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SUMMARY

We considered a Bayesian analysis for the prevalence of tuberculosis cases in New York City

from 1970 to 2000. This counting dataset presented two change-points during this period. We

modelled this counting dataset considering non-homogeneous Poisson processes in the presence

of the two-change points. A Bayesian analysis for the data is considered using Markov chain

Monte Carlo methods. Simulated Gibbs samples for the parameters of interest were obtained

using WinBugs software.

INTRODUCTION

General overview

In 1993 the World Health Organization (WHO)

declared tuberculosis (TB) a global public health em-

ergency, being the only disease thus far to warrant

that designation. Although hospitals have been es-

tablished and chemotherapy has been developed to

combat TB, bringing considerable reduction in inci-

dence to developed nations, historical data calculated

by the WHO indicate that there have not been great

effects on the global problem since the time of Koch.

Currently, TB is responsible for more human deaths

than any other single infectious agent, repre-

senting 26% of all preventable deaths and 7% of

all deaths [1].

TB resumption has been attributed to several

factors, such as the increase in drug resistance, the

HIV/AIDS pandemic (at the beginning of the 1980s),

the increase of injecting drug users, changes in social

structure, the increase of immigrants from high pre-

valence nations to developed ones, the ageing of

the world’s population, the active transmission in en-

vironments of human accumulation (e.g. prisons,

hospitals, homeless shelters), and the dismantling of

health-care systems [2]. Although TB became a re-

emerging disease in European and North-American

nations, TB is not an emergent nor re-emerging public

health problem in developing countries such as Brazil,

but rather a long lasting one [3].

In order to facilitate the comprehension of the

various components involved in the interaction be-

tween these factors, Ruffino-Netto [4] proposed an

expression which reflects the TB burden, represented

by the components social inequality, prevalence of

HIV-positive individuals, percentual default of treat-

ment, prevalence of primary resistance plus acquired

resistance, migration, age of the population, adequate

health services, directly observed treatment short-

course, educational level, nutrition level, human re-

sources for TB control and degree of political par-

ticipation of the population.
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From the historical data of the observed numbers

of TB cases, especially in developed countries, we

observe a trend of declining incidence starting at the

beginning of 1960 up to 1980, where there was a

change in this trend. During the period between 1980

and 1990, we observe an increase in the incidence

rates of TB cases ; after 1990, we again observe a trend

of declining incidence. That is, we have the presence

of two change-points in the rates of TB, especially for

developed countries.

The case of New York City

The incidence (notification cases) of TB disease in

New York City (NYC) between 1970 and 2000 pre-

sents three trends (see Table 1) : a first period

(1970–1979) where the trend of declining incidence

was probably associated with good control pro-

grammes; a second period (1979–1992) where there

was an increase in incidence rates [5, 6], possibly as-

sociated with a systematic dismantling of public-

health infrastructure of control programmes, social

disruption (including homelessness, drug abuse, pov-

erty and housing overcrowding), and mainly caused

by the HIV epidemic; a third period (1992–2000)

where again there is a decline in incidence rates. It is

important to remember the many factors associated

with this third period, i.e. implementation of directly

observed therapy, broader chemotherapy regimens

for patients with TB or suspected multidrug-resistant

TB and improved therapeutics for the care of HIV-

infected individuals [7].

Table 1 gives the yearly numbers and the accumu-

lated numbers of TB cases in NYC. From Table 1, we

see decreasing numbers of TB cases from 1970 to

1978, where there is a minimum. From 1978 to 1992,

we observe increasing numbers of TB cases, where

there is a maximum number of cases in 1992. From

1992 to 2000, we observe decreasing numbers of cases.

That is, we have two change-points for the numbers of

cases (see Fig. 1). It is interesting to note that the use

of powerful antiviral drugs against HIV commenced

around 1990.

To model the number of TB cases in NYC during

the period 1970–2000, we consider the use of a point

process to count the numbers of TB cases in each

year starting in 1970. In this way, we considered a

stratified sample of size n=6721 representing 10%

of the total number of TB cases (259 cases in 1970,

257 cases in 1971, 227 cases in 1972 and so on), where

for each year, we used an uniform distribution to

have the times (in days) for the occurrence of each

case since 1 January 1970 until 30 December 2000,

i.e. with a total time of observation equal to

T=11323 days.

For this dataset, we assume a non-homogeneous

Poisson process (NHPP) in the presence of two

change-points considering a Bayesian approach using

Markov chain Monte Carlo (MCMC) methods (see

e.g. Gelfand & Smith [8]). The use of Bayesian meth-

ods has been considered by many authors for analyses

of homogeneous or non-homogeneous Poisson pro-

cesses in the presence of change-points (see e.g.

