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Abstract

This paper is concerned with the analysis of Markov decision processes in which a natural
form of termination ensures that the expected future costs are bounded, at least under
some policies. Whereas most previous analyses have restricted attention to the case
where the set of states is finite, this paper analyses the case where the set of states is
not necessarily finite or even countable. It is shown that all the existence, uniqueness,
and convergence results of the finite-state case hold when the set of states is a general
Borel space, provided we make the additional assumption that the optimal value function
is bounded below. We give a sufficient condition for the optimal value function to be
bounded below which holds, in particular, if the set of states is countable.
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1. Introduction

This paper is concerned with the analysis of Markov decision processes in which a natural
form of termination ensures that the expected future costs are bounded, at least under some
policies. While it is possible to analyse such processes using the existing theory for Markov
decision processes with the total cost criterion, much of this theory applies only when the cost
function is either nonnegative or nonpositive. This paper analyses the case where neither of
these assumptions necessarily holds. Instead, a condition is formulated which ensures that
termination can occur, using the notion of a transient policy.

Finite-state, finite-action transient Markov decision processes with positive cost functions
were first formulated and studied by Eaton and Zadeh [6] as pursuit problems. Veinott [19]
derived similar results under the assumption that all stationary, deterministic policies are
transient. Derman [4, pp. 53–63] extended these results under the title of first passage problems.
Referring to this type of problem as a stochastic shortest path problem, Bertsekas and Tsitsiklis
[1, pp. 317–323] generalized the results of both [6] and [19] by relaxing the assumption that all
policies are transient, instead introducing the assumption that every stationary, deterministic
policy which is not transient has an associated value function that is unbounded above. Bertsekas
and Tsitsiklis [2] then strengthened their original results by weakening the assumption that the
set of actions available in each state is finite, instead assuming that the set of actions available
in each state is compact, the transition kernel is continuous over the set of actions available in
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604 H. W. JAMES AND E. J. COLLINS

each state, and the cost function is both lower semicontinuous over the set of actions available
in each state and bounded. More recently, Hinderer and Waldmann [13], [14] extended the
results of [19] in terms of a critical discount factor, defined as the smallest number such that,
for all discount factors δ smaller than this number, the limit of the k-stage, δ-discounted optimal
value function exists and is finite.

Pliska [16] was the first to generalize the problem to Borel state and action spaces. In
addition to the standard assumptions of compact action space, continuous transition kernel,
and lower-semicontinuous cost function, his key assumptions were that the cost function was
bounded and that all policies were transient. Hernández-Lerma et al. [10] extended the results
of [16] in one direction, retaining the assumption that all policies were transient but relaxing
the assumption that the cost function was bounded and instead assuming that it was dominated
by some given function.

This paper extends the analysis in a different direction, retaining the assumption that the
cost function is bounded but allowing for the existence of policies which are not necessarily
transient. Thus, there is no direct overlap with [10], even though both treat similar problems
of existence, uniqueness, and convergence. Indeed, it is not difficult to construct examples of
processes which are covered by the results presented here but are not covered by the results of
[10] (see [2]), since any process for which there exist policies under which one can get trapped
in a given subset of the set of states, with zero probability of escaping, constitutes such an
example.

Thus, this paper generalizes the results of [16] to the case where there may exist some policies
which are not transient and those of [2] to the case where the set of states is not necessarily finite.
Owing to the greater generality of the model considered here, an assumption additional to those
of [2] is required, namely that the optimal value function is bounded below. In particular, we
show that, under this additional assumption, (i) there exists an optimal stationary, deterministic
policy; (ii) the optimal value function is the unique solution to the optimality equation; (iii) the
value iteration algorithm converges to the optimal value function starting from any bounded
function; and (iv) the policy iteration algorithm converges to the optimal value function starting
from any transient, stationary, deterministic policy.

To help identify cases satisfying our assumptions, we show that if the sequence of stationary,
deterministic policies generated by the policy iteration algorithm has a pointwise convergent
subsequence – as is the case when, in particular, the set of states is countable – then the optimal
value function is bounded below. We also strengthen the results of Pliska [16], by showing that,
under his original assumptions, the dynamic programming operator is a k-stage contraction (for
some k) with respect to the usual supremum norm and a 1-stage contraction with respect to a
weighted supremum norm.

Finally, we note that our results do not apply to optimal stopping processes (see [5] and [7]),
which are a special type of transient Markov decision process where a state-dependent cost is
incurred only when invoking a stopping action which forces the system to terminate and all
costs are 0 prior to stopping. For such processes, the policy under which the stopping action
is never taken is not transient but its associated value function is equal to 0 at all states. Thus,
they do not satisfy our assumption that that every stationary, deterministic policy which is not
transient has an associated value function which is unbounded above.

