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Abstract

We exhibit invariants of smooth projective algebraic varieties with integer values, whose
nonvanishing modulo p prevents the existence of an action without fixed points of certain
finite p-groups. The case of base fields of characteristic p is included. Counterexamples
are systematically provided to test the sharpness of our results.

Introduction

Consider a finite p-group G acting on a smooth projective variety X over an algebraically closed
field. One of the first questions arising in this situation concerns the existence of fixed points,
and finding effective methods to predict their existence is desirable. In this paper we exhibit
invariants of the variety which may be used to detect fixed points. Each such invariant has the
following key properties.

(a) It depends solely on the intrinsic geometry of the variety X, and not on the particular group
action.

(b) It takes values in Z and is accessible to computation.

(c) If it is prime to p, then the group G must fix a point of the variety X.

It is instructive to start by looking at the case of finite sets, which are precisely zero-
dimensional varieties (over a given algebraically closed field). They are classified by their
cardinality, a numerical invariant which may be used to detect fixed points: a p-group acting on
a finite set of cardinality prime to p must fix a point. A direct generalisation of the cardinality of
a finite set to higher-dimensional (possibly singular and nonprojective) varieties is the so-called
topological Euler characteristic, an integer χ(X) defined as the alternating sum of the l-adic
Betti numbers of X (with compact supports). Much like in the case of finite sets, this invariant
satisfies the requirements (a)–(c), provided that the characteristic of the base field differs from p.

In this paper, we restrict ourselves to the consideration of smooth projective varieties. This
allows us to use intersection theory to produce more invariants satisfying (a)–(c), and also to
include the case of base fields of characteristic p. Perhaps the most natural way to construct a
numerical invariant of a smooth projective variety using intersection theory is to take the degree
of a product of Chern classes of its tangent bundle. Such invariants are called Chern numbers;
they satisfy the requirements (a) and (b). Our first result asserts that they also detect fixed
points in the sense of (c), under any of the following additional assumptions:

(i) G is abelian;

(ii) the characteristic of the base field is p;

(iii) dimX < p.
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Fixed point theorems involving numerical invariants

Another numerical invariant of a smooth projective variety X is its arithmetic genus

χ(X,OX). This is not quite a Chern number, but rather a Q-linear combination of Chern numbers

which happens to take integral values on any smooth projective variety (this assertion is a form

of the Hirzebruch–Riemann–Roch theorem). The arithmetic genus χ(X,OX) depends solely on

the birational geometry of X. In fact it contains all the birational information obtainable using

Chern numbers: any linear combination of Chern numbers which is a birational invariant must

be a multiple of the arithmetic genus [Ful98, Example 15.12.3(c)]. We prove that the invariant

χ(X,OX) detects fixed points (in the sense of (c) above), under any of the following additional

assumptions:

(i′) G is cyclic;

(ii′) the characteristic of the base field is p;

(iii′) dimX < p− 1.

Under any of the assumptions (i′), (ii′) and (iii′), we prove in fact that the cobordism class of

the variety X is divisible by p in the Lazard ring as soon as the group G acts without fixed points

on X. This essentially means that fixed points may be detected using any Q-linear combination of

Chern numbers taking integral values on smooth projective varieties, and not just the arithmetic

genus.

The results are stated in more details in § 1, where we also give an algebraic version of

a theorem of Browder in topology [Bro87] concerning the pull-back of fixed points under

maps of degree prime to p. The rest of the paper is written using the language of algebraic

groups. This allows us to prove more general statements (by including in particular infinitesimal

groups in characteristic p), but also makes some arguments more transparent. For instance the

conditions (i) and (ii) appear as special cases of the condition that the p-groupG be trigonalisable.

A notable tool introduced in § 3.4 is a cohomology theory that we denote by KG, which lies

between the equivariant and usual K0-theory. It is built using a variant of Borel’s construction,

where roughly speaking the space EG is replaced by its generic point. The same construction may

be applied to other cohomology theories (such as the Chow group), yielding a theory which keeps

track of some of the equivariant information while being smaller than the Borel-type equivariant

theory.

Even though these results are, in our view, principally of geometric nature, they also have

an arithmetic component. Indeed our methods permit in some cases the detection of closed

fixed points of degree prime to p, when the base field is not algebraically closed. This is so for

Chern numbers (assuming that the base field contains enough roots of unity in case (i)), or the

arithmetic genus in case (iii′). Strikingly, this does not work for the arithmetic genus in case (i′),

nor in case (ii′) over an imperfect base field (see Examples 5.1.6 and 5.1.7 for counterexamples).

This suggests a difference of nature between these situations, and may provide a reason for the

absence of a uniform proof for the cases (i′) and (iii′).

1. Statement of results

Here we summarise the main results of the paper. In order to make the statements as simple as

possible, we assume in this section that G is an ordinary finite p-group and that the base field

k is algebraically closed. A G-action on a (k-)variety X is a group morphism G → Autk(X).

A coherentOX -module F is calledG-equivariant if it is endowed with isomorphisms τg : g∗F→ F
for g ∈ G, satisfying the cocycle condition τh ◦ h∗(τg) = τgh for every g, h ∈ G.
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O. Haution

1.1 Equivariant cycles and Chern numbers

In the next statement CHG denotes the equivariant Chow group of [EG98].

Theorem 1.1.1. Let X be a projective variety with an action of G. Assume that one of the

following conditions holds:

(i) G is abelian;

(ii) char k = p;

(iii) dimX < p− 1.

Then X(k)G = ∅ if and only if every element of the image of the morphism CHG(X) → CH(X)

has degree divisible by p.

Proof. The class of a fixed closed point belongs to im(CHG(X) → CH(X)) and has degree one.

The converse follows from Theorem 4.4 in cases (i) and (ii), since G is trigonalisable (see § 2.1.5),

and from Theorem 5.2.3(ii) in case (iii). 2

A Chern number of a smooth projective variety is the degree of a product of Chern classes

(with values in the Chow group) of its tangent bundle.

Corollary 1.1.2. Let X be a smooth projective variety with an action of G. Assume that one

of the following conditions holds:

(i) G is abelian;

(ii) char k = p;

(iii) dimX < p.

If X(k)G = ∅, then every Chern number of X is divisible by p.

Proof. By [EG98, § 2.4] any G-equivariant vector bundle over X (i.e. a vector bundle whose

OX -module of sections is G-equivariant) admits Chern classes with values in CHG(X) mapping

under the forgetful morphism CHG(X) → CH(X) to its usual Chern classes. Since the tangent

bundle of X is G-equivariant (see Remark 2.4.8), the result follows from Theorem 1.1.1 in cases (i)

and (ii) (or when dimX < p−1). In case (iii), the result may also be deduced from Theorem 1.1.1,

albeit less directly, see Theorem 5.2.3(iii). 2

Counterexamples show that the conditions of the theorem, and of the corollary in case p 6= 2,

are sharp, see Example 4.5 below. The dimensional bound (iii) in the corollary may however be

improved when p = 2, see Remark 1.1.4.

Remark 1.1.3. The following statement may be found in [Ser09, § 7.2]: assume that char k 6= p,

and let X be a variety with an action of G. If the topological Euler characteristic χ(X) is prime

to p, then X(k)G 6= ∅.

The assumption on the characteristic of k is necessary: the group Z/p acts without fixed

points on A1 by x 7→ x + 1 in characteristic p, and χ(A1) = 1. Note that when X is smooth

projective of pure dimension d, the integer χ(X) = deg cd(TX) is a Chern number of X. It thus

follows from Corollary 1.1.2(ii) that the above statement is in fact valid in characteristic p when

X is smooth and projective.
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Fixed point theorems involving numerical invariants

Remark 1.1.4. Let us now comment on the situation in Corollary 1.1.2 when p = 2 and X has
small pure dimension. We denote the Chern number deg ci1(TX) · · · cin(TX) by ci1 · · · cin .

— dimX = 1: The only Chern number c1 = χ(X) = 2χ(X,OX) is even. Thus Corollary 1.1.2
says nothing for curves when p = 2.

— dimX = 2: The two Chern numbers c2 = χ(X) and c2
1 have the same parity by Noether’s

formula χ(X) + c2
1 = 12χ(X,OX) (see e.g. [Ful98, Example 15.2]). Thus Corollary 1.1.2 reduces

to the statement in Remark 1.1.3 for surfaces when p = 2.
— dimX = 3: We have by the Hirzebruch–Riemann–Roch theorem (see e.g. [Ful98,

Example 15.2.5(a)])

c1c2 = 24χ(X,OX) and c1c2 + 4c3
1 = 8χ(X,ω∨X),

so that the two Chern numbers c1c2 and c3
1 are even. The other Chern number c3 = χ(X) is also

even (for instance by Poincaré duality for l-adic cohomology). Thus Corollary 1.1.2 says nothing
for threefolds when p = 2.

Summarising, we see that the condition (iii) of Corollary 1.1.2 may be weakened to the
condition ‘dimX < 4’ when p = 2. This new dimensional bound is sharp, see Example 4.5.

1.2 Equivariant modules and the cobordism ring
Theorem 1.2.1. Let X be a projective variety with an action of G. Assume that one of the
following conditions holds:

(i) G is cyclic;

(ii) char k = p;

(iii) dimX < p− 1.

Then X(k)G = ∅ if and only if the Euler characteristic χ(X,F) of every G-equivariant coherent
OX -module F is divisible by p.

Proof. If I is the ideal in OX of a fixed closed point, then the OX -module OX/I is G-equivariant
and satisfies χ(X,OX/I) = 1. The converse is proved respectively in Theorems 5.1.1, 5.3.1
and 5.2.3(i). 2

The sharpness of the conditions of the theorem is illustrated by Example 5.1.5 below.
Let us declare two smooth projective varieties equivalent if their collections of Chern numbers

(indexed by the monomials in the Chern classes) coincide. The disjoint union operation endows
the set of equivalence classes with the structure of a cancellative abelian monoid. Its group
completion1 has a ring structure, where the product is induced by the cartesian product of
varieties. This ring does not depend on the field k, in fact Merkurjev proved that it coincides
with the Lazard ring L, the coefficient ring of the universal commutative one-dimensional formal
group law [Mer02, Theorem 8.2]. Thus to each smooth projective variety X corresponds a class
[X] ∈ L. When the characteristic of k is zero, the ring L may be identified with the coefficient
ring Ω(Spec k) of the algebraic cobordism of Levine-Morel, and [X] is the cobordism class of the
morphism X → Spec k [LM07, Remark 4.3.4, Theorem 4.3.7].

Corollary 1.2.2. In the conditions of Theorem 1.2.1, assume additionally that X is smooth.
If X(k)G = ∅, then [X] ∈ pL.

