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Abstract. We investigate the constancy of the Milnor number of one parameter
deformations of holomorphic germs of functions f : (�n, 0) → (�, 0) with isolated
singularity, in terms of some Newton polyhedra associated to such germs.

When the Jacobian ideals J( ft) = 〈∂ft/∂x1 . . . , ∂ft/∂xn〉 of a deformation ft(x) =
f (x) + ∑�

s=1 δs(t)gs(x) are non-degenerate on some fixed Newton polyhedron �+, we
show that this family has constant Milnor number for small values of t, if and only if
all germs gs have non-decreasing �-order with respect to f . As a consequence of these
results we give a positive answer to Zariski’s question for Milnor constant families
satisfying a non-degeneracy condition on the Jacobian ideals.

2000 Mathematics Subject Classification. Primary 32S30; Secondary 32S10.

1. Introduction. The determination of conditions for a family of isolated
singularity germs ft : (�n, 0) → (�, 0) to have constant Milnor number is one of the
most interesting questions in singularity theory. Varchenko gives in [11] a complete
answer to this question for the case of weighted homogeneous germs with isolated
singularity.

THEOREM 1.1. [11]. Let F(x, t) = f (x) + ∑�
s=1 δs(t)gs(x) be a deformation of a

weighted homogeneous polynomial germ f : (�n, 0) → (�, 0) with isolated singularity at
0, where δs : (�, 0) → (�, 0) and gs : (�n, 0) → (�, 0) are holomorphic germs of functions
and δs �= 0. Then, for small values of t the family ft(x) = F(x, t) has constant Milnor
number, if and only if all monomials of each germ gs have weighted degree higher than or
equal to the weighted degree of f .

Another number associated to a germ of a function is its multiplicity, and Zariski
asked in [13] the following question. For a hypersurface singularity, is the multiplicity
an invariant of the topological type?

A positive answer to Zariski’s question was previously known for the case
of plane curves and for homogeneous surfaces. In the case of families of
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semi-quasi-homogeneous germs, a positive answer to Zariski’s question was given
by Greuel in [4] and independently by D. O’Shea in [7]. Both authors applied
Theorem 1.1, but used different methods.

THEOREM 1.2. [4], [7]. Let ft(x) = f (x) + ∑�
s=1 δs(t)gs(x) be a deformation of a

weighted homogeneous polynomial germ f : (�n, 0) → (�, 0) with isolated singularity
at 0. If the Milnor number of each ft is constant, then the multiplicity of each ft is
constant.

In this article we investigate the relationship between these questions and some
Newton polyhedra associated to the germ f .

The Newton polyhedron of a germ f was used by Kouchnirenko in [5] to give
sufficient conditions for the constancy of the Milnor number. Yoshinaga in [12] and
Damon-Gaffney in [3] also dealt with this Newton polyhedron to obtain sufficient
conditions for topological triviality.

Here we first show necessary and sufficient conditions for the constancy of the
Milnor number in terms of the Newton polyhedron defined by the Jacobian ideal of f .
Then we give sufficient conditions for the constancy of the Milnor number of families
of germs which are non-degenerate on some fixed Newton polyhedron �+. We show
that these families have constant Milnor number for small values of t if and only if all
germs gs have non-decreasing �-order with respect to f .

In the final section we show that families with constant Milnor number and
satisfying the non-degeneracy condition of the Jacobian ideals also have constant
multiplicity, giving a positive answer to the question of Zariski for this kind of germ.

2. µ-constant deformations and integral closure. We fix a system of local
coordinates x of �n. Consider the ring On of holomorphic germs f : (�n, 0) → �

and denote by mn its maximal ideal. Due to the identification between On and the
ring of convergent power series �{x1, . . . , xn} we identify a germ f ∈ On with its power
series f (x) = ∑

aαxα, where xα = xα1
1 . . . xαn

n .
The Milnor number of a germ f , denoted by µ( f ), is algebraically defined as

the dim� On/J( f ), where J( f ) denotes the ideal generated by the partial derivatives
{∂f/∂x1, . . . , ∂f/∂xn}. A deformation F : (�n × �, 0) → (�, 0) of f is µ-constant if
µ( ft) = µ( f ) for small values of t. We denote by J(F ) = 〈∂F/∂x1, . . . , ∂F/∂xn〉, the
ideal in On+1 generated by the partial derivatives of F with respect to the variables
x1, . . . , xn.

