briefly, a ten-fold cross validation (ten-fold CV) was ini-
tially applied to create the train and test sets (90% and 10% of
observations respectively). Starting by fitting all variables, a
Mix-RF model was then run iteratively with the least important
feature, based on Gini Importance, being removed in each iter-
ation until the top 25% of features in terms of importance
remained (i.e. top 13 features out of 53). Next, across all ten
importance-optimised subsets, the feature frequencies were calcu-
lated and based on these frequencies the predictors were grouped
together, i.e., predictors appearing at least once in the ten folds, at
least twice, at least three times, etc., until ten out of ten (i.e., the
maximum number of appearances, meaning that the feature was
present in all folds). For each of these frequency-based subsets,
the RMSE across all ten test sets using each respective train set
from the initial ten-fold CV was estimated. Finally, the subset
with the lowest average RMSE represented the final multivariable
Mix-RF model. At this point, the Mix-RF model was also tuned
with regard to the number of trees to grow and number of predic-
tors selected in each split and the default values (i.e. number of
trees = 500 and m = total number of predictors/3 = 21/3 = 7) per-
formed the best.

Using the final multivariable Mix-RF model with the whole data
set, the similarities among farms were quantified with their prox-
imity matrix. The proximity matrix is constructed by comparing
how often two observations end up in the same terminal node
across all trees within the RF. This is then divided by the
number of trees (500 in this analysis) to normalise the proximity
score between 0 and 1, where 0 denoted complete dissimilarity
and 1 complete similarity with respect to the RF prediction [29].
This matrix after subtracted from 1 to reflect dissimilarities
was then projected onto a plot using multidimensional scaling
(MDS) [30] using the R package ‘randomForest’ [31]. For the
purpose of this projection, the response value was also considered
for visualisation. The real and predicted transformed TIDDDvet
values were normalised between 0 and 1, with those larger than
0.5 being denoted as ‘High User’ of antimicrobials and smaller
than 0.5 as ‘Low User’. This three-dimensional graph can be seen
in Figure 2.

From the MDS plot, groups of similar farms were identified
using k-means clustering [32] with the R package ‘mclust’ [33].
The optimal number of clusters was determined using the
Bayesian information criterion (BIC) [34]. In each cluster, the
prototypes for each class were computed (i.e. the representative
value of a predictor for a class in a cluster; in our cases the classes
were those described above i.e. the High and Low Users pre-
dicted). Usually, these are the values of a class’ average observa-
tion in a cluster, i.e., the observation that within each cluster
has the largest sum of proximity scores with the rest of the obser-
vations in its class. To aid interpretation, the prototypes here were
calculated by taking for all observations in a cluster’s class the
median for numerical features and the highest frequency value
for categorical features. The purpose of this cluster analysis was
to determine statistically whether and which farms were more
alike than others and to use the prototypes as a main descriptive

measure of the patterns observed between Low and High Users in
each cluster.

Algorithm for farm-specific AMU reduction plans

Based on the final multivariable Mix-RF model built for the risk
factor analysis, an algorithm was developed for generating custo-
mised AMU-reducing plans for a given farm. This farm could be
either part of the original dataset or completely new. The algo-
rithm identified possible solution plans and assessed their effi-
ciency and feasibility for a particular situation in a quantifiable
and systematic manner. The structure and steps of the algorithm
are visualised in Figure 3 and are as follows:

i) The initial step consisted of extracting the effect sizes of each
predictor within the final Mix-RF model. That was done
based on the method of partial dependence using the R
package ‘rfUtilities’ [35, 36]. As this package requires predic-
tors to be numerical, our categorical predictors (all were bin-
ary with a few having a third category for missing values)
were reclassified as such and the values for the missing cat-
egory were imputed using Multivariate Imputation by
Chained Equations ‘mice’ package in R with RF [37]. For
each effect size, a bootstrapped 95% confidence interval
(CI) was calculated using the R package ‘randomForestCI’
(with 1000 iterations) [38]. The estimated effect sizes of
each feature can be interpreted as the effect on the response
(i.e. TIDDDvet) for a one unit change in the predictor, while
averaging over the effects of all other variables [36].

ii) Since all of our candidate predictors were binary, this infor-
mation placed in a cross table was used to classify each fea-
ture as a farm’s strength or weakness in terms of AMU. As
shown in Figure 3, strengths were defined as the variables
that were implemented by the farm and had a negative effect
size or were not implemented and had a positive effect size
on AMU. Similarly, weaknesses were defined as those fea-
tures that were not implemented and had a negative effect
size or were implemented and had a positive effect size.
The variables marked as farm’s weaknesses represented the
action points at the farm-level.

iii) Because these features were assessed only based on their
AMU prediction ability, their connotation had also to be
assessed biologically for valid inference. Thus, researchers’
knowledge was incorporated by assessing the direction of
the association (positive or negative) as compared to the
expected biological interpretation of the biosecurity measure
(Table 2). If there was a match, then the variable was selected
for inclusion in the solution plan.

iv) After selection of all candidate interventions, a scenario-
based analysis was implemented based on all possible com-
binations of these variables. This means that a unique scen-
ario was created for each possible combination of variables,
the final Mix-RF model was used to predict each respective
AMU and the scenarios with lower predicted AMU than
the farm’s original situation prediction were selected.