Raftery & Akman [9] considering the presence of a

change-point in homogeneous Poisson processes, or

Table 1. Number of tuberculosis cases in NYC from

1970 to 2000

Year Year – 1970 Cases/year

Accumulated

number of cases

1970 0 2590 2590
1971 1 2572 5162
1972 2 2275 7437

1973 3 2101 9538
1974 4 2022 11 560
1975 5 2151 13 711

1976 6 2151 15 862
1977 7 1605 17 467
1978 8 1307 18 774

1979 9 1566 20 340
1980 10 1478 21 818
1981 11 1582 23 400
1982 12 1597 24 997

1983 13 1648 26 645
1984 14 1629 28 274
1985 15 1843 30 117

1986 16 2223 32 340
1987 17 2197 34 537
1988 18 2317 36 854

1989 19 2545 39 399
1990 20 3520 42 919
1991 21 3673 46 592
1992 22 3811 50 403

1993 23 3235 53 638
1994 24 2999 56 637
1995 25 2445 59 082

1996 26 2053 61 135
1997 27 1730 62 865
1998 28 1558 64 423

1999 29 1460 65 883
2000 30 1332 67 215

Source : New York City Department of Health and Mental
Hygiene, Bureau of Tuberculosis Control Information

Survey.
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Ruggeri & Sivaganesan [10] considering any number,

random or fixed, of change-points in NHPP assuming

power-law intensity functions).

The paper is organized as follows: in the Methods

section, we introduce the likelihood function and a

Bayesian analysis for the model ; in the Results sec-

tion, we introduce the analysis for the NYC data, and

finally, in the Discussion, we present some concluding

remarks.

METHODS

The likelihood function

Let N(t) be the cumulative number of TB cases that

are observed during the interval (0, t) and assume that

N(t) is modelled by a NHPP with intensity function

l(t)=dm(t)/dt=dE [N(t)]/dt, where m(t) is the mean

value function (see e.g. Cox & Lewis [11]). Different

parametrical forms could be assumed for the intensity

function l(t) (increasing, decreasing, bathtub shape,

unimodal, among many others, see e.g. Musa &

Okumoto [12] or Muldholkar et al. [13]). We assume

power-law processes (PLP) in the presence of two

change-points with intensity function for the overall

process given by

l(tjh)=

l1=
b1

a1

t

a1

� �b1x1

if 0<t<f1

l2=
b2

a2

t

a2

� �b2x1

if f1ft<f2

l3=
b3

a3

t

a3

� �b3x1

if tof2

8>>>>>>><
>>>>>>>:

(1)

where h=(a1, a2, a3, b1, b2, b3, f1, f2).

Equivalently, letting mj(t)=m(t|hj), the corre-

sponding mean value function is given by

m(tjh)=

m1(t) if 0<t<f1

m2(t)xm2(f1)+m1(f1) if f1ft<f2

m3(t)xm3(f2)+m2(f2)xm2(f1)+m1(f1)

if f2ft<T,

8>>>><
>>>>:

(2)

where m1(t)=(t/a1)
b1, m2(t)=(t/a2)

b2 and m3(t)=
(t/a3)

b3.

Observe that the intensity function lj(t) in equation

(1) is constant for bj=1, decreases for bj<1 and

increases for bj>1, j=1, 2, 3. This process is

related to the Weibull probability model [14] (aj, bj),

j=1, 2, 3.

Assuming that the data are observed up to a

total time T, where the epochs of occurrence of

cases are denoted by ti, i=1, … , n, 0<t1 <t2< …

<tN(f1)<tN(f1)+1 <…<tN(f2)<tN(f2)+1 <…<tn<T,

the likelihood function for h in the presence of two

change-points f1 and f2 is given by

L(h)=
YN(f1)

i=1

l1(ti)e
xm1(f1)

YN(f2)

i=N(f1)+1

l2(ti)e
xm2(f2)+m2(f1)

r
YN(T)

i=N(f2)+1

l3(ti)e
xm3(T )+m3(f2)

(3)

where lj(t) is given in equation (1) and mj (t) is

given in equation (2) for j=1, 2, 3. To justify the

likelihood function [equation (3)], observe that

N(s+t) – N(s) given h has a Poisson distribution

P(m(s+t|h) – m(s|h)) for t>0 and independent

increments [9]. Thus, the sampling distribution for

the between occurrence times, say Ui, has density

fU1jh(t)=l(tjh) exp [xm(tjh)], fU2jU1=s(t)=l(s+tjh)
exp [xm(s+tjh)+m(sjh)], and so on. In this way,

we obtain the likelihood of the data DT={n ; t1, …,

tN(f1), tN(f1)+1, …, tN(f2), tN(f2)+1, …, tn, T} in the

presence of two change-points. Moreover, observe

that homogeneous Poisson processes in the pres-

ence of one change-point is a special case of

equation (3) [9].