The remainder of the paper is organized as follows. In Section 2, general definitions are
given and some notational conventions are introduced. In Section 3, the main existence,
uniqueness, and convergence results set out above are proved under the assumption that the
optimal value function is bounded below. In Section 4, it is shown that if the sequence of
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stationary, deterministic policies generated by the policy iteration algorithm has a pointwise-
convergent subsequence, then the optimal value function is bounded below and, therefore, the
results of Section 3 apply. In Section 5, the uniform termination assumption under which Pliska
[16] derived his results is introduced and discussed. We show that, under this assumption, the
dynamic programming operator has the contraction properties outlined above.

2. Definitions and notation

We define a Markov decision process to be a 5-tuple M = (X,A, �, q, c), where X is the
set of nonterminal states, A is the set of actions, � is the set of feasible state–action pairs, q is
the transition kernel, and c is the cost function. We assume that X and A are nonempty Borel
spaces and that � is a Borel-measurable subset of X × A. For x ∈ X, the set

A(x) = {a ∈ A : (x, a) ∈ �}
represents the set of actions available when the system is in state x. Since X and A are Borel
spaces, � is also a Borel space. The Borel σ -algebras on X, A, and � are denoted by B(X),
B(A), and B(�), respectively. The transition kernel q is a function mapping B(X) × � to
[0, 1] such that, for all B ∈ B(X), q(B|·) is a Borel-measurable function on � and, for all
(x, a) ∈ �, q(·|x, a) is a subprobability measure on B(X) (since there is a ‘loss of probability’
from the system if action a is chosen in state x and the system terminates with probability
1 − q(X|x, a)). The cost function c is a Borel-measurable function mapping � to the set of
real numbers, R.

To model termination, we augment the set of states X with an extra terminal state, x0 /∈ X,
in which there is a single available control action, a0 ∈ A, under which the system remains in
state x0 forever at no further cost. Let X0 = X ∪ {x0} denote the augmented set of states and
let �0 = � ∪ {(x0, a0)} denote the augmented set of feasible state–action pairs. The transition
kernel q and cost function c can be extended to B(X0)× �0 and �0, respectively, by setting

q({x0}|x0, a0) = 1, c(x0, a0) = 0. (1)

This q(·|x, a) is now a probability measure for each (x, a) ∈ �.
For k = 0, 1, . . . , a k-stage trajectory for M is a 2(k + 1)-tuple

ωk = (x0, a0, x1, a1, . . . , xk, ak),

where (xi, ai) ∈ �0 for i = 0, 1, . . . , k. For k = 0, 1, . . . , let �k = �0 × �0 × · · · × �0

(with k + 1 factors) denote the set of k-stage trajectories for M and let Fk denote the Borel
σ -algebra on �k . A policy for M is a sequence π = (π0, π1, . . . ) where, for k = 0, 1, . . . , πk
is a function mapping B(A) × �k−1 × X to [0, 1] such that, for all B ∈ B(A), πk(B|·) is a
Borel-measurable function and, for all ωk−1 ∈ �k−1 and x ∈ X, πk(·|ωk−1, x) is a probability
measure concentrated on A(x) (with the convention that �−1 = ∅). Let � denote the set of
policies for M .

The policy π = (πk) ∈ � is said to be a Markov policy if, for k = 1, 2, . . . , there exist
ψk : B(A)×X → [0, 1] such that, for all ωk−1 ∈ �k−1 and x ∈ X,

πk(·|ωk−1, x) = ψk(·|x);
this is written as π = (ψk). The Markov policy π = (ψk) ∈ � is said to be stationary if
ψ0 = ψ1 = · · · . The stationary policy (ψ,ψ, . . . ) ∈ � said to be deterministic if, for all
x ∈ X, ψ(·|x) assigns unit mass to some a ∈ A(x).
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Let	 denote the set of functionsψ : B(A)×X → [0, 1] with the properties that, for allB ∈
B(A),ψ(B|·) is a Borel-measurable function and, for all x ∈ X,ψ(·|x) is a probability measure
concentrated on A(x), and let F denote the set of Borel measureable functions f : X → A

satisfying f (x) ∈ A(x) for all x ∈ X. By a standard abuse of notation, if ψ is an element
of 	 then the same symbol, ‘ψ’, is used to denote the associated stationary policy, and if f
is an element of F then the same symbol, ‘f ’, is used to denote the associated stationary,
deterministic policy. Thus, under this convention, F ⊂ 	 ⊂ �.

A trajectory for M is a sequence

ω = (x0, a0, x1, a1, . . . ),

where (xk, ak) ∈ �0 for k = 0, 1, . . . . Let � = �0 × �0 × · · · denote the set of trajectories
forM and let F denote the Borel σ -algebra on �. It follows from [15] that, for all π ∈ � and
all probability measures µ on (X,B(X)), we can define a unique probability measure P(π, µ)
on F in a canonical way. For π ∈ � and x ∈ X, if µ is the probability measure concentrated
on {x} then let P(π, x) = P(π, µ) and let E(π, x) denote the expectation operator associated
with P(π, x).