Greuel gives in [4] a characterization of µ-constant deformations of f in terms of
the integral closure of the Jacobian ideal of J(F ).

The integral closure of an ideal I in a ring R, is the ideal I , of the elements h ∈ R
that satisfy a relation hk + a1hk−1 + · · · + ak−1h + ak = 0, with ai ∈ Ii.

Teissier gave in [9, p. 288] the following characterization for the integral closure of
an ideal in On.

PROPOSITION 2.1. If I is an ideal in On, the following statements are equivalent.
1. h ∈ I.
2. For each system of generators h1, . . . , hr of I there exists a neighbourhood U of

0 and a constant C > 0 such that

|h(x)| ≤ C sup{|h1(x)|, . . . , |hr(x)|}, for all x ∈ U.

3. For each analytic curve ϕ : (�, 0) → (�n, 0), h ◦ ϕ lies in (ϕ∗(I))O1.
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Item 3 of this proposition is called a valuative criterion since it is equivalent to the
condition ν(h ◦ ϕ) ≥ inf {ν(h1 ◦ ϕ), . . . , ν(hr ◦ ϕ)}, where ν denotes the usual valuation
of a complex curve. In this case, the valuation is the multiplicity of the curve. See
Section 5 for the definition of multiplicity.

THEOREM 2.2. [4, p. 161]. Let F : (�n × �, 0) → (�, 0) be a one parameter defor-
mation of a holomorphic germ f : (�n, 0) → (�, 0) with isolated singularity. The following
statements are equivalent.

1. F is a µ-constant deformation of f .
2. ∂F

∂t ∈ J(F ).
3. ∂F

∂t ∈ √
J(F ), where

√
J(F ) denotes the radical of J(F ).

4. The polar curve of F with respect to {t = 0} does not split; i.e.,

{
(x, t) ∈ �n × �

∣∣∣∣ ∂F
∂xi

(x, t) = 0,∀ i = 1, . . . , n
}

= {0} × � near (0, 0).

3. µ-constant deformations and Newton polyhedra. We give here necessary and
sufficient conditions for a deformation F(x, t) to be µ-constant. These conditions will
be given in terms of some suitable Newton polyhedra associated to the germ f .

For a germ f (x) = ∑
akxk, we define supp f = {k ∈ �n : ak �= 0}. For an ideal I

in On, we call supp I = ∪ {supp g : g ∈ I} .

DEFINITION 3.1. The Newton polyhedron of I , denoted by �+(I), is the convex
hull in �n

+ of the set

∪ {
k + v : k ∈ supp I, v ∈ �n

+
}
.

�(I) denotes the union of all compact faces of �+(I).

A germ g is of non-decreasing Newton order with respect to �+(I) if �+(g) ⊆ �+(I).
From the integral closure of the Jacobian ideal J( f ) we define the polyhedron

T( f ), which is a key tool to study the µ-constancy.

DEFINITION 3.2. T( f ) is the convex hull in �n
+ of

∪{m + v : xm ∈ J( f ) and v ∈ �n
+}.

In the next lemma we exhibit a necessary condition for the µ-constancy of families
defined by first order deformations.

LEMMA 3.3. Let F(x, t) = f (x) + tg(x) be a first order deformation of a complex
germ f with isolated singularity. A necessary condition for the µ-constancy of the family
ft is �+(g) ⊆ T( f ).

Proof. If �+(g) �⊆ T( f ), it follows from the valuative criterion that there exists a
holomorphic curve γ : (�, 0) → (�n, 0), such that

ν (g ◦ γ ) < inf
{
ν

(
∂f
∂xi

◦ γ

)
, ∀i = 1, . . . , n

}
.
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We define the curve ψ : (�, 0) → (�n × �, 0) as ψ = (γ, 0). Since ∂F
∂xi

= ∂f
∂xi

+ t ∂g
∂xi

,
we obtain ∂F

∂xi
◦ ψ = ∂f

∂xi
◦ γ . The result follows from Item 3 of Proposition 2.1 and

Theorem 2.2.