A Bayesian analysis

For a Bayesian analysis of the PLP with intensity

function given in equation (1) in the presence of two
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Fig. 1. Number of tuberculosis cases in New York City,
1970–2000.
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change-points f1 and f2, we assume uniform prior

distributions for aj and bj given by

aj � U(0, aj) and bj � U(b1j , b2j), (4)

for j=1, 2, 3, where aj, b1jand b2j are known hy-

perparameters, b11 and b13 are assumed to be equal to

0 and b21 and b23 are assumed to be equal to 1 in order

to have decreasing intensity functions in the intervals

0<t<f1 and f2<t<T ; b12 is assumed to be equal to 1

to have increasing intensity function in the interval

f1<t<f2, and aj and b22 are assumed to have large

values (non-informative prior distributions for aj,

j=1, 2, 3). We also assume uniform prior distri-

butions for the change-points f1 and f2, given by

f‘ � U(c‘, d‘), (5)

where c‘ and d‘ are known hyperparameters, ‘=1, 2 is

assumed to have f1<f2. We further consider prior

independence among the parameters.

The joint posterior distribution for h is given by [15]

where DT={n ; t1, …, tn ; T}, 0<aj<aj, 0<bj<bj,

c‘<fl<d‘, j=1, 2, 3 and ‘=1, 2.

To simulate samples for the joint posterior distri-

bution [equation (6)], we could consider standard

MCMC methods such as the Gibbs sampling algor-

ithm [8] or the Metropolis–Hastings algorithm [16].

In this case, we need all full conditional posterior

distributions P(hj |h( j), DT), j=1, 2, …, K and

h( j)=(h1, …, hjx1, hj+1, …, hK). A great compu-

tational simplification is given by WinBugs software

[17], where we only need to specify the joint distri-

bution for the data and the prior distributions for the

parameters.

RESULTS

For a Bayesian analysis of the NYC TB data, we as-

sumed the uniform prior distributions [equation (4)]

for aj and bj with aj=100, j=1, 2, 3, b21=b23=1,

b11=b13=0 (related to decreasing functions), b12=1

and b22=10 (related to an increasing function

between the first and second change-points). We also

assumed prior distributions [equation (6)] for the

change-points f1 and f2 with c1=2558, d1=4383,

c2=7671 and d2=9131 (number of days since

1 January 1970). This choice of prior distributions,

especially for the change-points f1 and f2 are based

on medical knowledge of the epidemic, or if it is

known that the first change-point is between 1977 and

1982 and the second change point is between 1991

and 1995. We are assuming in the prior distri-

bution [equation (5)] that the two intervals do not

overlap. Using WinBugs software and considering

a burn-in sample of size 40 000, we simulated a

Gibbs sample of size 100 000 choosing every 50th

sample for each parameter to have approximately

uncorrelated samples, i.e. obtaining a final Gibbs

sample of size 1200 to get the posterior summaries for

each parameter. The WinBugs code is given in the

Appendix.

Table 2 gives the posterior summaries for each

parameter. Convergence of the Gibbs sampling al-

gorithm was monitored by checking the plots of the

simulated samples for each parameter to verify if a

stationary distribution was obtained by the 1200 simu-

lated Gibbs samples and also using other existing

methods to check the convergence of the Gibbs sam-

pling algorithm [18].

Table 2. Posterior summaries for the parameters

Parameter Median
Standard
deviation

95% credible
interval

a1 0.8262 0.1625 0.5599–1.184
a2 166.1 16.48 132.2–195.4
a3 0.1968 0.4842 0.003–1.771
b1 0.9127 0.0217 0.8701–0.9546

b2 2.087 0.0507 1.978–2.175
b3 0.8033 0.1047 0.5967–0.9843
f1 3002 88.02 2909–3080

f2 9123 4.639 9112–9130

P(hjDT) /
b1

a1

� �N(f1) b2

a2

� �N(f2)xN(f1) b3

a3

� �N(T )xN(f2)

r
YN(f1)

i=1

ti
a1

� �b1x1
" # YN(f2)

i=N(f1)+1

ti
a2

� �b2x1
" # YN(T )

i=N(f2)+1

ti
a3

� �b3x1
" #

r exp x
f1
a1

� �b1x1

x
f2
a2

� �b2

x
f1
a2

� �b2

" #
x

T

a3

� �b3

x
f2
a3

� �b3

" #( )
, (6)
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Figure 2 shows the plots of the marginal pos-

terior distributions for the change-points f1 and f2
approximated by the simulated Gibbs samples.