The optimality criterion of interest in this paper is the so-called total cost criterion (originally
studied in detail by Strauch [18] and Blackwell [3]), where the value function associated with
the policy π ∈ � is the function v(π) : X → R̄ defined by

v(π)(x) = lim inf
k→∞ E(π, x)

[ k∑
i=0

c(xi, ai)

]
. (2)

Here R̄ denotes the affinely extended set of real numbers: R̄ = R ∪ {−∞,∞}. Note that the
function v(π) is well defined for all π ∈ � if the cost function c is bounded. The optimal value
function is the function v∗ : X → R̄ defined by

v∗(x) = inf
π∈�v(π)(x).

The policy π ∈ � is defined to be optimal if v(π) = v∗.
Let V denote the Banach space of real-valued, bounded, Borel-measurable functions on X

with the supremum norm ‖ · ‖. If L is a linear operator on V then define the supremum norm
of L by

‖L‖ = sup
v∈V

{‖Lv‖: ‖v‖ ≤ 1}.

The linear operator L is said to be nonnegative if, for all v ∈ V ,

v ≥ 0 
⇒ Lv ≥ 0,

where v ≥ 0 means that v(x) ≥ 0 for all x ∈ X. If L is a nonnegative linear operator on V
then it is clear that L is monotone in the sense that, for all v, v̄ ∈ V ,

v ≤ v̄ 
⇒ Lv ≤ Lv̄.

It follows that if L is a nonnegative linear operator on V then ‖L‖ = ‖Lχ‖, where χ(x) = 1
for all x ∈ X.
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If ψ ∈ 	 is a stationary policy then define the function c(ψ) : X → R by

c(ψ)(x) =
∫
A

c(x, a)ψ(da|x),

and define the operators Q(ψ) and T (ψ) on V by

Q(ψ)v(x) =
∫
A

∫
X

v(y)q(dy|x, a)ψ(da|x),

T (ψ)v(x) =
∫
A

[
c(x, a)+

∫
X

v(y)q(dy|x, a)
]
ψ(da|x),

respectively, implying that T (ψ)v = c(ψ) + Q(ψ)v for all v ∈ V . A straightforward
calculation shows that, for all ψ ∈ 	, the operator T (ψ) is monotone in the sense that, for all
v, v̄ ∈ V ,

v ≤ v̄ 
⇒ T (ψ)v ≤ T (ψ)v̄.

If π = (ψk) ∈ � is a Markov policy then let Q(π)0 = T (π)0 = I (the identity operator) and,
for k = 1, 2, . . . , define the operators Q(π)k and T (π)k on V by

Q(π)k = Q(ψ0)Q(ψ1) · · ·Q(ψk−1), T (π)k = T (ψ0)T (ψ1) · · · T (ψk−1), (3)

respectively. A straightforward calculation shows that, for all Markov policies π = (ψk) ∈ �,
k = 1, 2, . . . , and all v ∈ V ,

T (π)kv =
k−1∑
i=0

Q(π)ic(ψi)+Q(π)kv. (4)

Furthermore, it follows from the definition of P(π, x) and (2) that, for all Markov policies
π = (ψk) ∈ �,

v(π) = lim inf
k→∞

k∑
i=0

Q(π)ic(ψi) = lim inf
k→∞ T (π)k0. (5)

The following definition dates back to Veinott [19] and is key in what follows.

Definition 1. The Markov policy π ∈ � is said to be transient if

∥∥∥∥
∞∑
k=0

Q(π)k
∥∥∥∥ < ∞.

It follows from [16] that, for a given Markov policyπ ∈ �, the following are equivalent:

(i) π is transient;

(ii) there exist α > 0 and β ∈ (0, 1) such that ‖Q(π)k‖ ≤ αβk for k = 0, 1, . . . ;

(iii) ‖Q(π)k‖ → 0;

(iv)
∑ ‖Q(π)k‖ < ∞;

(v) ρ(Q(π)) < 1.

https://doi.org/10.1239/jap/1158784933 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784933


608 H. W. JAMES AND E. J. COLLINS

Here ρ(L) denotes the spectral radius of the linear operator L, defined by

ρ(L) = sup
z∈Z(L)

|z|,

where Z(L) denotes the spectrum of L. Note that if the cost function c is bounded and the
Markov policy π = (ψk) ∈ � is transient, then it follows from (5) that the function v(π) is
bounded and that we can legitimately write

v(π) =
∞∑
k=0

Q(π)kc(ψk).