1 Contrary to what is stated in [ELW15, just before Theorem 5.1] and in [Tho95, § 5], it is necessary to add an
inverse to the classes of zero-dimensional varieties in order to obtain a group.
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Proof. The sheaf of sections of the tangent bundle TX is a G-equivariant coherent OX -module
(see Remark 2.4.8). The corollary thus follows from Theorem 1.2.1, in view of the Hattori–Stong
theorem, see [ELW15, Lemma 5.4, Proposition 5.5]. In case (iii), this is also a consequence of
Theorem 1.1.1: indeed one may see using [Ada74, II, Theorem 7.8, Lemma 7.9(iii)] that the class
of a smooth projective variety of dimension < p − 1 is divisible by p in L if and only if each of
its Chern numbers is divisible by p. 2

Remark 1.2.3 (Corollary 1.2.2 has a converse). If the group G is nontrivial, then pL consists of
classes of smooth projective varieties X admitting a G-action such that X(k)G = ∅. Indeed, we
may find a subgroup H ⊂ G of index p. Then G acts without fixed points on the set G/H, whose
cardinality is p. Thus, given any smooth projective variety Y , we may make G act without fixed
point on X = Y tp by permuting the copies of Y .

Remark 1.2.4. Fixed points were known to exist under the assumption that X is connected and
H i(X,OX) = 0 for i > 0: in characteristic p this follows from Smith theory and the Artin–Schreier
sequence [Ser09, § 7.4, Remark]; the cyclic case in characteristic 6= p follows from the Lefschetz
fixed point formula [FL85, VI § 9]. Let us also mention a fixed point theorem of Kollár for smooth
projective separably rationally connected varieties [Sta09, Corollary 3.36].

Since the OX -module OX admits a natural G-equivariant structure, Theorem 1.2.1 implies
that a projective variety X has a fixed point under the weaker assumption that the arithmetic
genus χ(X,OX) is prime to p. By contrast to the above-mentioned results, this applies to singular
varieties, and also to some smooth projective varieties which are not ‘rational-like’, such as curves
of genus two.

1.3 Browder’s theorem
The next statement is an analog of a theorem of Browder in topology [Bro87].

Theorem 1.3.1. Let f : Y → X be a projective surjective G-equivariant morphism, where X is
smooth and connected, and Y is integral. Assume that [k(Y ) : k(X)] is finite and prime to p,
and that one of the following conditions holds:

(i) G is abelian;

(ii) char k = p;

(iii) dimX < p.

Then the induced morphism fG : Y G
→ XG is surjective.

Proof. See Theorem 6.1 (and Remark 6.2(i) and § 2.1.5). Observe that the last condition implies
that the fibers of f all have dimension < p−1, since f is a dominant morphism between integral
varieties of the same dimension. 2

When char k 6= p, we prove in fact that the Z(p)-module H(XG) is a direct summand of

H(Y G), for any Z(p)-linear cohomology theory H satisfying the projection formula, for instance
H = CH(−) ⊗ Z(p) (see Remark 6.2(iii)).

Remark 1.3.2. A different method is used by Kollár and Szabó in [RY00] to treat questions
of similar nature. In particular, the fact that X(k)G 6= ∅ implies that Y (k)G 6= ∅ under the
condition Theorem 1.3.1(i) was already stated and proved in [RY00, Proposition A4].
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Fixed point theorems involving numerical invariants

2. Group actions on varieties

A variety will be a separated scheme of finite type over k with the property that every finite family
of points is contained in some affine open subscheme. In particular quasi-projective schemes over
k will be considered varieties, and quotients of varieties by finite algebraic groups will remain
varieties (see § 2.2.3). Products of varieties will be understood as cartesian products over k.
Morphisms of varieties will be k-morphisms; unless otherwise stated a morphism will mean a
morphism of varieties. If X is a variety and R a k-algebra, the set of k-morphisms SpecR → X
will be denoted by X(R). The residue field at a point x ∈ X will be denoted by k(x).

2.1 Algebraic groups
We refer e.g. to [MFK94, ch. 0, § 1] for the basic definitions concerning algebraic groups and
their actions. An algebraic group will mean an affine group scheme of finite type over k. When
Y and X are two varieties with a G-action, we always will endow the product X × Y with the
diagonal G-action.

2.1.1 The order of a group. The order of an algebraic group G is the dimension of the
k-vector space H0(G,OG). An algebraic group is called a p-group if its order is (finite and) a
power of the prime p. When G is finite, the order of a subgroup H of G divides the order of
G; this follows from the fact that the quotient morphism G → G/H is flat and finite of degree
equal to the order of H (see Proposition 2.3.2).

2.1.2 Constant finite groups. Let Γ be an ordinary finite group. Then there exists an
algebraic group Γk such that Γk(R) = Γ for any connected commutative k-algebra R. The order
of Γk coincides with the order of Γ. If G is an algebraic group and Γ is a subgroup of G(k), then
the constant group Γk is a subgroup of G.

2.1.3 Diagonalisable groups. (See [SGA31, I, § 4.4]) A diagonalisable group G is entirely

determined by its character group Ĝ, an ordinary abelian group. The order of G coincides with
the order of Ĝ.

When n is a positive integer, the functor assigning to a commutative k-algebra R
the multiplicative group consisting of those x ∈ R such that xn = 1 is represented by the
diagonalisable group µn satisfying µ̂n = Z/n. When k contains a root of unity order n,
the algebraic group µn is isomorphic to the constant group (Z/n)k.

There is an anti-equivalence between the category of affine varieties with a G-action and that
of commutative Ĝ-graded k-algebras of finite type [SGA31, I, 4.7.3.1].

2.1.4 Unipotent groups. An algebraic group G is called unipotent if every nonzero G-
representation over k admits a nonzero trivial subrepresentation. Constant finite p-groups over
a field of characteristic p are unipotent.

When k has positive characteristic p, the functor assigning to a commutative k-algebra R the
additive group consisting of those x ∈ R such that xp = 0 is represented by a unipotent group
αp, whose order is p.

2.1.5 Trigonalisable groups. An algebraic group G is called trigonalisable if every nonzero
G-representation over k admits a subrepresentation of codimension one. It is equivalent to require
that G contain a normal unipotent subgroup U such that G/U is diagonalisable [DG70, IV, § 2,
Proposition 3.4].

A finite constant group G = Γk is trigonalisable in each of the following cases.
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– The ordinary group Γ is abelian, and k contains a root of unity of order equal to the
exponent of Γ (the group G is diagonalisable, see [Hau16, Lemma 3.6.1]).

– The field k has characteristic p > 0, and G is a p-group (it is then unipotent).

2.2 Fixed locus and quotient
2.2.1 Invariant subschemes. Let X be a variety with an action of an algebraic group G.

A closed (respectively An open) subscheme S of X is called G-invariant if the composite
morphism G × S → G × X → X factors through S → X. Note that the scheme theoretic
image of a G-equivariant morphism is a G-invariant closed subscheme.

2.2.2 Fixed locus. By [CGP15, Proposition A.8.10(1)] there is a G-invariant closed
subscheme XG of X with trivial G-action, such that for any variety T with trivial G-action, the
set of G-equivariant morphisms T →X coincides with the set of morphisms T →XG (as subsets
of Hom(T,X)). When G = Γk for an ordinary finite group Γ, a G-action is precisely a group
morphism Γ → Autk(X), and XG(k) = X(k)Γ.

2.2.3 Quotient. When it exists, we denote by X → X/G the categorical quotient morphism,
defined as the coequaliser of the two morphisms G × X → X (the action and the second
projection). This morphism always exists in the category of varieties when G is a finite algebraic
group (see [SGA31, V, Théorème 4.1(i)]). A G-action on an affine scheme X = SpecA is given
by a k-algebra morphism µ : A → A⊗k R, where R = H0(G,OG). The set

AG = {x ∈ A | µ(x) = x ⊗ 1 ∈ A⊗k R} (2.2a)

is a k-subalgebra of A, and the morphism X → X/G is given by the inclusion AG → A.

2.2.4 When H is a finite normal subgroup of G, the variety X/H inherits a G/H-action
making the quotient morphism X → X/H a G-equivariant morphism.

Lemma 2.2.5. Let G be a finite algebraic group acting on a variety X. Then the morphism
XG

→ X/G is radicial.

Proof. We may assume that X = SpecA and that k is infinite. Let R be the coordinate ring
of G. Denote by m : R → R ⊗ R the co-multiplication morphism (tensor products are taken
over k) and by µ : A → A ⊗ R be the co-action morphism. Then we have

(idA ⊗m) ◦ µ = (µ ⊗ idR) ◦ µ. (2.2b)

When C is a k-algebra, we denote by NC : C ⊗ R → C the norm, which maps x ∈ C ⊗ R to
the determinant of the C-linear morphism αx : C ⊗ R → C ⊗ R given by multiplication with x.
If h : C → C ′ is a k-algebra morphism, then

h ◦NC = NC′ ◦ (h ⊗ idR). (2.2c)

The morphism G × G → G × G given by (g, h) 7→ (g, g−1h) is an automorphism and is
compatible with the first projection. Therefore the corresponding ring endomorphism ϕ of R ⊗ R
is an R-algebra automorphism, for the algebra structure given by idR ⊗ 1: R → R ⊗ R. Thus
for x ∈ A ⊗ R ⊗ R, we have α(idA ⊗ϕ)(x) = (idA ⊗ϕ)◦αx ◦(idA ⊗ϕ)−1, and taking determinants
we obtain

NA⊗R ◦ (idA ⊗ϕ) = NA⊗R. (2.2d)
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In addition, the composite of the above automorphism G×G → G×G with the multiplication

map of G is the second projection, so that

ϕ ◦m = 1 ⊗ idR . (2.2e)

Since

(idA ⊗ 1) ◦NA ◦ µ = NA⊗R ◦ (idA ⊗ 1 ⊗ idR) ◦ µ by (2.2c)

= NA⊗R ◦ (idA ⊗ϕ) ◦ (idA ⊗m) ◦ µ by (2.2e)

= NA⊗R ◦ (idA ⊗m) ◦ µ by (2.2d)

= NA⊗R ◦ (µ ⊗ idR) ◦ µ by (2.2b)

= µ ◦NA ◦ µ by (2.2c)

the map NA ◦ µ : A → A factors through a map N : A → AG (see (2.2a)).

When K is a field containing k, any element of XG(K) is given by a G-equivariant morphism

SpecK → X for the trivial G-action on K. Let f : A → K be the corresponding k-algebra

morphism. Then for any x ∈ A, by (2.2c) we have

f ◦NA ◦ µ(x) = NK ◦ (f ⊗ idR) ◦ µ(x) = NK(f(x) ⊗ 1) = f(x)n, (2.2f)

where n = dimk R is the order of G.