Inferences for the change-points are of great interest

to epidemiologists.

Considering the Monte Carlo estimators for the

posterior means of a1, a2, a3, b1, b2, b3, f1 and f2 given

in Table 2, we obtain Bayesian estimators for the

mean value function m(t) given by equation (2), i.e.

Table 3 gives Monte Carlo Bayesian estimators for

m(t) based on the 1200 simulated Gibbs samples and

the observed accumulated numbers of TB cases for

each year. Figure 3 shows the plot of the estimated

mean vale function and the observed accumulated

number of TB cases against the years (in days). We

observe a good fit for the PLP in the presence of two

change-points.

DISCUSSION

There was a great increase in TB prevalence in NYC

during the 1980s and at the start of the 1990s, with

a peak of 3811 cases in 1992. In 1978 a very low

number of TB cases in NYC (1307 cases) was ob-

served, following a long period of decreasing numbers

in the prevalence of the disease. We observe that the

proposed model was well fitted to the data of TB cases

in NYC, and it is straightforward to implement this

model in WinBugs.

The presence of more than one change-point is

common in many applications of medical counting

data. Considering the NYC TB data of Table 1, the

results obtained in the present study could be easily

extended for other epidemiological datasets, where we

could have the presence of a finite number of change-

points. In this way, the likelihood function [equation

(6)] could be easily generalized to accommodate more

than two change-points. We usually have great diffi-

culty in obtaining classical inference results for the

parameters of NHPP in the presence of change-points

and the use of MCMC methods is a suitable way of

obtaining Bayesian inferences for this family of mod-

els. Using WinBugs software greatly simplifies ob-

taining the posterior summaries of interest.
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Fig. 2. Marginal posterior distributions for the change-points. (a) f1 ; (b) f2.

m(tjh)=

t

0�8262

� �0�9127
if 0<t<3002,

t

166�1

� �2�087
x

3002

166�1

� �2:087

+
3002

0�8262

� �0�9127

if 3002ft<9123,

t

0�1968
� �0�8033

x
9123

0�1968

� �0�8033

+
9123

166�1

� �2�087

x
3002

166�1

� �2�087

+
3002

0�8262

� �0�9127

if 9123ft<11323:

8>>>>>><
>>>>>>:
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Other parametrical forms for the intensity func-

tions [equation (1)] could be considered in place

of PLP. In this case we could consider other usual

intensity functions commonly used in software

reliability studies, e.g. Gompertz growth, logistic

growth, etc. [19].
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Cruz 2006; 101 : 697–714.

3. Ruffino-Netto A. Tuberculosis : the neglected calamity.
Revista da Sociedade Brasileira de Medicina Tropical
2002; 35 : 51–58.

4. Ruffino-Netto A. Tuberculosis load: reflections on a
theme. Jornal Brasileiro de Pneumologia 2004; 30 : 307–
309.

5. Coker R. Lessons from New York’s tuberculosis epi-
demic. British Medical Journal 1998; 317 : 616.

6. Wallace DN. Discriminatory public policies in the New
York City tuberculosis epidemic, 1975–1993. Microbes

and Infection 2001; 3 : 515–524.
7. Paolo Jr. WF, Nosanchuk JD. Tuberculosis in New

York city : recent lessons and a look ahead. Lancet

Infection Diseases 2004; 4 : 287–293.
8. Gelfand AE, Smith AFM. Sampling-based approaches

to calculating marginal densities. Journal of the Ameri-

can Statistical Association 1990; 85 : 398–409.
9. Raftery AE, Akman VE. Bayesian analysis of a Poisson

process with a change-point. Biometrika 1986; 73 :

85–89.
10. Ruggeri F, Sivaganesan S. On modeling change points

in non-homogeneous Poisson processes. Statistical In-
ference for Stochastic Processes 2005; 8 : 311–329.

11. Cox DR, Lewis PA. Statistical Analysis of Series of
Events. London: Methuen, 1966.

12. Musa JD, Okumoto K. A logarithm Poisson execution

time model for software reliability measurement. Pro-
ceedings of Seventh International Conference on Soft-
ware Engineering. Orlando, 1984, pp. 230–238.