We describe sufficient conditions for the constancy of µ.
Yoshinaga in [12] gave conditions for the topological triviality of families of type

F(x, t) = f (x) + tg(x) in terms of the gradient polyhedron 
+( f ), defined as the convex
hull of the set

⋃ {
m + v, : v ∈ �n

+ and

∣∣∣∣x1
∂f
∂x1

∣∣∣∣ + · · · +
∣∣∣∣xn

∂f
∂xn

∣∣∣∣ ≥ E
∣∣xm

∣∣} ,

for a positive E(m) in a neighbourhood of the origin in �n. In Theorem 1.6 of [12] it is
shown that if �+(g) ⊂ 
+( f ), then F(x, t) = f (x) + tg(x) is topologically trivial for
sufficiently small values of t. Damon-Gaffney in [3] also gave similar results for the
topological triviality for deformations of type ft(x) = f (x) + ∑�

s=1 δs(t)gs(x), of a germ
f : (�n, 0) → (�, 0) with isolated singularity at 0.

We remark that if a germ g satisfies the condition �+(g) ⊂ 
+( f ), it is equivalent
to say that g is in the integral closure of the ideal generated by {x1

∂f
∂x1

, . . . , xn
∂f
∂xn

}. Since
this ideal is in the integral closure of the ideal J(F ), from the results of Yoshinaga,
Damon-Gaffney and Theorem 2.2, we get the following result.

PROPOSITION 3.4. Let F(x, t) = f (x) + ∑�
s=1 δs(t)gs(x) be a deformation of f with

isolated singularity at 0. If �+(gs) ⊂ 
+( f ), for all s = 1, . . . , �, then F(x, t) is µ-
constant for sufficiently small values of t.

Next we give a sufficient condition for the µ-constancy in terms of the polyhedron
T( f ).

PROPOSITION 3.5. Let F(x, t) = f (x) + ∑�
s=1 δs(t)gs(x) be a deformation of a

complex germ f with isolated singularity. If gs ∈ mn and �+ (J(gs)) ⊆ T( f ) for all
s = 1, . . . , �, then F(x, t) is µ-constant for small values of t.

Proof. Suppose that �+ (J(gs)) ⊆ T( f ), we have from Item 2 of Proposition 2.1,
that for each i = 1, . . . , n and s = 1, . . . , � there exist a neighbourhood Ui,s of 0 and a
constant Ci,s > 0, such that

∣∣∣∣∂gs

∂xi

∣∣∣∣ ≤ Ci,s sup
{∣∣∣∣ ∂f

∂x1

∣∣∣∣ , . . . ,
∣∣∣∣ ∂f
∂xn

∣∣∣∣
}

.

Then

�∑
s=1

|δs(t)|
∣∣∣∣∂gs

∂xi

∣∣∣∣ ≤
�∑

s=1

|δs(t)| Ci,s sup
{∣∣∣∣ ∂f

∂x1

∣∣∣∣ , . . . ,
∣∣∣∣ ∂f
∂xn

∣∣∣∣
}

.

Therefore, for all x in a neighbourhood U ⊂ Ui,s, for all s = 1, . . . , � and i = 1, . . . , n,
we have
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supi

∣∣∣∣∂F
∂xi

∣∣∣∣ = supi

∣∣∣∣∣ ∂f
∂xi

+
�∑

s=1

δs(t)
∂gs

∂xi

∣∣∣∣∣ ≥ supi

∣∣∣∣ ∂f
∂xi

∣∣∣∣ − supi

�∑
s=1

|δs(t)|
∣∣∣∣∂gs

∂xi

∣∣∣∣
≥ supi

∣∣∣∣ ∂f
∂xi

∣∣∣∣ −
�∑

s=1

|δs(t)|Ci,s sup
i

{∣∣∣∣ ∂f
∂xi

∣∣∣∣
}

≥
(

1 −
�∑

s=1

|δs(t)|Ci,s

)
sup

i

∣∣∣∣ ∂f
∂xi

∣∣∣∣
≥ (1 − α) supi

∣∣∣∣ ∂f
∂xi

∣∣∣∣ ,
for some 0 < α < 1 with

∑l
s=1 |δs(t)Ci,s| ≤ α for all i = 1, . . . , n and s = 1, . . . , �.

This inequality implies that 〈 ∂f
∂x1

, . . . ,
∂f
∂xn

〉 ⊂ 〈 ∂F
∂x1

, . . . , ∂F
∂xn

〉.
Now we show that for each analytic curve ψ : (�, 0) → (�n+1, 0),

ν

(
∂F
∂t

◦ ψ

)
≥ min

i

{
ν

(
∂F
∂xi

◦ ψ

)}
.