Now let f1, f2 : A → K be the k-algebra morphisms corresponding to a pair of elements of

XG(K) mapping to the same element in (X/G)(K). Then the restriction of fi to AG does not

depend on i. It follows that the map

fi ◦NA ◦ µ = fi|AG ◦N

does not depend on i. In view of (2.2f), we have in K, for any x ∈ A

f1(x)n = f2(x)n.

Writing n = pmq, where p is the characteristic exponent of k and q is prime to p, we obtain

in K, for any x ∈ A,

f1(x)q = f2(x)q.

Now let a ∈ A and λ ∈ k. The above equality for x = a+ λ yields

(f1(a) + λ)q = (f1(a+ λ))q = (f2(a+ λ))q = (f2(a) + λ)q,

so that any element of k ⊂ K is a root of the polynomial

(f1(a) +X)q − (f2(a) +X)q ∈ K[X],

which must therefore vanish (as k is infinite). Its coefficient at Xq−1 is

q · f1(a)− q · f2(a).

Since q is invertible in k, we conclude that f1 = f2. 2
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2.3 Free actions
Definition 2.3.1. Let G be an algebraic group acting on a variety X. The group G acts freely
on X if the morphism γ : G ×X → X ×X given by (g, x) 7→ (g · x, x) is a monomorphism. It
is equivalent to require that for every variety B and x ∈ X(B) the set of those g ∈ G(B) such
that g · x = x be reduced to the unit element 1 ∈ G(B).

Proposition 2.3.2. Let G be a finite algebraic group acting freely on a variety X. Then the
quotient morphism ϕ : X → X/G is flat and finite of degree equal to the order of G, and
the following square is cartesian, where the unlabelled arrows denote respectively the second
projection and the action morphism.

G×X //

��

X

ϕ

��
X

ϕ // X/G

Proof. See [Mum08, § 12, Theorem 1(B)], or [SGA31, V, Théorème 4.1(iv)]. 2

Lemma 2.3.3. Let G be a finite algebraic group acting freely on a variety X. Let X ′ → X be a
G-equivariant morphism. Then G acts freely on X ′, and the following square is cartesian.

X ′ //

��

X

��
X ′/G // X/G

Proof. The first statement follows from the definition of a free action in terms of functors
of points. To prove that the square is cartesian, by descent and Proposition 2.3.2 we may
assume that X = G × S, where G acts trivially on S. Let S′ = X ′/G. We need to prove that
the G-equivariant S′-morphism X ′ → G × S′ is an isomorphism. To do so, by descent and
Proposition 2.3.2 we may assume that X ′ = G × S′. But any equivariant S′-endomorphism of
an S′-group scheme coincides with multiplication by the image of the unit, hence must be an
isomorphism. 2

Lemma 2.3.4. Let G be an algebraic group of prime order acting on a variety X. If XG = ∅,
then the action is free.

Proof. For a k-scheme F and x, y ∈ X(F ), we denote by Sx,y the fiber of the morphism γ : G×
X → X × X over (x, y) : F → X × X. Let us write GF = G × F and XF = X × F . For any
k-scheme E, the set Sx,y(E) may be identified with the subset of GF (E) consisting of those g
such that g · y = x ∈ X(E). In particular Sx,x is a subgroup of the F -group scheme GF (the
stabiliser of x), and the F -scheme Sx,y is isomorphic to Sx,x as soon as Sx,y(F ) 6= ∅.

We now prove the statement. The morphism γ : G×X → X×X being proper, by [EGAIV3,
(8.11.5)] it will suffice to prove that Sx,y → F is either empty or an isomorphism, when F =
SpecK for an algebraically closed field K containing k, and x, y ∈ X(F ). Assume that Sx,y is
nonempty. Then the finite type K-scheme Sx,y possesses a rational point. It follows from the
discussion above that the F -scheme Sx,y is isomorphic to the subgroup Sx,x of GF . But the
K-group scheme GF has exactly two subgroups (the order of a subgroup must divide its order).
If Sx,x = GF , then the morphism x : F → X is G-equivariant for the trivial action on F , hence
factors through XG; this would contradict the assumption that XG = ∅. Thus the K-group
scheme Sx,x is trivial, and Sx,y → F is an isomorphism. 2
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2.4 Equivariant modules
Definition 2.4.1. Let G be an algebraic group acting on a variety X, and F a quasi-coherent
OX -module. A G-equivariant structure on F is an isomorphism µ : a∗F → p∗F , where a, p : G×
X → X are respectively the action morphism and the second projection, making the following
diagram commute

(idG× a)∗a∗F
(idG× a)∗(µ) // (idG× a)∗p∗F q∗a∗F

q∗(µ)

��
m∗a∗F

m∗(µ) // m∗p∗F q∗p∗F

(2.4a)

where q : G × G × X → G × X is the projection on the last two factors, and m : G × G × X →

G × X is the base-change of the multiplication map of G. We will often omit to mention the
isomorphism µ, and simply say that F is a G-equivariant quasi-coherent OX -module. This is the
same definition as [SGA31, I, § 6.5], where the cocycle condition is instead expressed in terms of
the inverse θ of µ. We will say that a vector bundle is G-equivariant when its sheaf of sections
is a G-equivariant module.

Let F and G be two G-equivariant quasi-coherent OX -modules. A morphism φ : F → G of
OX -modules will be called G-equivariant if the following diagram commutes.

a∗F //

a∗(φ)
��

p∗F

p∗(φ)
��

a∗G // p∗G

This defines a categoryM(X;G). The categoryM(Spec k;G) (for the trivial G-action on Spec k)
is the category of G-representations over k. A G-equivariant morphism f : Y → X induces
functors f∗ : M(X;G) → M(Y ;G) (see [SGA31, I, Lemme 6.3.1]) and Ri f∗ : M(Y ;G) →

M(X;G) for every i (the proof of [SGA31, I, Lemme 6.6.1] also works for higher direct images).

2.4.2 A morphism of algebraic groups H → G induces a functor M(X;G) →M(X;H).
The category M(X; 1) coincides with the category of quasi-coherent OX -modules.

2.4.3 If F is a quasi-coherent OX -module, any G-equivariant structure a∗F → p∗F is a
G-equivariant morphism. Thus we may define a morphism a∗ → p∗ of functorsM(G×X;G) →

M(G×X;G).

2.4.4 If a diagonalisable group G acts trivially on a variety X, and F is a quasi-coherent

OX -module, a G-equivariant structure on F is the same thing as a Ĝ-grading on the OX -module
F , i.e. a direct sum decomposition F =

⊕
g∈ĜFg (see [SGA31, I, 4.7.3]).

Lemma 2.4.5. Let G be an algebraic group acting on a variety X, and D a central diagonalisable
subgroup of G acting trivially on X. Let F be a G-equivariant quasi-coherent OX -module. Then
the D̂-grading of the OX -module F lifts to the category M(X;G).

Proof. We denote by a, p : G×X →X the action and projection morphisms, and by d : D×X →

X their common restriction. Let α, π : G × D × X → D × X the base-changes of a, p, and
δ : G×D×X → G×X the base-change of d. Let m : G×D×X → G×X be the multiplication
morphism. Let s : G×D×X → D×G×X the exchange morphism, and write α′ = α ◦ s−1 and
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δ′ = δ ◦ s−1. Since D is central, the multiplication morphism m′ : D×G×X → G×X coincides
with m ◦ s−1.

Denote by µ : a∗F → p∗F the G-equivariant structure, and by τ : d∗F → d∗F the induced
D-equivariant structure. Using the commutativity of (2.4a) twice, we see that the following
diagram commutes.

δ∗a∗F

δ∗(µ)
��

m∗a∗F

m∗(µ)

��

s∗m′∗a∗F

s∗m′∗(µ)

��

s∗α′∗d∗F

s∗α′∗(τ)
��

α∗d∗F

α∗(τ)
��

δ∗p∗F s∗α′∗d∗F α∗d∗F

π∗d∗F

π∗(τ)
��

s∗δ′∗a∗F

s∗δ′∗(µ)
��

δ∗a∗F

δ∗(µ)
��

π∗d∗F m∗p∗F s∗m′∗p∗F s∗δ′∗p∗F δ∗p∗F

We let D act on G×X via the trivial action on G. Then the morphisms a, p : G×X → X
are D-equivariant (since D is central). The commutativity of the exterior rectangle asserts that
the morphism µ is D-equivariant, and the lemma follows. 2

Definition 2.4.6. Let X be a variety with an action of G, and H a normal subgroup of G acting
trivially on X. We let G act on H by (g, h) 7→ ghg−1. The second projection π : H×X →X is G-
equivariant, and coincides with the action morphism α : H×X → X. The categoryM(X;G/H)
may be identified with the full subcategory of M(X;G) consisting of those objects F on which
H acts trivially, i.e. such that π∗F = α∗F → π∗F is the identity. Consider the two morphisms
id → π∗π

∗ of functorsM(X;G) →M(X;G), respectively adjoint to the morphism π∗ = α∗→ π∗

(see § 2.4.3) and the identity of π∗. Their equaliser defines a morphism

(−)H : M(X;G) →M(X;G/H).

2.4.7 In the conditions of Definition 2.4.6, let F ∈M(X;G) and let U be an open subscheme
of X. Since taking the sections over U is a left exact functorM(X;G) →M(Spec k;G), it follows
that FH(U) = F(U)H .

2.4.8 The ideal of a G-invariant closed subscheme is naturally G-equivariant. Using this
observation for the diagonal immersion X → X ×X and pulling back to X, we deduce that the
cotangent module of X is G-equivariant. Thus if X is smooth, its tangent bundle is G-equivariant.

Proposition 2.4.9. Let G be an algebraic group acting on a variety X. Let H be a finite normal
subgroup of G acting freely on X, and denote by ϕ : X → X/H the quotient morphism. Then
the composite

M(X/H;G/H) ⊂M(X/H;G)
ϕ∗−→M(X;G)

is an equivalence of categories, with quasi-inverse

M(X;G)
ϕ∗−→M(X/H;G)

(−)H

−−−→M(X/H;G/H).

These equivalences preserve the full subcategories of coherent, respectively locally free coherent,
equivariant modules.
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Proof. Consider the morphism ϕ∗((ϕ∗(−))H) → id of functors M(X;G) →M(X;G) which is
adjoint to the natural morphism (ϕ∗(−))H → ϕ∗(−). It will suffice to prove that for every G-
equivariant quasi-coherent OX -module F , the morphism ϕ∗((ϕ∗(F))H) → F is an isomorphism
of OX -modules (its inverse is then automatically G-equivariant). But this follows from descent
theory: in view of Proposition 2.3.2, the H-equivariant structure on F is precisely a descent
datum with respect to the faithfully flat morphism ϕ. 2

3. Algebraic cycles

3.1 Grothendieck groups
3.1.1 Let X be a noetherian separated scheme. We denote by K ′0(X) (respectively K0(X))

the Grothendieck group (respectively ring) of coherent (respectively locally free coherent) OX -
modules. The class of an OX -module F will be denoted by [F ]. The tensor product induces a
K0(X)-module structure on K ′0(X). A proper, respectively flat, morphism f : Y → X induces
a push-forward morphism f∗ : K ′0(Y ) → K ′0(X), respectively pull-back morphism f∗ : K ′0(X) →

K ′0(Y ).