Let π ∈ � be a Markov policy. For k = 0, 1, . . . , the operator Q(π)k is nonnegative and,
therefore, ‖Q(π)k‖ = ‖Q(π)kχ‖, so it follows from (i) and (iii) above that π is transient if and
only if ‖Q(π)kχ‖ → 0. It follows from the definition of P(π, x) and (3) that, for k = 0, 1, . . .
and all x ∈ X,

Q(π)kχ(x) = P(π, x)(xk �= x0). (6)

Thus, a Markov policy is transient if and only if under this policy the probability that termination
has occurred by stage k converges uniformly to 1 as k → ∞.

For another interpretation of a transient policy, let � denote the length of ω, defined by
� = min{k : xk = x0}. Then, for k = 0, 1, . . . , although {� > k} ⊂ {xk �= x0}, it follows from
(1) and the definition of P(π, x) that, for all π ∈ � and x ∈ X,

P(π, x)(� > k) = P(π, x)(xk �= x0). (7)

It follows from this and (6) that, for all Markov policies π ∈ � and states x ∈ X,

E(π, x)[�] =
∞∑
k=0

k P(π, x)(� = k) =
∞∑
k=0

P(π, x)(� > k) =
∞∑
k=0

Q(π)kχ(x).

Thus, from the definition, a Markov policy is transient if and only if under this policy there is
a uniform bound over the set of states on the expected number of stages until termination.

If f ∈ F is transient then, using (5), v(f ) can be shown to satisfy the equation

v = T (f )v = c(f )+Q(f )v. (8)

In fact, if f is transient then v(f ) is the unique bounded solution to (8), and if (8) has a unique
bounded solution v, then f is transient and v = v(f ). To see this, note that (8) has a unique
bounded solution if and only if the operator I−Q(f ) is invertible, and this solution is (uniquely)
given by

v = [I −Q(f )]−1c(f ). (9)

However, from [16], f is transient if and only if ρ(Q(f )) < 1. It follows that f ∈ F is
transient if and only if 1 /∈ Z(Q(f )), which is true if and only if (8) has a unique bounded
solution. Note that this solution can in theory be calculated using (9).

Define the dynamic programming operator T on V by

T v(x) = inf
a∈A(x)

{
c(x, a)+

∫
X

v(y)q(dy|x, a)
}
.

https://doi.org/10.1239/jap/1158784933 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784933


An analysis of transient Markov decision processes 609

Note that T (ψ)v ≥ T v for all ψ ∈ 	 and v ∈ V . Furthermore, a straightforward calculation
shows that the operator T is monotone in the sense that, for all v, v̄ ∈ V ,

v ≤ v̄ 
⇒ T v ≤ T v̄.

Value iteration is the algorithm defined by transforming the so-called optimality equation v =
T v into a recursive formula, as follows:

vk+1 = T vk

or, equivalently,

vk+1(x) = inf
a∈A(x)

{
c(x, a)+

∫
X

vk(y)q(dy|x, a)
}
,

where v0 ∈ V . Policy improvement is the process of calculating a stationary, deterministic
policy f ∈ F satisfying

T (f )v = T v (10)

or, equivalently,

f (x) ∈ arg min
a∈A(x)

{
c(x, a)+

∫
X

v(y)q(dy|x, a)
}
,

for a given function v ∈ V . Policy iteration is the process of calculating the functions
v0, v1, . . . ∈ V and the stationary, deterministic policies f0, f1, . . . ∈ F defined by trans-
forming (9) and (10) into recursive formulae, as follows:

vk = [I −Q(fk)]−1c(fk), T (fk+1)vk = T vk,

or, in less abstract notation,

vk(x) = [I −Q(fk)]−1c(fk)(x),

fk+1(x) ∈ arg min
a∈A(x)

{
c(x, a)+

∫
X

vk(y)q(dy|x, a)
}
,

with the convention that fk+1(x) = fk(x) if possible, where f0 ∈ F .

3. General results

3.1. General assumptions

All the results of this paper are derived under the following assumptions.

Assumption 1. The following conditions hold:

(a) A(x) is compact for all x ∈ X;

(b) the function

a →
∫
X

v(y)q(dy|x, a)
is continuous for all v ∈ V and x ∈ X;

(c) c is bounded and the function a → c(x, a) is lower semicontinuous for all x ∈ X.
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Assumption 2. The following conditions hold:

(a) there exists a transient, stationary, deterministic policy;

(b) every stationary, deterministic policy which is not transient has an associated value
function that is unbounded above.

Recall that the function g : A → R is said to be lower semicontinuous if, for all r ∈ R, the
set {a ∈ A : g(a) > r} is open. Since, by assumption,A is a subset of a metric space, g is lower
semicontinuous if and only if, for all sequences (ak) of elements of A converging to a ∈ A,

lim inf
k→∞ g(ak) ≥ g(a).

It follows from [11] that if Assumption 1 holds, then for all v ∈ V there exists a policy
f ∈ F such that T (f )v = T v and, therefore, the operator T maps V to itself; indeed, this is
the main motivation for the introduction of this assumption. Note that Assumption 1 holds in
particular if A(x) is finite for all x ∈ X.