After several runs, it was noted that some predictors with low
Gini Importance could have effect sizes with opposite signs (asso-
ciations) in the different runs of the Mix-RF model due to the
uncertainty intrinsic in the RF estimations. To address this, the
previous steps (i, ii, iii and iv) were applied iteratively ten times
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Fig. 1. Steps of the Random Forest Recursive Feature Elimination (RF-RFE) procedure.
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and the scenarios identified by the algorithm included only those
variables with 10/10 consistency in association; the corresponding
mean AMU value across the iterations was then reported. The
aforementioned steps were structured in such a way that they fil-
tered out systematically variables that showed evidence of non-
causative relationships with AMU. Nevertheless, this does not
necessarily establish a causative relationship of the unfiltered
ones, just lack of the former.

Cost-effectiveness analysis of AMU reduction plans

The final output of the aforementioned algorithm provided scen-
arios that reflected a particular farm of interest applying a specific
set of biosecurity measures and predicting its respective AMU. The
final part in identifying the most suitable intervention scenarios for
that farm was the assessment of its economic impact. The cost-
effectiveness analysis here aimed at calculating the additional
costs introduced due to the interventions relative to the AMU
reduction expected to be achieved. The respective costs of the inter-
ventions were quantified by taking into account both the imple-
mentation and operational costs. The implementation costs were
the purchasing costs of the relevant equipment along with depreci-
ation and its installation costs, if any. The operational costs
reflected the maintenance costs of the respective interventions.
Their profile was measure-specific, but overall it concerned material
and utility costs, as for example the cost of disinfectant that needs
to be refilled, or the purchasing of plates for hygienograms, among
others. These costs could also be dependent on production charac-
teristics, such as the number of animals and number of rounds per
year, e.g. vaccination costs variate according to these factors. All
expenses were determined on a yearly basis for all features present
in the final multivariable Mix-RF model and are displayed on
Table 1. These costs were not country-specific, but based on indi-
cative prices in the Netherlands and Belgium (the prices can also be
redefined manually within the algorithm). The cost was also
expressed per unit of TIDDDvet by dividing the total cost of the
scenario with the difference of scenario’s TIDDDvet and original
TIDDDvet prediction. All analyses were performed in the open-
source environment R version 4.0.3 [39].

Results

Risk factors

The lowest RMSE within the RF-RFE algorithm was obtained
with features appearing at least six times out of ten and this
gave a model of 21 variables with an RMSE of 1.58 on the trans-
formed scale. Based on Gini Importance, the top three features
where: (i) the number of broilers per round, (ii) the number of
production rounds per year and (iii) the number of workers,
which are all proxies for farm size and productivity and are
thus considered as the ‘null model’ (i.e. the model with all neces-
sary a priori control covariates). All variables in the null model
had negative effect sizes (i.e. AMU is reduced as they increase).
The other variables in the model were ten for internal biosecurity
and another eight for external biosecurity. The heuristic theoret-
ical importance limit of 1/N (with N being the number of factors
in the model) was used to identify which variables to describe
here as most important (i.e., variables which percentage contribu-
tions to the total Gini Importance is bigger than 1/21 × 100% =
4.7%). After the null model, this limit included also the following
variables: ‘visitors are obliged to check in before entering the
stables (reference: no vs. yes)’, ‘a specific protocol for non-
officially controlled diseases is applied on farm (reference: no
vs. yes)’ and ‘in how many steps the poultry house is depopulated
(reference: one vs. two or more)’. These three variables had a posi-
tive association with AMU. The full model with count frequency,
Gini Importance, effect sizes with their bootstrapped 95% CI and
biosecurity block for each variable is shown in Table 2.