3.1.2 A filtration is defined by letting K ′0(X)(n) be the subgroup of K ′0(X) generated
by images of the push-forward morphisms K ′0(Z) → K ′0(X), where Z runs over the closed
subschemes of X of dimension less than or equal to n. This filtration is compatible with push-
forward morphisms [SGA6, X, Proposition 1.1.8]. If f : Y → X is a flat morphism of relative
dimension d, then f∗K ′0(X)(n) ⊂ K ′0(Y )(n+d) (see [SGA6, X, § 3.3]).

3.1.3 When X is a complete variety, we denote by χ(X,−) : K ′0(X) → Z the push-forward
morphism along the structural morphism X → Spec k. This is the unique morphism sending the
class of a coherent OX -module F to its Euler characteristic

χ(X,F) =

dimX∑
i=0

dimkH
i(X,F). (3.1a)

3.1.4 Now let X be a variety with an action of an algebraic group G. We denote
by K ′0(X;G) the Grothendieck group of G-equivariant coherent OX -modules [Tho87, § 1.4].
Forgetting the G-equivariant structure induces a morphism K ′0(X;G) → K ′0(X). A finite,
respectively flat, G-equivariant morphism f : Y → X induces a push-forward morphism
f∗ : K ′0(Y ;G) → K ′0(X;G), respectively pull-back morphism f∗ : K ′0(X;G) → K ′0(Y ;G). The
Grothendieck ring of G-equivariant locally free coherent OX -modules will be denoted by
K0(X;G). Any G-equivariant morphism f : Y → X induces a pull-back morphism K0(X;G) →

K0(Y ;G), and K ′0(X;G) is naturally a K0(X;G)-module.

Proposition 3.1.5. Let G be an algebraic group acting on X, and H a finite normal subgroup
of G acting freely on X. Then the pull-back morphism K ′0(X/H;G) → K ′0(X;G) is surjective.

Proof. This follows from Proposition 2.4.9. 2

3.2 Chow groups
3.2.1 When X is a variety, we denote by Z(X) the free abelian group generated by the

integral closed subschemes of X. Every closed subscheme Z of X has a class [Z] ∈ Z(X) (defined
as the sum of its irreducible components weighted by the lengths of the local rings of Z at their
generic points). The Chow group CH(X) is the quotient of Z(X) by rational equivalence; we
refer to [Ful98] (where the notation A∗(X) is used) for its basic properties.
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3.2.2 When X is a variety with an action of an algebraic group G, we will write CHG(X) for

the equivariant Chow group of X, denoted by AG∗ (X) in [EG98]. This group is constructed using

intersection theory on algebraic spaces. The consideration of algebraic spaces is not required

when G is a finite algebraic group (the main case of interest in this paper), since quotients of

varieties always exist as varieties (see § 2.2.3).

3.2.3 Let i : Y →X be the immersion of a G-invariant closed subscheme, and u : U →X its

open complement. The localisation sequence [Ful98, Proposition 1.8] induces an exact sequence

CHG(Y )
i∗−→ CHG(X)

u∗−→ CHG(U) → 0.

3.2.4 The forgetful morphism CHG(X) → CH(X) is defined as follows. Any element of

CHG(X) is represented by an element of CH((X ×W )/G), where W is a nonempty G-invariant

open subscheme of a finite-dimensional G-representation where G acts freely (the quotient (X ×
W )/G exists as an algebraic space by [Art74, Corollary 6.3]). Composing the flat pull-back

CH((X × W )/G) → CH(X × W ) with the isomorphism CH(X × W ) ' CH(X) of Lemma 3.3.1

below, we obtain a morphism CHG(X) → CH(X).

Lemma 3.2.5. Let G be a finite algebraic group acting on X, and H a normal subgroup of G

acting freely on X. Then the morphism CHG(X/H) → CHG(X) is surjective.

Proof. Let Q = G/H and Y = X/H. Let W be a G-invariant open subscheme of a finite-

dimensional G-representation where G acts freely, and U a Q-invariant open subscheme of a

finite-dimensional Q-representation where Q acts freely.

The morphism f : Y × U× (W/H) → Y × U is flat and Q-equivariant. Since Q acts freely on

its target, it follows by faithfully flat descent and Lemma 2.3.3 that the morphism f/Q, which

may be identified with (Y × U × W )/G → (Y × U)/G, is flat.

The morphism X × U × W → Y × U × W is flat (by Proposition 2.3.2) and G-equivariant.

Since G acts freely on its target, it follows as above that the morphism (X × U × W )/G× (Y ×
U × W )/G is flat.

Since W is a G-invariant open subscheme of a finite-dimensional G-representation, and H

acts freely on X × U , it follows by faithfully flat descent, Lemma 2.3.3 and Proposition 2.4.9

that (X × U × W )/H is a Q-invariant open subscheme of a Q-equivariant vector bundle over

(X× U)/H = Y × U . Since Q acts freely on Y × U , by the same argument ((X× U×W )/H)/Q =

(X × U ×W )/G is an open subscheme of a vector bundle over (Y × U)/Q = (X × U)/G.

Finally, the morphism (X × U)/G → (Y × U)/G is an isomorphism, hence we have a

commutative diagram of flat pull-backs

CH((X × U)/G) // CH((X × U × W )/G)

CH((Y × U)/G) //

'

OO

CH((Y × U × W )/G)

OO

where the upper horizontal morphism is surjective by homotopy invariance and the localisation

sequence [Ful98, Propositions 1.9 and 1.8]. Therefore the right vertical morphism is surjective.

Its component of degree n coincides with that of CHG(Y ) → CHG(X), as soon as U and W are

chosen so that their closed complements both have codimension >dimX − n. 2
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3.2.6 We now explain how to lift the construction of [Ful98, Definition 8.1.1] to equivariant
Chow groups, as this will be needed in § 6. Let f : X → Y be a G-equivariant morphism with Y
smooth. Let Y ′ → Y and X ′ → X be G-equivariant morphisms. Associated with the cartesian
square of G-equivariant morphisms

X ′ ×Y Y ′ //

��

X ′ × Y ′

��
X

γf // X × Y

is a morphism (γf )! : CHG(X ′ × Y ′) → CHG(X ′ ×Y Y ′) such that the diagram

CHG(X ′ × Y ′)
(γf )!

//

��

CHG(X ′ ×Y Y ′)

��
CH(X ′ × Y ′)

(γf )!
// CH(X ′ ×Y Y ′)

commutes (see [Bro03, § 3.1.1]). Given x ∈ CHG(X ′) and y ∈ CHG(Y ′), let x×Gy ∈ CHG(X ′× Y ′)
be their exterior product [EG98, Definition-Proposition 2], and define

x ·f y = (γf )!(x×G y) ∈ CHG(X ′ ×Y Y ′).

3.3 Purely transcendental extensions
Let us record here a couple of well-known observations.

Lemma 3.3.1. Let W be a nonempty open subscheme of the affine space Ad, and let X be a
variety. Then the flat pull-backs CH(X) → CH(X ×W ) and K ′0(X)(n) → K ′0(X × W )(n+d) (for
every integer n) are bijective.

Proof. We may find a nonconstant polynomial in d variables with coefficients in k whose
nonvanishing locus U is contained in W . Let δ be its degree. If the field k is finite, it possesses
two finite field extensions k0, k1 of coprime degree, each containing more than δ + 1 elements.
By a restriction–corestriction argument, it will suffice to prove the statement after successively
replacing k with k0 and k1. Thus we may assume that k contains δ + 1 distinct elements. Then
one sees by induction on m that any nonzero polynomial of degree less than or equal to δ in m
variables with coefficients in k induces a nonzero map km → k. In particular U , and thus also
W , possesses a rational point. Then by [EKM08, Lemma 55.7], respectively [Qui73, § 7.2.5], the
pull-back along the corresponding regular closed immersion i : X → X × W is a retraction of
the flat pull-back CH(X) → CH(X × W ), respectively K ′0(X) → K ′0(X × W ). Since the latter
is surjective by homotopy invariance and the localisation sequence (see [Ful98, Propositions 1.9
and 1.8], respectively [Qui73, Propositions 7.3.2 and 7.4.1]), it is bijective. In addition, we have
i∗K ′0(X × W )(n+d) ⊂ K ′0(X)(n) by [Gil05, Theorem 83], concluding the proof. 2

Lemma 3.3.2. Let K be a finitely generated purely transcendental field extension of k. Then for
any variety X, the pull-back K ′0(X) → K ′0(X × SpecK) is an isomorphism of filtered groups.

Proof. Let d = tr. deg.(K/k). Then E = SpecK is the limit of a filtered family of nonempty
open subschemes Wα of Ad with affine transition morphisms. Thus by [Qui73, Proposition 7.2.2]
the morphism

colimαK
′
0(X × Wα) → K ′0(X × E)
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is bijective. Since each morphism E → Wα is flat of relative dimension −d, the above morphism
restricts for every n to an injective morphism of subgroups

colimαK
′
0(X × Wα)(n+d) → K ′0(X × E)(n). (3.3a)

Now let Z be a closed subscheme of X × E such that dimZ 6 n. Consider the scheme theoretic
closure Zα of Z in X × Wα. Any point of x ∈ Zα is the specialisation of a point y ∈ Z, and

tr.deg.(k(x)/k) 6 tr.deg.(k(y)/k) = tr.deg.(k(y)/K) + d 6 dimZ + d.

It follows that dimZα 6 n+ d. We have a commutative diagram.

colimαK
′
0(Zα) //

��

K ′0(Z)

��
colimαK

′
0(X × Wα) // K ′0(X × E)

Since the upper horizontal morphism is surjective, we deduce that (3.3a) is surjective, and thus
bijective. Now the statement follows from Lemma 3.3.1. 2

3.4 An equivariant theory
In this section, we introduce an equivariant theory KG, for G a finite algebraic group, which
will be used exclusively in § 5.2. Its key properties may be summarised as follows (when X is a
variety with a G-action).

(i) The forgetful morphism factors as K ′0(X;G) → KG(X) → K ′0(X).

(ii) The morphism K ′0(X;G) → KG(X) is surjective.

(iii) The morphism KG(X) → K ′0(X) is bijective when X = Spec k.

(iv) The group KG(X) is endowed with a filtration vanishing in negative degrees, which is
compatible with the topological filtration of K ′0(X) via the morphism KG(X) → K ′0(X).