A simple condition which implies Assumption 2(b) is that there exists an α > 0 such that
c(x, a) ≥ α for all (x, a) ∈ �. To see this, note that if this condition holds, then, for all f ∈ F ,

‖v(f )‖ =
∥∥∥∥

∞∑
k=0

Q(f )kc(f )

∥∥∥∥ ≥ α

∥∥∥∥
∞∑
k=0

Q(f )k
∥∥∥∥

and, therefore, if f is not transient, then v(f ) must be unbounded above. Another case where
Assumption 2(b) is satisfied is when all stationary, deterministic policies are transient, or,
more restrictively, when there is a uniform bound on the expected number of stages until
termination which holds under all stationary, deterministic policies. The latter case is considered
in Section 5.

As motivation forAssumption 2(b), we note that when it andAssumption 2(a) both hold, there
cannot exist an optimal stationary, deterministic policy which is not transient. Thus, intuitively
speaking, we would expect to be able to restrict attention to transient, stationary, deterministic
policies, although it is feasible that there may exist a policy which is not transient but which,
for some initial states, has smaller expected total cost than all transient stationary, deterministic
policies. In the following section it will be shown that if the optimal value function is bounded
below, then this is not the case and we can indeed restrict attention to transient, stationary,
deterministic policies.

3.2. Preliminary lemmas

The proofs of the main results of this section are based on the following three lemmas. The
first of these gives an essential characterization of the value function associated with a transient
stationary policy and generalizes Lemma 1(a) of [2] to the case where the set of states may
be infinite. Although this result will only be used in the context of stationary, deterministic
policies, for completeness it is stated in full generality.

Lemma 1. Let ψ ∈ 	 be a transient, stationary policy. Then, for all v ∈ V ,

lim
k→∞ T (ψ)

kv = v(ψ).

Proof. It follows from (4) that, for k = 0, 1, . . . and v, v̄ ∈ V ,

‖T (ψ)kv − T (ψ)kv̄‖ = ‖Q(ψ)k(v − v̄)‖ ≤ ‖Q(ψ)k‖‖v − v̄‖. (11)
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Since ψ is transient, there exists a positive integer k such that ‖Q(ψ)k‖ < 1. It follows from
this and (11) that the operator T (ψ)k is a contraction mapping on V with respect to ‖ · ‖. The
result therefore follows from the Banach fixed-point theorem.

The following lemma is a simple consequence of Assumption 2 and generalizes Lemma 1(b)
of [2] to the case where the set of states may be infinite.

Lemma 2. Let Assumption 2 hold and let f ∈ F be a stationary, deterministic policy. If there
exists a v ∈ V such that v ≥ T (f )v, then f is transient and v ≥ v(f ).

Proof. Let v ∈ V be such that v ≥ T (f )v. Then, by the monotonicity of T (f ) and (4),

v ≥ T (f )kv =
k−1∑
i=0

Q(f )ic(f )+Q(f )kv.

Taking the limit inferior as k → ∞ of both sides of the above inequality and using (5) yields
v ≥ v(f ) + αχ , where α is a lower bound on v. If f were not transient then v(f ) would
be unbounded above, by Assumption 2, which is a contradiction. Thus, f is transient and,
therefore, Q(f )k → 0, yielding v ≥ v(f ).

The following lemma gives a useful ‘monotone convergence’ property of the dynamic
programming operator T .

Lemma 3. Let v0, v1, . . . , v ∈ V .

(i) If vk ↓ v then T vk ↓ T v.

(ii) If Assumption 1 holds and vk ↑ v, then T vk ↑ T v.

Proof. For k = 0, 1, . . . , define the function uk : � → R by

uk(x, a) = c(x, a)+
∫
X

vk(y)q(dy|x, a),

and define the function u : � → R by

u(x, a) = c(x, a)+
∫
X

v(y)q(dy|x, a).

If vk ↓ v then uk ↓ u by the monotone convergence theorem, and it follows from [12, p. 18]
that, for all x ∈ X,

inf
a∈A(x) uk(x, a) ↓ inf

a∈A(x) u(x, a),

from which (i) follows. If vk ↑ v then uk ↑ u by the monotone convergence theorem, and it
follows from [9] that if Assumption 1 holds then, for all x ∈ X,

inf
a∈A(x) uk(x, a) ↑ inf

a∈A(x) u(x, a),

from which (ii) follows.
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3.3. The optimality equation

The following lemma gives initial results concerning the optimality equation and the con-
vergence of the policy iteration algorithm.

Lemma 4. Let Assumptions 1 and 2 hold and suppose that the optimal value function is bounded
below. Then there exists a unique bounded function v ∈ V satisfying the optimality equation
v = T v. Furthermore, if (vk) is generated by the policy iteration algorithm starting from any
transient, stationary, deterministic policy, then vk ↓ v.