We write ψ = (ϕ, λ), with ϕ : (�, 0) → (�n, 0) and λ : (�, 0) → (�, 0). Hence

ν

(
∂F
∂t

◦ ψ

)
≥ min

s
{ν(δ′

s ◦ λ) + ν(gs ◦ ϕ)} ≥ min
s

{ν (gs ◦ ϕ)} .

From the hypothesis that gs ∈ mn and �+ (J(gs)) ⊆ T( f ), we obtain that �+(gs) ⊆
T( f ); hence gs ∈ 〈 ∂f

∂x1
, . . . ,

∂f
∂xn

〉.
Therefore ν (gs ◦ ϕ) ≥ mini{ν( ∂f

∂xi
◦ ϕ)} ≥ mini{ν( ∂F

∂xi
◦ ψ)},

ν

(
∂F
∂t

◦ ψ

)
≥ min

s
{ν (gs ◦ ϕ)} ≥ min

i

{
ν

(
∂F
∂xi

◦ ψ

)}
,

and the result follows from Theorem 2.2.

We see in the example below that the conditions given in Propositions 3.4 and 3.5
give rise to different classes of µ-constant deformations.

EXAMPLE 3.6. Let f (x, y) = y7 + x4y + x9.

From Theorem 1.3 of Yoshinaga (see Proposition 4.5), we know that 
+( f ) =
�+( f ) is the polygon with vertices (0, 7), (4, 1) and (9, 0). From Proposition 4.4 we see
that the polygon T( f ) has vertices (0, 6), (3, 1) and (4, 0).

If we consider g(x, y) = x2y4, �+(g) ⊂ 
+( f ), and so the deformation F(x, y, t) =
y7 + x4y + x9 + tx2y4 is µ-constant from Proposition 3.4, but �+(J(g)) �⊂ T( f ).

We also see in this example that the condition �+(J(g)) ⊂ T( f ) does not imply
that �+(g) ⊂ 
+( f ). To see this, consider g(x, y) = x6. The deformation F(x, y, t) =
y7 + x4y + x9 + tx6 is µ-constant from Proposition 3.5, and �+(g) �⊂ 
+( f ).

4. The non-degenerate case. In this section we describe how to obtain µ-constant
deformations in terms of non-degeneracy conditions given by some Newton polyhedra
associated to the germ f .
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Let I be an ideal of finite codimension inOn; i.e, dim� On/I < ∞. For each compact
face � ⊆ �(I) we denote by C(�) the cone given by the union of half-rays emanating
from the origin and passing through �. We call A� the subring with unity of On given
by A� = {g ∈ On : supp g ⊆ C(�) ∩ �k}.

If D is a fixed subset of �+(I) and g = ∑
k akxk, we set gD =∑

k∈D akxk.

DEFINITION 4.1. The ideal I is Newton non-degenerate on a face � ⊂ �(I) if the
ideal I� generated by g1�

, g2�
, . . . , gs�

has finite codimension in A�.

By Theorem 6.2 of [5], the ideal I� generated by g1�
, . . . , gs�

has finite codimension
inA� if and only if, for each compact face �1 of �, the equations g1�1

= . . . = gs�1
= 0

have no common solution in (� � {0})n.

DEFINITION 4.2. An ideal I is Newton non-degenerate if there exists a system of
generators {g1, . . . , gs} of I that is Newton non-degenerate on each compact face
� ⊆ �(I).

We denote by C(I) the convex hull in �n
+ of the set ∪{m : xm ∈ I}.

In the case of Newton non-degenerate ideals, the set C(I) is a key tool to compute
the integral closure of the ideal.

THEOREM 4.3. [8]. Let I be an ideal with finite codimension inOn. Then C(I) ⊆ �+(I)
and equality holds if and only if I is Newton non-degenerate.

When the Jacobian ideal J( f ) is Newton non-degenerate we have the following
result.

PROPOSITION 4.4. Suppose that the system {∂f/∂x1, . . . , ∂f/∂xn} of generators of the
Jacobian ideal J( f ) is Newton non-degenerate. If gs ∈ mn and �+ (J(gs)) ⊆ �+(J( f )) for
all s. Then F(x, t) is µ-constant for small values of t.

A germ g = ∑
k akxk is Newton non-degenerate, if the ideal generated by the system

{x1∂g/∂x1, . . . , xn∂g/∂xn} is Newton non-degenerate and of finite codimension in On.
For Newton non-degenerate germs we also have the following result.