Remark 3.4.1. The theory KG is constructed using the theory K ′0. One could perform the same
construction using other cohomology theories instead; taking the Chow group would yield a
quotient of the equivariant Chow group CHG.

Let G be a finite algebraic group. Let V = H0(G,OG) be the regular representation of G
over k. We view E = End(V ) as a G-representation by letting G act by left composition. Then
the group G acts freely on the nonempty G-invariant open subscheme GL(V ) of E. The scheme

T = Spec k(E)

may be identified with the generic fiber of the morphism E → E/G. Therefore T is a variety
over the field F = k(E/G) = k(E)G, and is equipped with a free G-action.

Definition 3.4.2. When X is a variety with a G-action, we may view the scheme X × T as an
F -variety with a free G-action, and we define

KG(X) = K ′0((X × T )/G).

A filtration is defined by letting KG(X)(n) = K ′0((X × T )/G)(n).
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Remark 3.4.3. If W is any generically free G-representation of finite dimension over k, replacing
T by Spec k(W ) and F by k(W )G in the above definition yields a canonically isomorphic filtered
group. This observation will play no role in this paper, but may be used to construct a change
of group morphism, for instance.

We may use Lemma 3.3.2 to define a morphism of filtered groups

KG(X) = K ′0((X × T )/G) → K ′0(X × T ) ' K ′0(X). (3.4a)

Using the isomorphism induced by Proposition 2.4.9, we construct a morphism

K ′0(X;G) → K ′0(X × T ;G) ' K ′0((X × T )/G) = KG(X). (3.4b)

The composite of (3.4b) and (3.4a) is the canonical morphism K ′0(X;G) → K ′0(X).

Lemma 3.4.4. The morphism (3.4b) is surjective.

Proof. This morphism may be factored as

K ′0(X;G) → K ′0(X × GL(V );G) ' K ′0((X × GL(V ))/G) → K ′0((X × T )/G). (3.4c)

The first morphism is surjective by the equivariant versions of homotopy invariance and of
the localisation sequence [Tho87, Theorems 2.7 and 4.1], the middle isomorphism follows from
Proposition 2.4.9. The scheme SpecF = T/G is a filtered limit of open subschemes of GL(V )/G
with affine transition morphisms, hence by base-change (in view of Lemma 2.3.3) the scheme
(X × T )/G is a filtered limit of open subschemes of (X × GL(V ))/G with affine transition
morphisms. Thus the last morphism of (3.4c) is surjective by [Qui73, Propositions 7.2.2 and
7.3.2]. 2

A flat, respectively proper, G-equivariant morphism f : Y → X induces a morphism
f∗ : KG(X) → KG(Y ), respectively f∗ : KG(Y ) → KG(X). The Grothendieck ring K0(X;G)
naturally acts on KG(X): any element α ∈ K0(X;G) pulls back to an element of K0(X × T ;G),
which acts on K ′0(X × T ;G) = KG(X). We denote this action by α ∩ − : KG(X) → KG(X).

Lemma 3.4.5. Let i : Y →X be the immersion of aG-invariant closed subscheme, and u : U →X
its open complement. Then the following sequence is exact:

KG(Y )
i∗−→ KG(X)

u∗−→ KG(U) → 0.

Proof. Since (Y × T )/G is a closed subscheme of (X× T )/G with open complement (U × T )/G
by Lemma 2.3.3 and faithfully flat descent, the lemma follows from the localisation sequence for
K ′0 (see [Qui73, Proposition 7.3.2]). 2

4. The degree of equivariant cycles

Definition 4.1. Let G be an algebraic group acting on a variety X. We denote by ZG(X) the
subgroup of Z(X) generated by classes of equidimensional G-invariant closed subschemes of X.

If U is a G-invariant open subscheme of X, then the restriction morphism Z(X) → Z(U)
maps the subgroup ZG(X) surjectively onto ZG(U).
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Lemma 4.2. Let i : D → X be a G-equivariant principal effective Cartier divisor. Then the

image of the composite ZG(X) → CH(X)
i∗−→ CH(D) is contained in the image of the morphism

ZG(D) → CH(D).

Proof. Let Z be an equidimensional G-invariant closed subscheme of X. Let Z0 (respectively
Z1) be the scheme theoretic closure of Z − (D ∩ Z) (respectively of Z − Z0) in Z. Then Z0

is an equidimensional G-invariant closed subscheme of X, and we have [Z] = [Z0] + [Z1] in
Z(X). In addition the closed subscheme Z1 is supported inside D, hence we may find y ∈ Z(D)
such [Z1] = i∗(y) in Z(X). Since i is a principal effective Cartier divisor, it follows from [Ful98,
Proposition 2.6(c)] that the composite i∗ ◦ i∗ is the zero endomorphism of CH(D), hence we have
in CH(D)

i∗[Z] = i∗[Z0] + i∗[Z1] = i∗[Z0] + i∗ ◦ i∗(y) = i∗[Z0].

By construction, no associated point of Z0 lies in D, so that D ∩Z0 → Z0 is an effective Cartier
divisor. Then by [Ful98, Lemma 1.7.2] the cycle class i∗[Z] = i∗[Z0] ∈ CH(D) is represented
by the cycle [Z0 ∩ D] ∈ Z(D), which belongs to ZG(D), since Z0 ∩ D is an equidimensional
G-invariant closed subscheme of D. 2

We recall that CHG denotes the equivariant Chow group, see § 3.2.2.

Proposition 4.3. Let G be a trigonalisable (§ 2.1.5) algebraic group acting on a variety X.
Then the two morphisms

CHG(X) → CH(X) and ZG(X) → CH(X)

have the same image.

Proof. Let W be a nonempty G-invariant open subscheme of a finite-dimensional G-
representation V over k, and assume that G acts freely on W . Consider the commutative
diagram (see Lemma 3.3.1 for the indicated isomorphisms).

CH((X × W )/G) // CH(X × W ) CH(X × V )
'oo CH(X)

'oo

Z((X × W )/G) //

OOOO

ZG(X × W )

OO

ZG(X × V )

OO

oooo ZG(X)oo

OO

(If G is not finite, then (X × W )/G may be only an algebraic space.) To prove the statement,
it will suffice to prove that for every finite-dimensional G-representation V over k, the two
morphisms

ZG(X × V ) → CH(X × V ) and ZG(X) → CH(X × V )

have the same image. We proceed by induction on dimV , the case V = 0 being clear. Assume
that V 6= 0. Since G is trigonalisable, we can find a subrepresentation V ′ ⊂ V of codimension
one. Let i : X× V ′ → X× V be the induced G-equivariant closed immersion. By Lemma 4.2, for
any x ∈ ZG(X× V ), the cycle class i∗(x) ∈ CH(X× V ′) is represented by a cycle in ZG(X× V ′).

By induction, we may find a cycle y ∈ ZG(X) such that i∗(x) = y× [V ′] ∈ CH(X× V ′). Using
the surjectivity of CH(X) → CH(X× V ), we find z ∈ CH(X) such that x= z ×[V ] ∈ CH(X× V ).
Then z× [V ′] = i∗(x) = y× [V ′] ∈ CH(X× V ′) (see [EKM08, Lemma 55.7]), hence z = y ∈ CH(X)
by injectivity of CH(X) → CH(X × V ′), and finally x = y× [V ] ∈ CH(X × V ), as required. 2
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Theorem 4.4. Let G be a trigonalisable (§ 2.1.5) algebraic p-group acting on a projective variety
X. Assume that the degree of every closed point of XG is divisible by p. Then the morphism

dX : CHG(X) → CH(X)
deg−−→ Fp is zero.

Proof. By Proposition 4.3, it will suffice to prove that deg[T ] = 0 ∈ Fp for any equidimensional
G-invariant closed subscheme T of X. It will of course suffice to consider the case dimT = 0.
Replacing X with T , we may assume that dimX = 0. Given a G-invariant closed subscheme Z
of X, consider the exact sequence of § 3.2.3

CHG(Z)
i∗−→ CHG(X)

u∗−→ CHG(X − Z) → 0,

where i : Z → X, respectively u : X −Z → X, is the closed, respectively open, immersion. Since
dimX = 0, the open immersion u is also closed, and the push-forward morphism u∗ is a section
of u∗. In addition dX ◦ i∗ = dZ and dX ◦ u∗ = dX−Z , so that

im dX = im dZ + im dX−Z ⊂ Fp. (4.1a)

Taking Z = XG, we see that in order to prove the proposition, it will suffice to assume
that XG = ∅ and prove that dX = 0. To do so, we may assume that k is algebraically closed.
Using (4.1a) and noetherian induction, we may assume that X possesses exactly two G-invariant
closed subschemes (∅ and X). It will thus suffice to prove that deg[X] = 0 ∈ Fp. The choice
of a rational point of X induces a G-equivariant morphism G → X, which must be scheme
theoretically dominant. By [SGA31, V, Théorème 10.1.2], there is a subgroup H of G such that
X is isomorphic to G/H. The morphism G → G/H is flat and finite by Proposition 2.3.2, so
that the integer n = dimkH

0(X,OX) divides the order of G, and is thus a pth power. Since
H 6= G (as XG = ∅ and X 6= ∅), it follows that deg[X] = n mod p vanishes in Fp. 2

Example 4.5. Assume that the field k is algebraically closed of characteristic 6= p, and let G be
a constant nonabelian finite p-group. Then G admits a simple representation V of dimension
d = pn with n > 0. Observe that the case n = 1 actually occurs, when G has order p3.

The group G acts without fixed point on P(V ), but the cycle class c1(O(1))d−1 is in the
image of CHG(P(V )) → CH(P(V )) and has degree prime to p (equal to 1). When n = 1, we have
dimP(V ) = p− 1.

The group G also acts on P(V ⊕ 1) with a single fixed point P(1). Let f : X → P(V ⊕ 1) be
the blow-up at this point. There is a G-action on X making f a G-equivariant morphism. Then
any fixed point of X must be contained in the exceptional divisor E, which is G-equivariantly
isomorphic to P(V ). Since the latter has no fixed point, it follows that X(k)G = ∅. The normal
bundle of the effective Cartier divisor j : P(V ) ' E → X is OP(V )(−1), hence the zero-cycle class

[E]d = j∗ ◦ c1(OP(V )(−1))d−1[P(V )] ∈ CH(X)

has degree (−1)d−1. The zero-cycle class on P(V ⊕ 1)

(c1(TP(V⊕1)))
d = ((d+ 1) · c1(OP(V⊕1)(1)))d ∈ CH(P(V ⊕ 1))

has degree (d+ 1)d. By [Ful98, 15.4.3], we have

c1(TX) = f∗c1(TP(V⊕1)) + (1− d)[E] ∈ CH1(X),
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so that deg(c1(TX)d) = 2 mod p. Thus we have found a Chern number of X which is not divisible
by p, when p 6= 2. When n = 1, we have dimX = p.