Clustering and prototypes

Based on the BIC, six clusters were identified as optimal for the
k-means clustering on the proximity matrix of the final multivari-
able Mix-RF model (Fig. 2). Figure S1 shows the number of farms
per country included in each cluster. All but Cluster 3 (Low Users
only) contained both Low and High Users thus, in that cluster,
comparison of the prototypes between High and Low Users was
not applicable. The prototypes for all clusters, as well as for all
farms altogether, can be viewed in Table 3. Regarding the null

Fig. 2. 3D MDS plot of Random Forest’s proximity matrix; each dot represents a farm and the distance between the dots represents dissimilarity (the further away
the more different). The shape of the dots represents the different clusters, the inner colour displays the real AMU class and the outer stroke colour represents the
predicted AMU class (in both cases red represents High user and green Low user; if the image is shown in B&W, red is more intense.
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model variables, at the overall level (i.e. all farms as one cluster),
the median number of chickens per round was lower for Low
Users (34 550 vs. 43 000), but at the cluster level for 3 out of 6
clusters that was not the case (Cluster 2: 100 400 vs. 80 000;
Cluster 4: 83 500 vs. 34 925; and Cluster 6: 30 500 vs. 26 000).
The average number of rounds had a range of 5 to 8 per year
with the Low Users having more rounds, both overall and at
the cluster level. Cluster 3, which had only Low Users, had
eight rounds, as also the Low Users of Cluster 4. Regarding the
number of workers, overall and in Cluster 5 Low and High
Users had around two workers. In four of the other clusters,

High Users had also a median of 2 workers and Cluster 3 had
1. Apart from Cluster 2 (where Low Users had 1.5 as median)
Low Users had more workers than their respective High User
class with maximum difference in Cluster 1 (median of 7.5 work-
ers for Low Users). With regard to being obliged to check in
before being granted entrance to the stables, overall that measure
was applied by the majority of both Low and High Users (52%
and 97% respectively). In Clusters 1, 2, 3, 4 and 6, both classes
applied the measure, and in Cluster 5 100% of either did not.
Vaccination protocol for non-officially controlled diseases was
applied by the majority of farms in all clusters and overall, with

Fig. 3. Visualisation of the steps to formulate AMU-reducing plans for a farm.
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Table 1. Costs of biosecurity measures for the solution plan algorithm

Biosecurity measures Implementation cost €
Operational
cost €/y

Years
to last

Depreciation
costa €/y Total cost €/y References assumptions and comments

bqq023_Visitors/traders are not
allowed to enter the stables/have
direct contact

– – Inf. – 0 No costs

bqq024_The poultry house is
depopulated in one step b

Farm size/10 – Inf. – Farm size/10 Indicative cost and arbitrarily was set to 1/10th less
broilers are produced × 2 kg of meat × 1 €/kg

bqq033_When checking water
quality, the water sample is taken at
the nipple

– – Inf. – 0 No costs

bqq045_Visitors are obliged to check
in before having entrance to the
stables

– – Inf. – 0 No costs

bqq050_Visitors/personnel are
obliged to wash/disinfect hands
before entering

72 + 35.9 – 10 7.2 115.1 A dispenser costs 72€ www.agrologic.be, assume 10
years amortisation following a linear depreciation
and no salvage price. A refill of a hand soap costs
3.59 www.agrologic.be. Assume 10 refills per year.
[53]

bqq055_Specific preventive
measures are taken for the material
supply

72 + 71.8 – 10 7.2 151 Cost of disinfectant [53]

bqq060_The farm is fenced off b 5000 × number of
stables

– 25 (5000 × number
of stables)/25

26/25 × 5000 ×
number of stables

Indicative cost

bqq066_There is natural stagnant
water or running water within less
than 1 km of the farm

– – – – – Not available

bqq075_There is a farm specific
protocol for vaccination of
non-officially controlled diseases
that is complied with

0.02399 × Farm size ×
Production rounds

– – – 0.02399 × Farm
size × Production
rounds

Cost of a vaccine × Farm size × Production rounds
https://veteriankey.com/poultry-vaccines/

bqq078_The poultry density of the
poultry house≥ 38 kg/m2 b

Farm size/10 – – – Farm size/10 Indicative cost and arbitrarily was set to 1/10th less
broilers are produced

bqq080_There are disinfection baths
for vehicles present at the entry of
the company

5200 – – – 5200 20 € × 5 L of disinfectant per week × 52 weeks in a
year
https://www.sunstar-shop.nl

bqq084_The efficacy of cleaning/
disinfection is checked by taking a
hygienogram

80 4 × 10 – – 120 This is considered with the logic that taking a
hygienogram has the goal to reduce its result.
Price of taking hygienogram 4 times per year and a
labour cost of 10 euro/h [53]

bqq087_There is a FARM-hygiene
lock present b

6000 – 10 – 6000 Indicative price

(Continued )
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the exception of 100% of Low Users in Cluster 3. Interestingly in
Cluster 1, 83% of Low Users and 94% of High Users applied the
measure while for Cluster 5, those numbers were 94% vs. 67%
respectively. Finally, the depopulation steps equalled one for
most of Lower Users, overall and in Clusters 3, 4 and 5. In
Cluster 4, the majority of High Users had also one depopulation
step, while in Cluster 5 High Users applied two or more depopu-
lation steps. In Clusters 1, 2 and 6, both High and Low Users
mostly applied two or more depopulation steps.