PROPOSITION 4.5. [12], [3]. Suppose that f : (�n, 0) → (�, 0) is Newton non-
degenerate. If each gs has non-decreasing Newton order with respect to �+( f ), the
deformation f (x) + ∑�

s=1 δs(t)gs(x) is µ-constant for sufficiently small values of t.

The proof of these results is a direct consequence of Propositions 3.5 (or 3.4) and
Theorem 4.3 applied to the ideals J( f ) = 〈 ∂f

∂x1
, . . . ,

∂f
∂xn

〉 and I =〈x1
∂f
∂x1

, . . . , xn
∂f
∂xn

〉.
Here C(I) = 
+( f ) and T( f ) = C(J( f )).

The next example shows that these two conditions are not enough to give all
µ-constant deformations of any germ with isolated singularity.

EXAMPLE 4.6. Briançon and Speder showed in [1] that the family of hypersurfaces
Xt ∈ �3 defined by the equations ft(x, y, z) = z5 + y7x + x15 + ty6z = 0 has constant
topological type, but we cannot apply Proposition 4.4 since the monomial y6z does not
satisfy its condition. We cannot apply Proposition 4.5 either, since f is not Newton non-
degenerate because the ideal generated by the system {x∂f/∂x, y∂f/∂y, z∂f/∂z} does not
have finite codimension in On.
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The germ f (x, y, z) = z5 + y7x + x15 has isolated singularity at 0 and is weighted
homogeneous with weights (1, 2, 3) and weighted degree 15. Hence the µ-constancy of
this family follows from Theorem 1.1.

In order to generalize these results to a bigger class of germs that includes the
Newton non-degenerate germs and also the class of semi-weighted homogeneous
germs, we apply the results of Bivia-Fukui-Saia, given in [2], to give a necessary
and sufficient condition for the µ-constancy of families defined by germs which are
non-degenerate on some Newton polyhedron. We repeat the basic results for this
definition.

A subset �+ ⊆ �n
+ is a Newton polyhedron if there exist some k1, . . . , kr ∈ �n

+ such
that �+ is the convex hull in �n

+ of the set

{ki + v : v ∈ �n
+, i = 1, . . . , r}

and �+ intersects all the coordinate axes. We call � the union of the compact faces
of �+, �− (the set �n − �+) and Vn(�−) denotes the n-dimensional volume of �−.
From the boundary of a Newton polyhedron �+ ⊆ �n we construct a piecewise-linear
function φ� : �n → � with the following properties:

(i) φ� is linear on each cone C(�), where � is a compact face of �;
(ii) φ� takes positive integer values on the lattice points of �n

+ − {0};
(iii) there exists a positive integer M such that φ�(k) = M, for all k ∈ �.
This map φ� induces a filtration in On:

DEFINITION 4.7. The Newton filtration of On = A0 ⊇ A1 ⊇ A2 ⊇ . . . is defined
by the ideals Aq = {g ∈ On : supp g ⊆ φ−1

� (q + �)}, for all q ∈ �. See [5] and
Proposition 2.1.

The �-order of a germ g = ∑
k akxk, denoted by d(g) is the number

d(g) = min{φ�(k) : k ∈ supp g} = max{q : g ∈ Aq}.
The principal part of g is the polynomial in(g) = ∑

akxk such that φ�(k) = d(g).
For any compact face � of �, this filtration induces a filtration on A� in a natural

way. The principal part of g over �, denoted by in�(g), is the polynomial

in�(g) =
∑

{akxk : k ∈ supp g ∩ C(�) and φ�(k) = d(g)}.
DEFINITION 4.8. A system of generators g1, . . . , gs of an ideal I is non-degenerate

on �+ if, for each compact face � ⊆ �, the ideal ofA� generated by in�(g1), . . ., in�(gs)
has finite codimension in A�. When the system g1, . . . , gs does not satisfy the above
definition, we say that this system is degenerate on �+.

We remark that this definition depends on the system of generators, while the
definition of Newton non-degeneracy does not depend on the system of generators of
the ideal.

The next theorem is essential to prove the main results of this section.