Now assume that p = 2. The group G acts on P = P(V ⊕ 1)× P(V ⊕ 1) with a single fixed
point P(1)× P(1). Let g : Y → P be the blow-up at this point. As above, we have Y (k)G = ∅,
and by [Ful98, Example 15.4.2(c)]

c2(TY ) = g∗c2(TP ) ∈ CH2(Y )/2,

so that we have in F2

deg(c2(TY )d) = deg(c2(TP )d) = (deg(c1(TP(V⊕1)))
d)2 = 1 mod 2.

Therefore one of the Chern numbers of Y is odd. When n = 1, we have dimY = 4.

5. The Euler characteristic of equivariant modules

We now investigate divisibility properties of Euler characteristics of equivariant modules on a
variety upon which a finite p-group acts without fixed points. The next proposition shows that
the case of a free action can be easily handled.

Proposition 5.0.1. Let G be a finite algebraic group acting freely on a projective variety X.
Then the Euler characteristic χ(X,F) of any G-equivariant coherent OX -module F is divisible
by the order of G.

Proof. By Proposition 2.4.9 we may find a coherent OX/G-module G whose pull-back to X is
isomorphic to F . Then χ(X,F) = n · χ(X/G,G), where n is the order of G, see [Mum08, § 12,
Theorem 2]. 2

5.1 Dual cyclic groups
Theorem 5.1.1. Let p be a prime, and G = µpr for some integer r. Let X be a projective variety
with a G-action such that XG = ∅. Then the Euler characteristic χ(X,F) of any G-equivariant
coherent OX -module F is divisible by p.

Proof. We may assume that X 6= ∅. Then r > 1, and G contains a subgroup H isomorphic to
µpr−1 . It follows from Proposition 5.1.3 below that (X/H)G/H = (X/H)G = ∅. Let ψ : X →X/H
be the quotient morphism. By Lemma 5.1.2 below, there is a G/H-equivariant coherent OX/H -
module G such that χ(X/H,G) is congruent modulo p to χ(X/H,ψ∗F) = χ(X,F). Replacing the
variety X with X/H, the group G with G/H, and the module F with G, we may assume that G =
µp. Then G acts freely on X by Lemma 2.3.4, and the theorem follows from Proposition 5.0.1. 2

Lemma 5.1.2. Let G be an algebraic group acting on a projective variety X. Let D be a
diagonalisable central subgroup of G acting trivially on X. Then for any prime p and any
G-equivariant coherent OX -module F , we may find a G/D-equivariant coherent OX -module G
such that

χ(X,F) = χ(X,G) mod p.

Proof. By Lemma 2.4.5 we may assume that the D̂-grading of F is concentrated in a single
degree d ∈ D̂. If χ(X,F) is divisible by p, we may simply take G = 0. Otherwise by the definition
(3.1a) there is an integer i such that dimkH

i(X,F) is prime to p. Then V = H i(X,F) is
a G-representation whose induced D̂-grading is concentrated in degree d. The group D acts
trivially on the G-equivariant coherent OX -module F ⊗k V ∨, and the integer χ(X,F ⊗k V ∨) =
χ(X,F)·dimk V

∨ is prime to p. We may thus construct G as a direct sum of copies of F⊗kV ∨. 2

278

https://doi.org/10.1112/S0010437X18007911 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007911


Fixed point theorems involving numerical invariants

Proposition 5.1.3. Let p be a prime, and G = µpr for some integer r. Let X be a variety with

a G-action and H a subgroup of G such that H 6= G. Then the morphism XG
→ (X/H)G is

surjective.

Proof. Let us write Y = X/H. Let y ∈ Y G(K) for some algebraically closed field extension K

of k with trivial G-action. We may lift y ∈ Y (K) to a point x ∈ X(K), and it will suffice to

prove that x ∈ XG(K). To do so, we may assume that X = SpecA. Then we have a k-algebra

morphism f : A → K whose restriction AH → K (see (2.2a)) induces a G-equivariant morphism

(of schemes), and want prove that f induces a G-equivariant morphism.

A G-action on SpecA is a k-vector space decomposition A =
⊕

i∈Z/pr Ai such that Ai ·Aj ⊂
Ai+j (see § 2.1.3). The group H∗ = ker(Z/pr → Ĥ) is nontrivial by the assumption H 6= G, and

we have AH =
⊕

j∈H∗ Aj . The assumption that f |AH induces a G-equivariant morphism means

that f |Aj = 0 whenever j ∈H∗−{0}. Now let i ∈ Z/pr−{0} and a ∈ Ai. Since any two nontrivial

subgroups of a cyclic p-group must have a nontrivial intersection, we may find an integer n such

that ni ∈ H∗ − {0}. Then an ∈ Ani with ni ∈ H∗ − {0}, hence 0 = f(an) = f(a)n. Since K is a

field, we conclude that f(a) = 0, proving that f induces a G-equivariant morphism. 2

Example 5.1.4. We define a group morphism µp → GLp by mapping ξ ∈ µp(R) for a k-algebra R

to the diagonal matrix with coefficients 1, ξ, . . . , ξp−1. This induces an action of µp on X = Pp−1.

If K is a field extension of k, then Xµp(K) consists of the p points [1 : 0 : · · · : 0], [0 : 1 : 0 · · · : 0],

. . . , [0 : · · · : 0 : 1].

We define a group morphism (Z/p)k → GLp by mapping the generator to the automorphism

(x0, . . . , xp−1) 7→ (x1, . . . , xp−1, x0). This induces an action of (Z/p)k on X. If K is a field

extension of k, then X(Z/p)k(K) = {[1 : ξ : · · · : ξp−1]|ξ ∈ µp(K)}.
The two actions commute, inducing an action of G = µp × (Z/p)k on X such that XG = ∅,

while χ(X,OX) = 1 is prime to p.

Example 5.1.5. Assume that the field k is algebraically closed of characteristic 6= p. Let G be a

constant abelian noncyclic p-group. Then G admits a quotient isomorphic to (Z/p)k × (Z/p)k
and thus to µp× (Z/p)k by our assumptions on k. Therefore by Example 5.1.4 the group G acts

without fixed point on Pp−1, and χ(Pp−1,OPp−1) is prime to p.

The next two examples show that in Theorem 5.1.1 the assumption ‘XG = ∅’ may not be

weakened to the assumption ‘every closed point of XG has degree divisible by p’.

Example 5.1.6. Let X be the Severi–Brauer variety of a finite-dimensional central division k-

algebra of degree p. Let a p-group G act trivially on X. Then dimX = p− 1 and the degree of

every closed point of XG is divisible by p, but χ(X,OX) = 1.

Example 5.1.7. For a less degenerate example, assume that an element a ∈ k − kp exists. The

automorphism (x0, . . . , xp−1) 7→ (x1, . . . , xp−1, ax0) in GLp(k) maps to an element of order p in

PGLp(k). This defines an action of (Z/p)k on X = Pp−1. The fixed locus X(Z/p)k is supported

on the closed point {[1 : z : · · · : zp−1]|zp = a} of degree p. Thus χ(X,OX) = 1 is not the degree

of a zero-cycle supported on X(Z/p)k .
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5.2 Varieties of small dimension
Let us consider the morphism (see § 3.4)

δ : KG(X)
(3.4a)
−−−→ K ′0(X)

χ(X,−)
−−−−→ Z → Fp.

Proposition 5.2.1. Let G be a finite algebraic group acting on a projective variety X. Assume
that G contains µp as a central subgroup. If dimX < p− 1, then

δ(KG(X)) = δ(KG(Xµp)) ⊂ Fp.

Proof. The action of µp on U =X−Xµp is free by Lemma 2.3.4. Let φ : U → U/µp be the quotient
morphism. The Z/p-grading φ∗OU =

⊕
n∈Z/p(φ∗OU )n is compatible with the G-equivariant

structure of φ∗OU by Lemma 2.4.5. By [SGA31, VIII, Proposition 4.1] the G-equivariant OU/µp-

module L = (φ∗OU )1 is invertible, and for i ∈ Z, the morphism L⊗ i → (φ∗OU )i mod p is an
isomorphism; in addition it is G-equivariant, since the product morphism of the ring φ∗OU is
G-equivariant. We thus obtain a G-equivariant decomposition

φ∗OU '
p−1⊕
i=0

L⊗ i. (5.2a)

Let α ∈ KG(X). Consider the following commutative diagram.

K ′0(U ;G)
(3.4a) // KG(U)

K ′0(U/µp;G)
(3.4b) //

φ∗

OO

KG(U/µp)

φ∗

OO

Since the upper horizontal and left vertical morphisms are surjective, respectively by Lemma 3.4.4
and Proposition 3.1.5, it follows that the right vertical morphism is surjective as well. Thus we
may find β ∈ KG(U/µp) such that φ∗(β) = α|U ∈ KG(U). By the projection formula [SGA6, IV,
(2.12.4)] and the decomposition (5.2a), we have in KG(U/µp)

φ∗(α|U ) = φ∗ ◦ φ∗(β) =

p−1∑
i=0

[L]i ∩ β. (5.2b)

There is a polynomial Q with integral coefficients such that we have in K0(U/µp;G)

p−1∑
i=0

[L]i = (1− [L])p−1 + p ·Q([L]). (5.2c)

Since (1− [L]) ∩KG(U/µp)(n) ⊂ KG(U/µp)(n−1) for every n (see [FL85, VI, Proposition 5.2] or
[SGA6, X, Théorème 1.3.2]), and dimU/µp 6 p−2, we have (1−[L])p−1 ∩ β ∈KG(U/µp)(−1) = 0,
and the combination of (5.2b) and (5.2c) yields

φ∗(α|U ) ∈ p ·KG(U/µp).

By Lemma 3.4.5 we can find y ∈ KG(X/µp) such that ϕ∗(α)− py restricts to zero in KG(U/µp),
where ϕ : X → X/µp denotes the quotient morphism. The morphism i : Xµp → X/µp is a closed
immersion by [Hau16, (3.2.3(ii))], with open complement U/µp. By Lemma 3.4.5 we may find
z ∈ KG(Xµp) such that i∗(z) = ϕ∗(α)− py. To finish, observe that

δ(α) = δ ◦ ϕ∗(α) = δ(ϕ∗(α)− py) = δ ◦ i∗(z) = δ(z) ∈ Fp. 2
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Proposition 5.2.2. Let X be a projective variety such that dimX < p − 1. Then the Euler
characteristic χ(X,F) of any coherent OX -module F is congruent modulo p to the degree of
some zero-cycle supported on X.