Cost-effectiveness analysis of farm-specific AMU reduction
plans

As an example to illustrate the outcome of the cost-effectiveness
assessment of the AMU reduction plans proposed by the algo-
rithm, a random farm from the dataset was used. This farm had
an original AMU of 146.23 TIDDDvet and the mean model predic-
tion out of the 10 iterations was 122.53 TIDDDvet. The measures
that were recognised as the farm’s strengths were: ‘having a
FARM-hygiene lock’, ‘fully disconnecting the drinking water sys-
tem for cleaning and disinfection’ and ‘storing recognisably the
material per stable’. Conversely, ‘having two or more depopulation
steps’, ‘not taking specific preventive measures for the material sup-
ply’ and ‘not having stable-specific clothing’ were identified as the
farm’s weaknesses. Seven unique combinations of those weaknesses
predicted lower TIDDDvet values compared to the original predic-
tion. Specifically, the biggest TIDDDvet reduction came from chan-
ging all weaknesses measures together (Scenario_7: 68.14
TIDDDvet; −44.4% from original prediction). Next, in decreasing
order, there was ‘applying one depopulation step’ and ‘take prevent-
ive measures for material supply’ (Scenario_6: 73.90 TIDDDvet;
−39.7% from original prediction) or ‘have stable-specific clothing
available’ (Scenario_4: 87.06 TIDDDvet; −29.0% from original pre-
diction). By applying the one depopulation step alone, a similar
goal was achieved (Scenario_5: 86.85 TIDDDvet; −29.1% from ori-
ginal prediction) and with having both specific preventive measures
for material supply and stable-specific clothing the prediction was
at 94.18 TIDDDvet (Scenario_3: −23.1% from original prediction).
Applying the latter two individually also had a reduction effect, but
it was marginal. For preventive measures on material supply alone,
predicted AMU was 105.6 TIDDDvet and for stable-specific cloth-
ing it was 117.01 TIDDDvet (Scenario_2: −13.8% and Scenario_1:
−4.5% from original prediction respectively). Scenario_7, which
had the biggest reduction (−46.1%) was also the most expensive
(€ 8644.87 per year), mainly because of the assumed reduced num-
ber of broilers farmed due to the one depopulation step. Excluding
that intervention would be equivalent to Scenario_3 (€ 1644.87)
and the reduction that could be achieved then was −23.8%. The
cost-effectiveness of these two scenarios (Scenario_7: −158.94
€/TIDDDvet; Scenario_3: −58.02 €/TIDDDvet) renders them the
ones most worth considering as possible AMU solution plans
among the predicted. All results are shown in Table 4.

Discussion

In this study, a multi-step analysis was carried out to select the
most important biosecurity measures contributing to AMU in
broiler farms and to develop a statistical model that, under certain
assumptions, can provide indications about which biosecurity
measures could be implemented on a given farm for reducing
its AMU. The initial step was a risk factor analysis for AMU, fol-
lowed by the development of an algorithm that assessed andTa
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Table 2. Optimal feature subset in final multivariable mixed-effects random forest model obtained through the Recursive Feature Elimination algorithm with
antimicrobial usage in TIDDDvet as outcome

Features Count
Gini importance

index Effect size (95% CI)
Sub-block (Biological

expectation)

Average number of chicks per round (null model; ln
transformed)

93.0 −0.046 (−0.053 to −0.038) Null model (+)

Average number of rounds per year (null model) 77.1 −0.126 (−0.132 to −0.12) Null model (+)

Number of people working at the poultry farm in total
(null model; ln transformed)

72.4 −0.118 (−0.128 to −0.108) Null model (−)

Are visitors obliged to check in before having entrance
to the stables?
0 – no
1 – yes

9 37.2 0.488 (0.458–0.518) External (−)

In how many steps is the poultry house depopulated?
0 – In one step
1 – In two or more

7 28.9 0.307 (0.294–0.32) External (+)

Is there a farm specific protocol of non-officially
controlled disease that is complied with?
0 – no
1 – yes

6 28.7 0.51 (0.469–0.55) Internal (−)

Is drinking water system fully disconnected and
cleaned/disinfected?
0 – not after every round
1 – after every round

9 22.2 −0.519 (−0.547 to −0.49) Internal (−)