THEOREM 4.9. ([2], Theorem 3.3.). Let g1, . . . , gn be a system of generators of an
ideal I with finite codimension in On and �+ ⊆ �n be a Newton polyhedron. If M is the
value on � of the filtration induced by �+ and d1 = d(g1), . . . , dn = d(gn) are the �-orders
of the given set of generators of I, then

1. dim� On/I ≥ d1...dn
Mn n! Vn(�−);

2. equality holds if and only if the system g1,. . . ,gn is non-degenerate on �+.
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In the sequel we consider a deformation ft(x) = f (x) + ∑�
s=1 δs(t)gs(x), of a germ

f : (�n, 0) → (�, 0) with isolated singularity at 0 and fix a Newton polyhedron �+.
We denote by Di, Ds

i , Dti, the �-order of the partial derivatives ∂f
∂xi

, ∂gs
∂xi

, ∂ft
∂xi

,
respectively.

THEOREM 4.10. Suppose that the system of generators {∂f/∂x1, . . . , ∂f/∂xn} of
the Jacobian ideal J( f ) is non-degenerate on �+. If gs ∈ mn and Ds

i ≥ Di for all
i = 1, . . . , n and all s = 1, . . . , �, then, for small values of t, the system of generators
{∂ft/∂x1, . . . , ∂ft/∂xn} of each Jacobian ideal J( ft) is non-degenerate on �+. Moreover,
µ( ft) is constant.

Proof. Suppose first that Ds
i > Di for all i = 1, . . . , n and all s = 1, . . . , �. Hence,

Dti = Di, for all i = 1, . . . , n, and the principal part of each ∂ft/∂xi is equal to the
principal part of ∂f/∂xi. From the non-degeneracy of J( f ) on �+, we get the non-
degeneracy of each Jacobian ideal J( ft), and the equality µ( ft) = µ( f ) follows from
Item 2 of Theorem 4.9.

If there exist Ds
i = Di, we conclude that each Jacobian ideal J( ft) is non-degenerate,

for small values of t, from the fact that the set of non-degenerate ideals on some Newton
polyhedron is open for the Zariski topology. Hence the equality µ( ft) = µ( f ) follows
from Item 2 of Theorem 4.9.

The following example illustrates this result.

EXAMPLE 4.11. Let f (x, y) = x12 + y8. Fix the Newton polyhedron �+ = �+( f ),
since f is weighted homogeneous with respect to the weight w = (2, 3), �+ has only
one compact face with vertices (12, 0) and (0, 8). The Jacobian ideal J( f ) = 〈fx, fy〉 is
non-degenerate on �+, with d( fx) = 22 and d( fy) = 21.

Consider the family ft(x, y) = x12 + y8 − 2tx6y4. Here d( ftx) = 22 = d( fx) and
d( fty) = 21 = d( fy). The principal part of the generators { ftx, fty} of the Jacobian ideal
J( ft) is different from the principal part of the generators { fx, fy} of the Jacobian ideal
J( f ), but for each 0 < t < 1, the system of generators {ftx, fty} is also non-degenerate.
Hence µ( f ) = µ( ft), for all 0 ≤ t < 1. For t = 1, we see that the germ f1 = (x6 − y4)2

does not have isolated singularity, and so µ( f1) = ∞.

We see in the example below that it is possible to find families ft such that the
germ f is non-degenerate, there exists a t �= 0 with ft degenerate, but the family ft is
also µ-constant.

EXAMPLE 4.12. Let f (x, y, z) = x2 + y2 + xz + z2. The germ f is homogeneous
and Newton non-degenerate. Consider the family ft = x2 + y2 + xz + z2 + 2txy. From
Theorem 4.10 we see that for 0 < t < 1, µ( ft) = µ( f ). When t = 1, the Jacobian ideal
J( f1) is not Newton non-degenerate. (See [5, p. 8]) However µ( f1) = µ( f ).

On the other hand, we have the following result.

THEOREM 4.13. Suppose that the system of generators {∂f/∂x1, . . . , ∂f/∂xn} of the
Jacobian ideal J( f ) is non-degenerate on �+. If µ( ft) is constant for small values of t and
the system of generators {∂ft/∂x1, . . . , ∂ft/∂xn} is non-degenerate on �+, then Ds

i ≥ Di,
for all i = 1, . . . , n and all s = 1, . . . , �.
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Proof. If µ( ft) = µ( f ) then, since J( ft) is non-degenerate on �+, it follows from
Item 2 of Theorem 4.9 that

µ( ft) = Dt1 . . . Dtn

Mn
n! Vn(�−) and µ( f ) = D1 . . . Dn

Mn
n! Vn(�−).

From the hypothesis we have

Dt1 . . . Dtn

Mn
n! Vn(�−) = D1 . . . Dn

Mn
n! Vn(�−).