Proof. First it will be shown that if the optimality equation has a bounded solution, then it
is unique. Let v, v̄ ∈ V satisfy v = T v and v̄ = T v̄, respectively. Then, since Assumption
1 holds, we can choose stationary, deterministic policies f, f̄ ∈ F such that v = T (f )v and
v̄ = T (f̄ )v̄. It follows from Lemma 2 that f and f̄ are transient, and it follows from Lemma
1 that v = v(f ) and v̄ = v(f̄ ). Since, for k = 0, 1, . . . ,

v = T kv ≤ T (f̄ )kv,

it follows from Lemma 1 that
v ≤ lim

k→∞ T (f̄ )
kv = v̄.

Similarly v̄ ≤ v, so v = v̄.
Now it will be shown that the policy iteration algorithm converges to v starting from any

transient, stationary, deterministic policy. Given a transient, stationary, deterministic policy
f ∈ F , since Assumption 1 holds we can choose an f̄ ∈ F such that

T (f̄ )v(f ) = T v(f ).

It follows from Lemma 2 that f̄ is transient, and by the monotonicity of T (f̄ ) and Lemma 1
that

v(f ) = T (f )v(f ) ≥ T v(f ) = T (f̄ )v(f ) ≥ lim
k→∞ T (f̄ )

kv(f ) = v(f̄ ).

Continuing in this manner, we can construct a sequence (fk) of stationary, deterministic policies
such that, for k = 0, 1, . . . , fk is transient and

v(fk) ≥ T v(fk) ≥ v(fk+1). (12)

For k = 0, 1, . . . , let vk = v(fk). Since the functions v0, v1, . . . are nonincreasing, there exists
a function v ≥ v∗ such that vk ↓ v. Clearly v is bounded, and it follows from Lemma 3 that
T vk ↓ T v. Thus, taking the limit as k → ∞ in (12) shows that v = T v and, hence, that v is
the unique bounded fixed point of T .

3.4. Convergence of policy iteration

The following lemma gives a convergence result for the policy iteration algorithm which is
stronger than that given by Lemma 4. The proof of the lemma follows along similar lines to
the proof of the analogous result given in [2] for the case where the set of states is finite.

Lemma 5. Let Assumptions 1 and 2 hold and suppose that the optimal value function is
bounded below. If (vk) is generated by the policy iteration algorithm starting from any transient,
stationary, deterministic policy, then there exists an f ∈ F such that vk ↓ v(f ).

https://doi.org/10.1239/jap/1158784933 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784933


An analysis of transient Markov decision processes 613

Proof. Let (vk) be generated by the policy iteration algorithm and, for k = 0, 1, . . . , define
the function uk : � → R by

uk(x, a) = c(x, a)+
∫
X

vk(y)q(dy|x, a). (13)

Then, for k = 0, 1, . . . and x ∈ X,

vk(x) = uk(x, fk(x)). (14)

Also, since v0 ≥ v1 ≥ · · · by Lemma 4, it follows from (13) that u0 ≥ u1 ≥ · · · and, therefore,
that uk ↓ u by the monotone convergence theorem, where

u(x, a) = c(x, a)+
∫
X

v(y)q(dy|x, a),

and where v is as defined in Lemma 4. It follows from [17] that there exists a stationary,
deterministic policy f ∈ F such that, for all x ∈ X, f (x) is an accumulation point of (fk(x)).
Fix an x ∈ X. Then there exists a sequence of positive integers (ki) such that fki (x) → f (x).
It follows from [8], Assumption 1, (13), and (14) that

v(x) = lim
k→∞ uk(x, fk(x)) = lim

i→∞ uki (x, fki (x)) ≥ u(x, f (x)) = T (f )v(x).

Thus, f is transient and v ≥ v(f ) by Lemma 2. From Lemma 4, for k = 0, 1, . . . ,

T (f )v(fk) ≥ T v(fk) ≥ v.

Taking the limit as k → ∞ in the above and using the monotone convergence theorem gives
T (f )v ≥ v. From Lemma 1, this implies that

v(f ) = lim
k→∞ T (f )

kv ≥ v,

whence v = v(f ).

3.5. Convergence of value iteration

The following lemma gives a convergence result for the value iteration algorithm. Again,
the proof of the lemma follows along the same lines as the proof of the analogous result given
in [2] for the case where the set of states is finite.

Lemma 6. Let Assumptions 1 and 2 hold and suppose that the optimal value function is bounded
below. Let f ∈ F be such that the policy iteration algorithm converges to v(f ) starting from
any stationary, deterministic policy (such a policy exists, according to Lemma 5). Then the
value iteration algorithm also converges to v(f ) starting from any bounded function.

Proof. Fix an α > 0 and let vα be the unique element of V satisfying

T (f )vα = vα − αχ.