Proof. The group K ′0(X) is generated by classes [OZ ] for Z a closed subscheme of X (see [SGA6,
X, Corollaire 1.1.4]). By [Hau12, Proposition 9.1], for such Z the integer χ(Z,OZ) is congruent
modulo p to the degree of some zero-cycle supported on Z, and in particular on X. 2

Theorem 5.2.3. Let G be a finite algebraic p-group acting on a projective variety X. Assume
that the degree of every closed point of XG is divisible by p. If char k = p, assume that there are
normal subgroups 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that the subgroup Gi/Gi−1 is central in
G/Gi−1 and isomorphic to µp, for i = 1, . . . , n.

(i) If dimX < p − 1, then the Euler characteristic χ(X,F) of any G-equivariant coherent
OX -module is divisible by p.

(ii) If dimX < p− 1, then the morphism CHG(X) → CH(X)
deg−−→ Fp is zero.

(iii) If dimX < p and X is smooth, then any Chern number (§ 1.1) of X is divisible by p.

Proof. Let us first assume that char k 6= p. In order to prove the theorem, we may replace k with
an extension of degree prime to p. Applying Lemma 5.2.4 recursively and extending scalars, we
obtain normal subgroups 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that Gi/Gi−1 is central in G/Gi−1

and isomorphic to (Z/p)k. Enlarging once more the field k, we may assume that it contains a
nontrivial pth root of unity, so that (Z/p)k ' µp.

It will thus suffice to prove the theorem when the characteristic of k is arbitrary, assuming
that G admits normal subgroups 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that the subgroup Gi/Gi−1

is central in G/Gi−1 and isomorphic to µp.
Assume that dimX < p− 1. We prove by descending induction on i = n, . . . , 0 that

δ(KG/Gi
(XGi)) = 0. (5.2d)

If i = n, then G = Gn, and δ(KG/Gn
(XG)) is contained in the image of K ′0(XG)

χ(X,−)
−−−−→ Z → Fp.

The latter is zero by Proposition 5.2.2 and the assumption on XG, so that (5.2d) holds for i = n.
Now (5.2d) follows by induction, since for i ∈ {1, . . . , n} we have

δ(KG/Gi−1
(XGi−1)) = δ(KG/Gi−1

(XGi)) = δ(KG/Gi
(XGi)).

Indeed, the first equality follows by applying Proposition 5.2.1 to the central subgroup Gi/Gi−1 '
µp of G/Gi−1 acting on the variety XGi−1 . The second equality follows from Lemma 5.1.2, since
the diagonalisable central subgroup Gi/Gi−1 ' µp of G/Gi−1 acts trivially on the variety XGi .

Taking i = 0 in (5.2d), we obtain δ(KG(X)) = 0. Since the morphism K ′0(X;G) → K ′0(X)
factors through KG(X), we have proved (i).

Using the notation of § 3.4, the morphism CHG(X) → CH(X) factors as

CHG(X) → CHG(X × T ) ' CH((X × T )/G) → CH(X × T ) ' CH(X).

The last isomorphism follows from Lemma 3.3.1 (in view of [EKM08, Proposition 52.9]), and the
first from [EG98, Proposition 8(a)] (since G acts freely on X × T ). Consider the composite

∆: CH((X × T )/G) → CH(X × T ) ' CH(X)
deg−−→ Fp.
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Since dimT = 0, we have ∆(CHd((X × T )/G)) = 0 unless d = 0. Thus in order to prove (ii),
it will suffice to consider a zero-dimensional closed subscheme Z of (X × T )/G, and prove that
∆[Z] = 0. But for such Z, we have ∆[Z] = δ[OZ ], which vanishes by (i).

We now prove (iii) by induction on the length n of the central series. The statement is true if
n = 0. Assume that n > 1 and dimX < p. Let Y be the scheme theoretic closure of U = X−XG1

in X, and Z the open complement of Y . Then Y is the union of the connected components of
X meeting U (as X is smooth), hence is open in X. Thus X decomposes G-equivariantly as
the disjoint union of the open subschemes Y and Z. Every Chern number of X is the sum of
a Chern number of Y and one of Z. Applying the induction hypothesis to the G/G1-action on
the variety Z (which is a closed subscheme of XG1 by construction), we may replace X with
Y , and thus assume that dimXG1 < p − 1. Since the tangent bundle of X is G-equivariant by
Remark 2.4.8, its Chern classes lie in the image of CHG(X) → CH(X), hence it will suffice to

prove that the composite CHG(X) → CH(X)
deg−−→ Fp is zero. To do so, we proceed as in the

proof of Proposition 5.2.1. The group G1 ' µp acts freely on U by Lemma 2.3.4. Denote by
ϕ : X → X/G1 and φ : U → U/G1 be the quotient morphisms, and let α ∈ CHG(X). Then the
pull-back morphism φ∗ : CHG(U/G1) → CHG(U) is surjective by Lemma 3.2.5, so that we may
find β ∈ CHG(U/G1) such that φ∗(β) = α|U . By the localisation sequence of § 3.2.3, we may find
β′ ∈ CHG(X/G1) such that β′|U/G1

= β. Since the morphism φ is flat and finite of degree p by
Proposition 2.3.2, the endomorphism φ∗ ◦φ∗ of CHG(U/G1) is multiplication by p, and it follows
that ϕ∗(α) − pβ′ restricts to zero in CHG(U/G1). The morphism i : XG1 → X/G1 is a closed
immersion by [Hau16, (3.2.3(ii))], with open complement U/G1. Using the localisation sequence
of § 3.2.3, we see that ϕ∗(α) = pβ′ + i∗(γ) for some γ ∈ CHG(XG1). Since dimXG1 < p− 1, we
may finish the proof using (ii). 2

Lemma 5.2.4. Let G be an étale p-group satisfying G 6= 1. Then, after an extension of degree
prime to p of the base field, the algebraic group G possesses a central subgroup isomorphic to
the constant algebraic group (Z/p)k.

Proof. Let C be the centre of G and k an algebraic closure of k. Then the ordinary group C(k)
is the centre of the nontrivial ordinary p-group G(k), hence is nontrivial. Thus the algebraic
group C is nontrivial (and is again an étale p-group). The open complement of the unit in C is a
variety which is reduced and finite of degree prime to p, hence possesses a closed point of degree
prime to p. Extending scalars, we may assume that the ordinary p-group C(k) is nontrivial,
hence contains a subgroup isomorphic to Z/p, which implies that the algebraic group C contains
a subgroup isomorphic to the constant algebraic group (Z/p)k. 2

5.3 Characteristic p
In the next statement it is necessary to assume that k is perfect, as shown by Examples 5.1.6
and 5.1.7.

Theorem 5.3.1. Let k be a perfect field of characteristic p > 0. Let G be either a constant
algebraic p-group, or an extension of one by αp. Let X be a projective variety with a G-action
such that the degree of every closed point of XG is divisible by p. Then the Euler characteristic
χ(X,F) of any G-equivariant coherent OX -module F is divisible by p.

Proof. We proceed by induction on the order of G. When the group G is trivial, the statement
follows from Lemma 5.3.2 below. Note that referring to that result is unnecessary when k is
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algebraically closed (in particular while proving Theorem 1.1.1): since the variety X possesses
no closed point of degree prime to p, it must be empty, so that χ(X,F) = 0.

If the group G is nontrivial, it admits a normal subgroup C isomorphic to αp or (Z/p)k, and
such that G/C is a constant p-group. Let Y be the scheme theoretic image of the composite
morphism XC

→ X → X/C, and denote by ϕ : X → X/C the quotient morphism. Let U =
ϕ−1(X/C−Y ), and ψ : U → U/C = X/C−Y the restriction of ϕ. Since UC = ∅, it follows from
Lemma 2.3.4 that the group C acts freely on U . Thus by Proposition 3.1.5, there is an element
β ∈ K ′0(U/C;G) such that [F ]|U = ψ∗(β) in K ′0(U ;G). By Lemma 5.3.4, we have ψ∗([F ]|U ) =
pβ ∈ K ′0(U/C;G). By the localisation sequence [Tho87, Theorem 2.7], it follows that ϕ∗[F ] ∈
K ′0(X/C;G) is modulo p the image of an element of K ′0(Y ;G), and thus by Lemma 5.3.3 of
K ′0(Y ;G/C). Since χ(X,F) = χ(X/C,ϕ∗F), it will suffice to prove that χ(Y, E) is divisible by p
for any G/C-equivariant coherent OY -module E . To do so, it will suffice by induction to prove
that the degree of any closed point y ∈ Y G/C is divisible by p. The field k(y) is perfect, being
a finite extension of the perfect field k. The G/C-equivariant morphism XC

→ Y is surjective,
and radicial by Lemma 2.2.5. Therefore by Lemma 5.3.5 (applied to the smooth group G/C) we
may find a closed point of (XC)G/C = XG (mapping to y) with residue field isomorphic to k(y),
so that the degree of y must be divisible by p, by our assumption on XG. 2

The next lemma is due to Rost [Ros08, Corollary 1].

Lemma 5.3.2. Let k be a perfect field of characteristic p > 0. Let X be a projective variety, and
n a positive integer. If the degree of every closed point of X is divisible by pn, then so is the
Euler characteristic χ(X,F) of any coherent OX -module F .

Proof. We proceed by induction on d = dimX. Since the group K ′0(X) is generated by classes
[OZ ] for Z an integral closed subscheme of X (see [SGA6, X, Corollaire 1.1.4]), we may assume
that X is integral and that F = OX . The case d = 0 is clear, since χ(X,OX) = [k(X) : k].
Assume that d > 0. Denote by X(p) = X ×Spec k Spec k the base-change of X under the absolute
Frobenius morphism of Spec k. Since k is perfect, the first projection π : X(p)

→ X is an Fp-
isomorphism. In particular X(p) is integral; let η be its generic point. The relative Frobenius
F : X → X(p) is a finite k-morphism. By [Liu02, Corollary 3.2.27] the k(X(p))-vector space
(F∗OX)η = k(X) has dimension pd, hence there is a nonempty open subscheme V of X(p) such
that the OV -module (F∗OX)|V is free of rank pd. By the localisation sequence for K ′0 (see
[Qui73, Proposition 7.3.2]), this implies that [F∗OX ] − pd[OX(p) ] = i∗ε ∈ K ′0(X(p)) for some
ε ∈ K ′0(Y ), where i : Y → X(p) is the immersion of the reduced closed complement of V . The
composite π ◦ i : Y → X(p)

→ X maps closed points to closed points (being a closed immersion),
multiplying their degrees by [k : kp] = 1. Thus the degree of every closed point of Y is a multiple
of pn, hence pn divides χ(Y, ε) by induction. It follows from (3.1a) and [Liu02, Corollary 5.2.27]
that χ(X(p),OX(p)) = χ(X,OX). We have χ(X(p), F∗OX) = χ(X,OX), because F is a finite
k-morphism. Thus

χ(Y, ε) = χ(X(p), i∗ε) = χ(X(p), F∗OX)− pdχ(X(p),OX(p)) = (1− pd)χ(X,OX).