Are there disinfection baths for vehicles present at the
entry of the company?
0 – No
1 – Yes

7 20.3 0.225 (0.21–0.24) Internal (−)

Length ventilation is used in the sampled barn
0 – No
1 – Yes

7 19.8 0.318 (0.304–0.332) External (NA)

What is the poultry density in the sampled house?
0 –≤ 37 kg/m2

1 –≥ 38 kg/m2

7 19.5 −0.048 (−0.058 to −0.038) Internal (+)

Is the farm fenced-off?
0 – not completely
1 – completely

7 18.6 0.157 (0.149–0.166) External (−)

Are specific preventative measures taken for material
supply?
0 – no
1 – yes

8 15.9 −0.205 (−0.216 to −0.195) External (−)

Is stable-specific clothing available?
0 – no
1 – yes

7 14.1 −0.109 (−0.115 to −0.103) Internal (−)

Is efficacy of cleaning/disinfection checked by taking a
hygienogram?
0 – never
1 – not never

6 13.4 0.068 (0.062–0.075) Internal (−)

Is material stored per stable and recognisable?
0 – no
1 – yes

7 12.7 −0.058 (−0.065 to −0.051) Internal (−)

Are visitors/personnel obliged to wash/disinfect hands
before entering?
0 – no
1 – yes

6 12.5 0.141 (0.134–0.148) External (−)

Is there a FARM-hygiene lock present?
0 – No
1 – Yes

6 12.1 −0.071 (−0.078 to −0.065) Internal (−)

Allowed for visitors/traders to enter stables/have direct
contact?

6 11.8 −0.091 (−0.1 to −0.082) External (+)

(Continued )
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ranked systematically different farm-specific biosecurity interven-
tion scenarios that predicted lower AMU and did not show signs
of a non-causative relationship with AMU, including also their
associated economic impact. The step of non-causation assess-
ment is of paramount importance here considering the weakness
of cross-sectional studies in inferring causality for the observed
associations thus some of the variables in the final multivariable
Mix-RF model although are good predictors of AMU they are
not appropriate solutions for reducing it. Nevertheless, the com-
bination of methods used and developed here can also be applied
in more robust study designs toward causal inference increasing
thus the reliability of the model and the quality of its propositions
even further.

From the final model of the risk factor analysis it was observed
that the Gini importance for AMU was higher for the number of
broilers per round, the average number of production rounds per
year and the number of workers. Based on the literature, farm size
and productivity are proxies that define the profile of farms at
large and can be associated with both the outcome and the
other covariates of interest and thus are usually included in a
model as a priori control covariates. Studies on pigs and veal
calves have shown inconsistent associations between farm size
and AMU [40–43]. For poultry, the literature is generally scarce,
but in one study from Ghana, farm size was positively associated
with AMU and chronic respiratory disease [14]; there though, the
farms differ substantially in terms of structure and operations
from the farms studied here. In addition, prevalence of early
respiratory disease complex has also been seen to be higher in lar-
ger broiler farms [44]. Here, we saw that in general the variables
in the null model were the most important ones and with regard
to farm size, we saw that the bigger and more intensive (i.e. more
rounds per year and higher density) the farms were the lower their
AMU was, based on RF’s effect sizes. By looking at the prototypes
though it was seen that, overall, Low Users were farms with a
median of 34 550 birds and 7.45 rounds per year compared to
43 000 birds and 6 rounds among High Users. The overall proto-
types for the number of birds appeared to be in contrast with that
variable’s effect size, but these two results originated from two dif-
ferent analyses. The effect size provided an overall estimate of the
fixed effect of the predictor on AMU, while the prototypes repre-
sented descriptive estimates of that predictor within the

heuristically generated Low or High User classes in a given cluster.
Discrepancies can therefore occur and could be interpreted as a
sign of the unclear true nature of the relationship between the pre-
dictor and the response at the overall level (heterogeneous farm
profiles) either due to the inability of the current study design
to reliably identify causal factors as described above or due to
the numerous interactions taking place and thus, looking at the
individual clusters is required. For example, within the different
clusters, the prototypes of the null model variables showed
cluster-specific variation in their associations with AMU. For
example, a difference was appreciable between Cluster 1 and
Cluster 2 (i.e., 2 out of the 6 distinctive groups identified in
terms of common biosecurity practices applied), in which the
median numbers of chickens per round for Low – High Users
were 18 000– 40 000 and 100 400– 80 000 respectively. Notably,
in Cluster 2, 100% of farms were fully disconnecting the water
drinking system when cleaning/disinfecting while in Cluster 1
most farms did not and Low Users in Cluster 1 had far more
workers than Low Users in Cluster 2 (High Users in both clusters
had the same number of workers). Moreover, in Cluster 2, High
Users were not using a hygiene lock compared to their Low
Users and most farms in Cluster 1. These results illustrate the
complex interactions among biosecurity measures and farm char-
acteristics and how they play a crucial role in the ability of farms
to operate without depending on antimicrobials. While the
importance of those interactions tends to increase with farm
size since larger farms are more prone to massive disease spread,
at the same time larger farms are also the ones more able (and
thus is expected to be more likely) to organise themselves in a
more standardised and sometimes efficient way, also in terms of
hygiene, thanks to generally greater access to resources, as
described earlier [45]. Here this hypothesised correlation was
not clearly evident overall and varied across countries. For
example the overall biosecurity scores (which can be calculated
as described by [15]) only one country showed a medium size cor-
relation with the average number of animals per round (Pearson
correlation = 0.46 with P value = 0.04).