To see that there is a unique such element of V , note that since f is transient, it must also be
transient for a transformed problem in which the cost function is increased by α, and, therefore,
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the equation v = c(f ) + αχ +Q(f )v has a unique solution in V . Moreover, it is clear that
vα ≥ v(f ). It follows from this and the monotonicity of T that

v(f ) = T v(f ) ≤ T vα ≤ T (f )vα = vα − αχ ≤ vα.

In turn, it follows from this and the monotonicity of T that, for k = 0, 1, . . . ,

v(f ) = T k+1v(f ) ≤ T k+1vα ≤ T kvα ≤ vα. (15)

From (15), the sequence (T kvα) is nonincreasing and bounded below by v(f ), and therefore
converges to some bounded function. Furthermore, it follows from Lemma 3 that this function
satisfies the optimality equation and, therefore, that T kvα ↓ v(f ) since, as shown earlier, v(f )
is the unique fixed point of T in V . A straightforward calculation shows that, for all v ∈ V ,

T v + αχ ≥ T (v + αχ), T v − αχ ≤ T (v − αχ);
this is often referred to as the cost shifting property of the operator T . It follows from this and
the monotonicity of the operator T that

v(f )− αχ = T v(f )− αχ ≤ T (v(f )− αχ) ≤ T v(f ) = v(f ). (16)

From (16), the sequence (T k(vα − αχ)) is nondecreasing and bounded above by v(f ). There-
fore, as above, it follows that T k(vα − αχ) ↑ v(f ). Note that, for all α > 0, since vα ≥ v(f )

and f is transient, we have

vα = T (f )vα + αχ ≥ T (f )v(f )+ αχ = v(f )+ αχ.

Thus, for all v ∈ V , we can find an α > 0 such that v(f )−αχ ≤ v ≤ vα. By the monotonicity
of T , for k = 0, 1, . . . we have

T k(v(f )− αχ) ≤ T kv ≤ T kvα,

and since T k(v(f )− αχ) → v(f ) and T kvα → v(f ), it follows that T kv → v(f ).

3.6. Optimality results

The main results of this section are given by the following theorem. These results are in fact
simple consequences of Lemmas 4, 5, and 6, and a result of [18] which states that the optimal
value function v∗ is equal to the infimum over the set of Markov policies π ∈ � of the functions
v(π). Thus, to show that the stationary, deterministic policy f ∈ F is optimal, it suffices to
show that v(π) ≥ v(f ) for all Markov policies π ∈ �.

Theorem 1. Let Assumptions 1 and 2 hold and suppose that the optimal value function is
bounded below. Then

(i) there exists an optimal stationary, deterministic policy;

(ii) the optimal value function is the unique solution to the optimality equation;

(iii) the value iteration algorithm converges to the optimal value function starting from any
bounded function; and

(iv) the policy iteration algorithm converges to the optimal value function starting from any
transient, stationary, deterministic policy.
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Proof. It follows from Lemmas 4, 5, and 6 that there exists a stationary, deterministic policy
f ∈ F such that the function v(f ) is the unique solution to the optimality equation, the value
iteration algorithm converges to the function v(f ) starting from any bounded function, and the
policy iteration algorithm converges to the function v(f ) starting from any transient, stationary,
deterministic policy. All that remains to be shown is that f is optimal, that is, that v(f ) = v∗.
To do this, let π ∈ � be an arbitrary Markov policy. Then, for k = 0, 1, . . . ,

T (π)k0 ≥ T k0.

Taking the limit inferior as k → ∞ of both sides of the above inequality and using (5) yields
v(π) ≥ v(f ), so v(f ) = v∗ since π was arbitrary.

This section concludes with the following theorem, which gives necessary and sufficient
conditions for a given stationary, deterministic policy to be optimal under Assumptions 1 and 2.
The theorem essentially says that if we know the optimal value function v∗, and v∗ is bounded
below, then we can, in theory, obtain an optimal policy.

Theorem 2. Let Assumptions 1 and 2 hold. Then the stationary, deterministic policy f ∈ F is
optimal if and only if v∗ is bounded below and v∗ = T (f )v∗.

Proof. If f is optimal then f is transient and v(f ) = v∗, so v∗ is bounded below and
satisfies v∗ = T (f )v∗ by Lemma 1. Conversely, if v∗ is bounded below and v∗ = T (f )v∗,
then f is transient by Lemma 2, so v∗ = v(f ) by Lemma 1 and f is optimal.

The condition that v∗ = T (f )v∗ or, in less abstract notation, that, for all x ∈ X,

v∗(x) = c(x, f (x))+
∫
X

v∗(y)q(dy|x, f (x)),

is referred to in the literature as the conserving property of the policy f ∈ F . Theorem
2 is similar to Theorem 4.12 of [10], which was derived under assumptions different to
Assumptions 1 and 2.