Since d > 0 and pn divides χ(Y, ε), we conclude that pn must divide χ(X,OX). 2

Lemma 5.3.3. Let G be an algebraic group acting on a variety X. Let H be a normal unipotent
subgroup of G acting trivially on X. Then the natural morphism K ′0(X;G/H) → K ′0(X;G) is
surjective.
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Proof. Let F be a G-equivariant coherent OX -module. We construct inductively G-equivariant
coherent OX -modules Fi for i ∈ N as follows. Let F0 = F . Assuming Fi constructed, we
consider its G-equivariant coherent OX -submodule (Fi)H (see Definition 2.4.6), and define
Fi+1 = Fi/(Fi)H . As F is coherent and X noetherian, there is an integer n such that the
morphism Fi → Fi+1 is an isomorphism for all i > n. Thus we have (Fi)H = 0 for i > n. We
claim that this implies that Fi = 0 for such i. Indeed, let U be an open subscheme of X such
that Fi(U) 6= 0. Then Fi(U) is a nonzero H-representation over k, and, since H is unipotent, it
follows that Fi(U)H 6= 0. But (Fi)H(U) = Fi(U)H by Remark 2.4.7, a contradiction.

Using the relations [Fi] = [Fi+1] + [(Fi)H ] for i = 0, . . . , n− 1 and [Fn] = 0 in K ′0(X;G), we
see that [F ] = [F0] ∈ K ′0(X;G) is the image of an element of K ′0(X;G/H), namely [(F0)H ] +
· · ·+ [(Fn−1)H ]. 2

Lemma 5.3.4. Let G be a unipotent algebraic group acting on a variety X. Let H be a finite
normal subgroup of G acting freely on X. Let ϕ : X → X/H be the quotient morphism. Then
the endomorphism ϕ∗ ◦ ϕ∗ of K ′0(X/H;G) is multiplication by the order of H.

Proof. Let R be the coordinate ring of H, and d = dimk R the order of H. We let G act on H
by (g, h) 7→ ghg−1. The commutative square of G-equivariant morphisms

H × X
α //

π

��

X

ϕ

��
X

ϕ // X/H

where α, π denote respectively the action and projection, is cartesian by Proposition 2.3.2. For
any G-equivariant coherent OX/H -module F , the G-equivariant morphism of OX -modules

(ϕ∗F)⊗k R = π∗π
∗ϕ∗F = π∗α

∗ϕ∗F → ϕ∗ϕ∗ϕ
∗F

is an isomorphism by [EGAII, (1.5.2)]. The forgetful morphism K ′0(Spec k;G) → K ′0(Spec k) is
injective, being a retraction of a surjective morphism by Lemma 5.3.3. It follows that [R] = d ∈
K ′0(Spec k;G). Thus

ϕ∗ ◦ ϕ∗ ◦ ϕ∗ = d · ϕ∗ : K ′0(X/H;G) → K ′0(X;G). (5.3a)

The composite K ′0(X/H;G/H) → K ′0(X/H;G)
ϕ∗−→ K ′0(X;G) is bijective by Proposition 2.4.9,

and the first morphism is surjective by Lemma 5.3.3. Thus the second morphism ϕ∗ is bijective,
and the lemma follows from (5.3a). 2

Lemma 5.3.5. Let G be a smooth algebraic group and Y →X a G-equivariant surjective radicial
morphism. Then the map Y G(K) → XG(K) is bijective for any perfect field extension K/k with
trivial G-action.

Proof. Let F be the fiber of Y → X over a point in XG(K), and Fred the underlying reduced
closed subscheme. The scheme F , and thus also Fred, is nonempty and radicial over SpecK.
Since K is perfect, the morphism Fred → SpecK is an isomorphism. As the group G is reduced,
the closed subscheme Fred of F is G-invariant. It follows that the isomorphism Fred → SpecK
is G-equivariant. Its inverse provides a G-equivariant morphism SpecK → Fred → F → Y , and
therefore the required K-point of Y G. 2
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We now provide two examples showing that Theorem 5.3.1 does not generalise to arbitrary

algebraic p-groups.

Example 5.3.6. Let k be a field of characteristic two. The subgroups of GL2(
1 α2

0 1

)
and

(
1 0
α2 1

)
induce two actions of α2 on P1. For a field extension K/k with trivial G-action, the sets (P1)α2(K)

are respectively {[1 : 0]} and {[0 : 1]}. Since the two actions commute with one another, this

gives an action of α2 × α2 on P1 without fixed point, and χ(P1,OP1) = 1 is odd.

Example 5.3.7. Let k be a field of characteristic two. Sending a ∈ α2(R), for a commutative

k-algebra R, to the matrix (
1 a
a 1

)
∈ GL2(R)

defines a group morphism α2 → PGL2. If K/k is a field extension with trivial G-action, the only

fixed K-point for the induced action of α2 on P1 is [1 : 1].

We define a group morphism µ2 → GL2 by sending ξ ∈ µ2(R), for a commutative k-algebra

R, to the matrix (
1 0
0 ξ

)
∈ GL2(R).

If K/k is a field extension with trivial G-action, the only fixed K-points for the induced action

of µ2 on P1 are [0 : 1] and [1 : 0].

Letting µ2 act on α2 via the restriction of the natural action of Gm on Ga, we obtain an

action of α2 o µ2 on P1 without fixed point, and χ(P1,OP1) = 1 is odd.

Remark 5.3.8. It would be interesting to determine for which algebraic p-groups G in

characteristic p does the arithmetic genus detect fixed points (in the sense of (c) in the

introduction). We have proved that it does when G ∈ {αp × Z/p,Z/p × Z/p,Z/p2, µp2}
(see Theorems 5.3.1 and 5.1.1), but not when G ∈ {αp × αp, µp × Z/p, αp o µp} (see

Examples 5.3.6, 5.1.4 and 5.3.7).

6. Browder’s theorem

The next statement may be thought of as a relative version of Theorems 4.4 and 5.2.3(ii). It

implies an algebraic version of a theorem of Browder in topology (see § 1.3).

Theorem 6.1. Let G be an algebraic p-group and f : Y → X a projective G-equivariant

morphism. Assume that X is smooth, and that one of the following conditions holds.

(i) The group G is trigonalisable.

(ii) Every fiber of f has dimension < p− 1, and char k 6= p.

Assume the image of f∗ : CHG(Y )/p → CHG(X)/p contains the class [X]. Then the morphism

(fG)∗ : CH(Y G)/p → CH(XG)/p is surjective.
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Proof. If T → X is a morphism, respectively x ∈ X is a point, we will denote by fT : YT → T ,
respectively fx : Yx → Spec k(x), the base-change of f .

We first prove that for any point x ∈ XG the morphism

CHG(Yx) → CH(Yx)
deg−−→ CH(Spec k(x))/p = Fp (6a)

is surjective. Let α′ ∈ CHG(Y ) be such that f∗(α
′) = [X] ∈ CHG(X)/p, and let α ∈ CH(Y ) be

the image of α′. Let R be the reduced closure of x in X. Since f∗(α) = [X] ∈ CH(X)/p, for any
γ ∈ CH(R)/p we have by the projection formula [Ful98, 8.1.1.c]

(fR)∗(α ·f γ) = (f∗α) ·idX
γ = γ ∈ CH(R)/p. (6b)

Let γ′ ∈ CHG(R) be a preimage of γ (the morphism CHG(R) → CH(R) is surjective because G
acts trivially on R). Then the element α′·fγ′ ∈ CHG(YR) constructed in § 3.2.6 is a preimage of
α·fγ ∈ CH(YR). In view of (6b), this proves that the composite CHG(YR) → CH(YR) → CH(R)/p
is surjective. Let r = dimR. We may find a G-invariant open subscheme W of a finite-dimensional
G-representation over k whose complement has codimension greater than dimYx = dimYR − r,
such that G acts freely on W . Let w = dimW . It follows from [EKM08, Propositions 49.18 and
49.20] that we have a commutative diagram (where Wk(x) = W ×k Spec k(x)).

CHw+r((YR ×k W )/G) //

��

CHw+r(YR ×k W ) //

��

CHw+r(R× W )

��
CHw((Yx ×k(x) Wk(x))/G) // CHw(Yx ×k(x) Wk(x)) // CHw(Wk(x))

The right vertical morphism is surjective by the localisation sequence [Ful98, Proposition 1.8] and
[EKM08, Proposition 52.9]. The upper horizontal composite may be identified with the degree
r component of the composite CHG(YR) → CH(YR) → CH(R). The lower horizontal composite
may be identified with the degree-zero component of the composite CHG(Yx) → CH(Yx) →

CH(Spec k(x)). Since the former is surjective modulo p, so is the latter, proving that (6a) is
surjective.

We now prove that for any closed subscheme S of XG, the morphism CH((YS)G)/p →

CH(S)/p is surjective. The theorem will then follow from the case S = XG. We proceed by
noetherian induction, the case S = ∅ being clear. Let s be a generic point of S. For any closed
subscheme Z of S not containing s, we have a commutative diagram with exact rows, where
U = S − Z (see [Ful98, Propositions 1.7 and 1.8]).

CH((YZ)G)/p //

��

CH((YS)G)/p

��

// CH((YU )G)/p //

��

0

CH(Z)/p // CH(S)/p // CH(U)/p // 0

By induction the left vertical morphism is surjective, hence so is its colimit over the closed
subschemes Z not containing s. In view of Theorem 4.4 in case (i) and Theorem 5.2.3(ii) in
case (ii), the surjectivity of (6a) for x = s implies that CH((Ys)

G)/p → CH(Spec k(s))/p = Fp
is also surjective. The latter morphism may be identified with the colimit of the right vertical
morphism in the above diagram. We conclude that the middle vertical morphism is surjective,
as required. 2
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Remark 6.2. The conclusion of the theorem implies the following.

(i) The morphism fG is surjective, and in particular dimY G > dimXG.

(ii) If XG is projective and possesses a closed point of degree n, then Y G possesses a closed
point of some degree m whose p-adic valuation satisfies vp(m) 6 vp(n).

(iii) IfXG is smooth (for instance if p 6= char k by [CGP15, Proposition A.8.10(2)]), then the Z(p)-

module CH(XG) ⊗ Z(p) is a direct summand of CH(Y G) ⊗ Z(p). More generally H(XG) ⊗
Z(p) is a direct summand of H(Y G) ⊗ Z(p) when H is a cohomology theory such as motivic
cohomology, K-theory or algebraic cobordism (see [Hau13, Conditions 3.1, Lemma 4.1] for
precise conditions).
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