After the null model variables, next in line (in terms of import-
ance) were the measures related to obliging visitors to check in
before entering a farm, having vaccination protocols for non-
officially controlled diseases, and performing flock depopulation

Table 2. (Continued.)

Features Count
Gini importance

index Effect size (95% CI)
Sub-block (Biological

expectation)

0 – never
1 – not never

When checking water quality, where is the water
sample taken?
0 – not at nipple
1 – at nipple

7 11.5 −0.095 (−0.101 to −0.088) External (−)

Roof ventilation is used in the sampled barn
0 – No
1 – Yes

7 11.0 −0.101 (−0.107 to −0.096) External (NA)

Is there natural stagnant or running water within less
than 1 km of farm?
0 – no
1 – yes

6 10.6 −0.006 (−0.011 to −0.002) External (+)

The features are ordered by Gini Importance index. In the fourth and fifth columns in bold are the variables for which their effect size sign and biological expectation of the measure match
and thus they satisfy one of the criteria for being selected as candidate intervention on the farm.
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Table 3. Prototypes of clusters identified in the proximity matrix of the final multivariable mixed-effects random forest model; a prototype is the representative value of class in a cluster; for numerical values that is the
median and for binary the highest frequencies of 0 or 1

Feature
Gini Importance

in % Predicted Usage

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
All farms as
one cluster

value % value % value % value % value % value % value %

TIDDDvet _What is your current
antimicrobial usage?

Low User 0 4.77 0 7.34 8.9 8.9 4.37

High User 339.48 91.71 – 85.73 102.9 144.2 146.23

Predicted TIDDDvet Low User 9.37 13.39 0.72 10.74 10.3 23 5.69

High User 267.13 92.9 – 90.57 56.91 128.51 141.09

bqq011_How many chickens are
there for each set-up/round on
average?

16.2% Low User 18 000 100 400 34 800 83 500 30 000 30 500 34 550

High User 40 000 80 000 – 34 925 44 880 26 000 43 000

bqq002_How many people are
working at the poultry farm in
total?

13.5% Low User 7.5 1.5 1 2.5 2 3 2

High User 2 2 – 2 2 2 2

bqq010_How many rounds do
you have on average?

12.9% Low User 5.75 7.5 8 8.2 6 6.5 7.45

High User 5.5 7 – 7.5 5 5.5 6

bqq045_Are visitors obliged to
check in before having entrance
to the stables?

6.9% Low User 1 100% 1 100% 1 63% 1 100% 0 100% 1 67% 1 52%

High User 1 100% 1 100% – 1 100% 0 100% 1 95% 1 97%

bqq075_Is there a farm specific
protocol for vaccination of
non-officially controlled diseases
that is complied with?

5.2% Low User 1 83% 1 100% 0 100% 1 67% 1 94% 1 100% 1 60%

High User 1 94% 1 100% – 1 72% 1 67% 1 100% 1 93%

bqq024_In how many steps is the
poultry house depopulated?

5.1% Low User 1 83% 1 100% 0 94% 0 67% 0 65% 1 100% 0 62%

High User 1 66% 1 82% – 0 67% 1 100% 1 95% 1 72%

bqq096_Is the drinking water
system fully disconnected and
cleaned/disinfected?

3.9% Low User 0 67% 1 100% 0 81% 0 50% 0 71% 0 100% 0 70%

High User 0 98% 1 100% – 1 56% 0 100% 0 100% 0 62%

bqq080_Are there disinfection
baths for vehicles present at the
entry of the company?

3.6% Low User 1 100% 0 100% 0 100% 0 83% 0 100% 0 100% 0 86%

(Continued )
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Table 3. (Continued.)