Hence we conclude that Dt1 . . . Dtn = D1 . . . Dn, but Dti = min{Di, Ds
i } for small

values of t and all i = 1 . . . , n, s = 1, . . . , �. Therefore Dti = Di for all i = 1 . . . , n and
Ds

i ≥ Di for all i = 1 . . . , n, s = 1, . . . , �.

EXAMPLE 4.14. Here we exhibit a generalized Briançon-Speder example. We
consider families of type ft(x, y, z) = z5 + y7x + x15 + txaybzc for a fixed monomial
xaybzc.

Since the Jacobian ideal J( f ) = 〈15x14 + y7, 7y6x, 5z4〉 is Newton non-degenerate,
T( f ) = �+(J( f )). To use Lemma 3.3 we consider monomials xaybzc with (a, b, c) ∈
�+(J( f )).

For instance, for the monomial y6z, we fix the Newton polyhedron �+ with vertices
(3, 0, 0), (0, 2, 0) and (0, 0, 1), that has one 2-dimensional compact face associate to
the weights (1, 2, 3). J( f ) is non-degenerate on �+ and the �-orders of the partial
derivatives of f are given by

d(15x14 + y7) = 14, d(7y6x) = 13, d(5z4) = 12.

On the other hand, the �-order of the partial derivatives of the monomial y6z are
d(6y5z) = 13 and dN(y6) = 12. We apply Theorem 4.10 to conclude that the system of
generators

{
15x14+y7, 7y6x+t6y5z, 5z4+ty6

}
is non-degenerate on �+ and the family

ft is µ-constant for small values of t. An analogous argument can be applied to any
family of type ft(x) = f (x) + ∑�

s=1 δs(t)gs(x) satisfying the conditions of Theorem 4.10
for this Newton polyhedron.

But there are some monomials xaybzc satisfying the condition (a, b, c) ∈ �+(J( f ))
that do not satisfy the conditions of Theorem 4.10 for this Newton polyhedron. For
example, consider the monomial yz4. The �-order of d(∂(yz4)/∂y) = 11 and we cannot
apply Theorem 4.10.

On the other hand, we apply Theorem 4.13 to show that the family ft(x, y, z) =
z5 + y7x + x15 + tyz4 is not µ-constant. For this we fix the Newton polyhedron
�+ = �+(J( ft)). Here J( ft) is Newton non-degenerate and J( f ) is degenerate on this
polyhedron. Hence µ( ft) < µ( f ) for all t �= 0.

We can apply an analogous argument for any family of type ft(x) = f (x) +∑�
s=1 δs(t)gs(x) such that J( ft) is Newton non-degenerate and the germs gs satisfy

the condition �+(gs) ⊆ �+(J( f )), but do not satisfy the condition of Theorem 4.10.

5. µ-constant deformations and the multiplicity. The multiplicity of a germ f (x) =∑
akxk, is defined as the lowest degree in the power series of f (x).

Zariski proposed in [13] the following question.
For a hypersurface singularity, is the multiplicity an invariant of the topological type?
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It is well known that this question has a positive answer in the case of plane
curves and for families of semi-quasi homogeneous complex hypersurfaces, as shown
by Greuel in [4].

For the case of first order deformations F(x, t) = f (x) + tg(x) of a complex germ f
with isolated singularity, Trotman gives in [10] a positive answer to Zariski’s question.

From the results given in Section 4 we obtain a positive answer to the question of
Zariski for families F(x, t) = f (x) + ∑�

s=1 δs(t)gs(x) of germs for which the Jacobian
ideals J( ft) are non-degenerate on some Newton polyhedron �+.

COROLLARY 5.1. Let F(x, t) = f (x) + ∑�
s=1 δs(t)gs(x) be a deformation of a germ f

with isolated singularity. Suppose that, for small values of t, the system of generators
{ ∂ft

∂x1
, . . . ,

∂ft
∂xn

} of each Jacobian ideal J( ft) is non-degenerate on �+ and gs ∈ mn for all s.
If µ( ft) is constant, then the multiplicity of each ft(x) is constant.

Proof. From the hypothesis and Theorem 4.13 we conclude that Ds
i ≥ Di, for all

i = 1, . . . , n and all s = 1, . . . , �. Therefore �+(gs) ⊂ �+( f ), for all s = 1, . . . , �. Hence
the equality m( ft) = m( f ) follows.
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a Cargèse, Astérisque, nos. 07 et 08 (Soc. Math. France, 1973), 285–362.
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