13. Mudholkar GS, Srivastava DK, Friemer M. The
exponentiated Weibull family : a reanalysis of the
bus-motor failure data. Technometrics 1995; 37 : 436–

445.
14. Kuo L, Yang TY. Bayesian computation for non-

homogeneous Poisson process in software reliability.
Journal of the American Statistical Association 1996; 91 :

763–773.
15. Box GEP, Tiao GC. Bayesian Inference in Statistical

Analysis. New York: Addison-Wesley, 1973.

Table 3. Estimators for the mean value function and

observed accumulated numbers

Time

Estimated

number

Observed

number

1 365 2619 2590
2 730 4919 5162
3 1096 7118 7437

4 1461 9244 9538
5 1826 11 325 11 560
6 2191 13 366 13 711

7 2557 15 386 15 862
8 2922 17 363 17 467
9 3287 18 678 18 774

10 3652 19 925 20 340
11 4018 21 332 21 818
12 4383 22 871 23 400
13 4748 24 572 24 997

14 5113 26 414 26 645
15 5479 28 403 28 274
16 5844 30 541 30 117

17 6209 32 830 32 340
18 6574 35 279 34 537
19 6940 37 876 36 854

20 7305 40 624 39 399
21 7670 43 526 42 919
22 8035 46 572 46 592
23 8401 49 790 50 403

24 8766 53 163 53 638
25 9131 56 647 56 637
26 9496 58 422 59 082

27 9862 60 200 61 135
28 10 227 61 961 62 865
29 10 592 63 717 64 423

30 10 957 65 457 65 883
31 11 323 67 181 67 215

60

50

40

30

20

10

0 2000 4000 6000 8000 10000

Time (days)

E
st

im
at

ed
 m

ea
n 

va
lu

e 
fu

nc
tio

n 
an

d 
ob

se
rv

ed
 n

um
be

r 
(t

ho
us

an
d)

Fig. 3. Mean value function. —, Estimated ; #, observed.

1604 J. A. Achcar and others

https://doi.org/10.1017/S0950268808000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268808000526


16. Smith AFM, Roberts GO. Bayesian computation via the
Gibbs sampler and related Markov Chain Monte Carlo

methods. Journal of the Royal Statistical Society B
1993: 55 : 3–23.

17. Spiegelhalter D, Thomas A, Best N. WinBUGS Ver-

sion 1.3 User Manual. Cambridge : Medical Research
Council Biostatistics Unit, 2000.

18. Gelman A, Rubin DB. Inference from iterative simu-
lation using multiple sequences (with discussion). Stat-

istical Science 1992; 7 : 457–511.
19. Musa JD, Iannino A, Okumoto K. Software Reliability :

Measurement, Prediction, Application. New York:

McGraw Hill, 1987.

APPENDIX

The WinBUGS code used to fit the Bayesian model is given below:

model {

c<- 1000

for (i in 1:N) {

zeros[i] <- 0

phi[i] <- xlog(L[i])+c

zeros[i] ~dpois(phi[i])

log(lambda[i]) <- log(beta[J[i]]) x log(alpha[J[i]])

+ (beta[J[i]]x1)*(log(t[i])xlog(alpha[J[i]]))

L[i] <- lambda[i]*m

J[i] <- 1+step(t[i]-tau1-.5) + step(t[i]-tau2-.5)

}

m <- exp (-(pow((tau1/alpha[1]),beta[1])

+ pow((tau2/alpha[2]),beta[2])

+ pow((T/alpha[3]),beta[3])xpow((tau1/alpha[2]),beta[2])

x pow((tau2/alpha[3]),beta[3]))/N)

tau1 ~dunif(c1,d1)

tau2 ~dunif(c2,d2)

alpha[1] ~dunif(0,a1)

alpha[2] ~dunif(0,a2)

alpha[3] ~dunif(0,a3)

beta[1] ~dunif(0,b21)

beta[2] ~dunif(1,b22)

beta[3] ~dunif(0,b23)

}

list(N=6721,T=11323)

list(a1= , a2= , a3= , b21= , b22= , b23= , c1= , d1= , c2= , d2= )

In this WinBUGS code, a1, a2, a3 are the hyperparameters of the uniform prior distribution of a1, a2 and a3,

respectively ; b1, b2, b3 are the hyperparameters of the uniform prior distribution of b1, b2 and b3, respectively [see

equation (4)] ; and c1, d1, c2 and d2 are the hyperparameters in equation (5). These hyperparameters are declared

in the last line of the WinBugs code.
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