Feature
Gini Importance

in % Predicted Usage

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
All farms as
one cluster

value % value % value % value % value % value % value %

High User 1 96% 0 100% – 0 100% 0 100% 0 95% 0 63%

bqq103e_Is length ventilation
used in the poultry house?

3.5% Low User 0 100% 0 50% 0 88% 0 67% 0 94% 0 100% 0 88%

High User 0 76% 1 77% – 0 50% 0 67% 0 86% 0 58%

bqq060_Is the farm fenced off? 3.4% Low User 1 83% 0 100% 0 100% 0 83% 0 71% 0 67% 0 76%

High User 1 58% 0 74% – 1 56% 0 67% 1 67% 0 51%

bqq078_What is the poultry
density of the poultry house?

3.3% Low User 0 50% 1 100% 1 88% 1 100% 1 88% 1 67% 1 84%

High User 0 74% 1 97% – 1 61% 1 100% 1 62% 1 60%

bqq055_Are specific preventive
measures taken for the material
supply?

2.6% Low User 1 83% 0 100% 1 56% 0 67% 0 71% 0 100% 0 58%

High User 0 54% 0 97% – 0 89% 0 100% 0 86% 0 78%

bqq084_Is the efficacy of
cleaning/disinfection checked by
taking a hygienogram?

2.6% Low User 1 67% 1 100% 0 50% 1 100% 0 100% 0 67% 0 58%

High User 1 64% 1 97% – 1 78% 0 67% 0 67% 1 70%

bqq102_Is stable specific clothing
available?

2.5% Low User 1 83% 0 100% 1 63% 1 67% 1 53% 1 100% 1 62%

High User 1 52% 0 56% – 0 56% 0 67% 0 62% 0 54%

bqq101_Is material stored per
stable recognisably?

2.5% Low User 1 100% 0 100% 1 75% 1 83% 0 53% 1 67% 1 66%

High User 1 62% 1 59% – 1 67% 0 67% 1 52% 1 60%

bqq087_Is there a FARM-hygiene
lock present?

2.4% Low User 1 100% 1 100% 1 100% 1 67% 1 71% 1 100% 1 86%

High User 1 78% 0 77% – 0 78% 1 67% 1 57% 1 50%

bqq050_Are visitors/personnel
obliged to wash/disinfect hands
before entering?

2.1% Low User 1 100% 0 50% 1 94% 0 50% 0 94% 1 67% 1 56%

High User 1 90% 0 87% – 0 78% 0 100% 0 62% 0 53%

bqq033_When checking water
quality, where is the water
sample taken?

2.1% Low User 0 67% 1 100% 0 50% 1 67% 1 59% 1 67% 1 56%

High User 0 54% 1 67% – 1 72% 1 100% 1 71% 1 61%
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in two or more steps, which were all associated with higher AMU
levels. The unexpected direction of the former two variables could
be the result of reverse causality, meaning that the outcome
resulted in the exposure and not the other way around, consider-
ing that farmers tend to apply those measures when they face a
problem and the current study design is cross-sectional, which
is prone to this type of bias. Past studies on vaccination pro-
grammes in pigs have shown similar effects as well [15, 46]. An
extra factor at play here could also be possible shortcomings of
current vaccines for food-producing animals with regard to safety,
efficacy and/or user-friendliness that limit their efficiency result-
ing in a not clear-cut relationship with AMU [47, 48].
Regarding flock depopulation steps, [16] provides an informative
figure (Fig. 2 in that publication) showing the percentage of flocks
being treated altogether (i.e. all 181 farms in the dataset used
here) across all production days. There it is seen that the largest
treatments occur within the first ten days. The peak in that period
was at day three with around 37% of the total flock being treated,
reaching then a level lower than 5% at day 13. Subsequently, it
increased again to around 12%, but with relatively lower peaks
at day 17 and 25, followed by a slowly decreasing trend to 5%
till day 30–33. At the usual time of depopulation (i.e., day 30–
35), there was a new increase close to 10% and at day 40 it
dropped close to 0% due to the waiting times before slaughter.
This shows that, indeed, the practice of depopulation may in itself
introduce a risk. Nevertheless, the result seen here also includes
effects present across the whole production period, such as the
increased density of broilers occurring in flock thinning farms
before depopulation, which can increase the risk of transmission.
Previous research has found conflicting results on whether flock
thinning is a risk factor for introduction of infections or not,
and it has been suggested that this practice might be confounded
by the general hygiene procedures on the farm, or the higher age
of the broilers at the time of slaughter for farms with more
depopulation steps [17, 49]. Such interactions were also seen
here, as for example Cluster 6, which had 100% of Low Users
and 95% of High Users applying two or more steps. At the
same time, stable-specific clothing and washing hand before
entrance was applied mostly by Low Users. In general, preventive
measures having an association with lower AMU concurs with
various studies on the positive effect of various hygiene practices
and barriers on reducing disease prevalence in farms [49–51]. All
these factors entail a risk of transmission for the introduction of
diseases in the flock [15, 49], but here it is shown that their effect
is dependent on the general structure and order of hygienic mea-
sures in place. In terms of internal biosecurity, having a farm
hygiene lock, having stable-specific clothing, having material rec-
ognisably stored per stable, and fully disconnecting and cleaning
the drinking water system after every production round, were all
associated with lower AMU. The first three factors are in line
with previous research on the important role that hygiene proto-
cols and barriers play in reducing AMU [50, 51], while water con-
tamination has been found to be an important source of infection
for broilers, specifically for Campylobacter [51].

The results showed the high variability in farms’ biosecurity
practices and that in order to reduce their AMU, interventions
needed to be compatible with their profile. The algorithm devel-
oped here represents a first step toward providing targeted recom-
mendations for individual broiler farms based on which
biosecurity measures will have the greatest effect in terms of
AMU reduction. While there is a general relationship between
biosecurity and both AMR and AMU [12, 15], most research
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Table 4. Output of the solution plan algorithm for the example farm

Solution plans scenarios
Mean Predicted

TIDDDvet
Mean

Variance
Original
TIDDDvet

Change from
Original Prediction

Change from
Original Value

Total cost per
year

Cost-effectiveness
€/TIDDDvet

Original farm 122.53 0.12 146.23 0.0% −16.2% € 0.00

Scenario_1
i. bqq102_Stable specific clothing is
available.a

117.01 0.12 146.23 −4.5% −20.0% € 1486.69 −269.14

Scenario_2
i. bqq055_Specific preventive measures are
taken for the material supply.

105.60 0.12 146.23 −13.8% −27.8% € 158.18 −9.34

Scenario_3
i. bqq055_Specific preventive measures are
taken for the material supply.
ii. bqq102_Stable specific clothing is
available.

94.18 0.12 146.23 −23.1% −35.6% € 1644.87 −58.02

Scenario_4
i. bqq024_The poultry house is depopulated
in 1 step.
ii. bqq102_Stable specific clothing is
available.

87.06 0.12 146.23 −29.0% −40.5% € 7000.00 −197.32

Scenario_5
i. bqq024_The poultry house is depopulated
in 1 step.

86.85 0.12 146.23 −29.1% −40.6% € 8486.69 −237.86

Scenario_6
i. bqq024_The poultry house is depopulated
in 1 step.
ii. bqq055_Specific preventive measures are
taken for the material supply.

73.90 0.12 146.23 −39.7% −49.5% € 7158.18 −147.18

Scenario_7
i. bqq024_The poultry house is depopulated
in 1 step.
ii. bqq055_Specific preventive measures are
taken for the material supply.
iii. bqq102_Stable specific clothing is
available.

68.14 0.12 146.23 −44.4% −53.4% € 8644.87 −158.94

aBecause the number of stables on the farm was unknown, the cost for the stable specific clothing was calculated arbitrarily for two buildings.
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reports the net effect of risk factors, which makes it difficult to
identify which intervention will make the difference in a specific
case due to the diverse interaction and confounding effects.
However, as described before, several biosecurity measures had
relationships with AMU that overall were not in line with the lit-
erature or whose associations could not be explained mechanistic-
ally. As a result, these features were only used for prediction and
were not considered in the AMU reduction plans, given their
unclear relationship with the outcome. Finally, the Mix-RF
model failed to predict zero AMU values, thereby proposing solu-
tions in cases it was not needed and without being able to assess
how to reduce farm’s usage to zero. To address this, with enough
power it could be possible to treat the response similar to a hurdle
model [52] where the risk is parted in two, first the risk of having
AMU as a binary response and if so, then to define the extent of
the risk. Nevertheless, even in the zero AMU cases, the output of
the algorithm would be useful as it shows high risk practices for
the farmer and veterinarian to pay attention to.

Conclusion

In conclusion, several biosecurity-related risk factors for AMU in
broiler farms were identified. Using these variables, an algorithm
was built that is able to provide quantitative recommendations
on which (combinations of) biosecurity measures could be imple-
mented on a given farm in order to expect a reduction in AMU
along with the associated costs. This allows individual farms to
undertake structural changes in their biosecurity standards based
on customised plans that identify the most promising
AMU-reducing measures for them. While the method is applicable
to different situations and contains several validation steps, further
developments are needed to improve our understanding on the
interrelatedness of biosecurity measures and how they can influ-
ence disease introduction/spread and a farm’s need for AMU.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822001960
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