4. Boundedness of the optimal value function

In Section 3, it was shown that a sufficient condition for parts (i)–(iv) of Theorem 1 to hold
under Assumptions 1 and 2 is that the optimal value function be bounded below. In fact, this
is also a necessary condition, since if there exists an optimal stationary, deterministic policy,
then this policy must be transient by Assumption 2, and the optimal value function is therefore
bounded below. However, this condition may be difficult to directly verify in practice.

In this section an alternative sufficient condition is therefore given for parts (i)–(iv) of
Theorem 1 to hold – or, alternatively, for the optimal value function to be bounded below –
under Assumptions 1 and 2. We start with the following lemma, which generalizes Lemma 3
of [2] to the case where the set of states may be infinite.

Lemma 7. Let Assumptions 1 and 2 hold and let (fk) be a sequence of transient, stationary,
deterministic policies which converges to f ∈ F .

(i) If f is transient then
lim inf
k→∞ v(fk) ≥ v(f ).

(ii) If f is not transient then the sequence (v(fk)) is unbounded above.
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Proof. Since fk → f , it follows from Assumption 1 and [8] that

lim inf
k→∞ Q(fk)c(fk) ≥ lim

k→∞Q(fk)
[
lim inf
k→∞ c(fk)

]
≥ Q(f )c(f ).

Suppose that, for some nonnegative integer i,

lim inf
k→∞ Q(fk)

ic(fk) ≥ Q(fk)
ic(f ). (17)

It then follows from [8] that

lim inf
k→∞ Q(fk)

i+1c(fk) = lim inf
k→∞ Q(fk)Q(fk)

ic(fk)

≥ lim
k→∞Q(fk)

[
lim inf
k→∞ Q(fk)

ic(fk)
]

≥ Q(f )i+1c(f )

and, hence, by induction, (17) holds for all nonnegative integers i.
To prove (i), suppose that f is transient. Then, since, from (17),

∞∑
i=0

[
lim inf
k→∞ Q(fk)

ic(fk)
]− ≤

∞∑
i=0

[Q(f )ic(f )]−,

we can legitimately sum over i in (17), to obtain

∞∑
i=0

lim inf
k→∞ Q(fk)

ic(fk) ≥
∞∑
i=0

Q(f )ic(f ).

By Fatou’s lemma,

lim inf
k→∞

∞∑
i=0

Q(fk)
ic(fk) ≥

∞∑
i=0

lim inf
k→∞ Q(fk)

ic(fk) ≥
∞∑
i=0

Q(f )ic(f ),

and the result follows.
To prove (ii), suppose that f is not transient and fix an r ∈ R. Then, by Assumption 2 there

exists an x ∈ X such that v(f )(x) > r , so, by (5),

m∑
i=0

Q(f )ic(f )(x) > r

for all sufficiently large m. By Fatou’s lemma and (17), for m = 0, 1, . . . ,

lim inf
k→∞

m∑
i=0

Q(fk)c(fk)(x) ≥
m∑
i=0

lim inf
k→∞ Q(fk)c(fk)(x) ≥

m∑
i=0

Q(f )ic(f )(x),

from which it follows that
m∑
i=0

Q(fk)
ic(fk)(x) > r

for all sufficiently large k and m. In taking the limit as m → ∞ in the above inequality, it is
clear that v(fk)(x) > r for all sufficiently large k. However, r ∈ R was arbitrary, so the result
is proved.
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The main result of this section is given by the following theorem.

Theorem 3. Let Assumptions 1 and 2 hold and suppose that the sequence of transient, station-
ary, deterministic policies (fk) generated by the policy iteration algorithm has a subsequence
which converges to a stationary, deterministic policy f ∈ F . Then parts (i)–(iv) of Theorem 1
hold and, furthermore, f is optimal.

Proof. Suppose that the subsequence (fki ) converges to the stationary, deterministic policy
f ∈ F . As in the proof of Lemma 4, the sequence (v(fk)) converges and is bounded above.
Therefore, by Lemma 7, f is transient and

lim
k→∞ v(fk) = lim inf

i→∞ v(fki ) ≥ v(f ).

In fact, by continuing as in the proof of Lemma 5 we can show that

lim
k→∞ v(fk) = v(f ).

By continuing as in the proof of Theorem 1 we can now verify that parts (i)–(iv) of Theorem 1
hold and that f is optimal.

If the set of states is countable then the set of stationary, deterministic policies is a compact
subset of a metric space and, therefore, any sequence (fk) of stationary, deterministic policies
has a convergent subsequence. Thus, in this case, Theorem 3 applies and the optimal value
function is bounded below.

If the set of states is uncountable then it is not clear whether the sequence of stationary,
deterministic policies (fk) generated by the policy iteration algorithm has a convergent sub-
sequence. It is certainly true that if the set of states is uncountable then a general sequence
of stationary, deterministic policies (fk) does not necessarily have a convergent subsequence.
This can be seen by lettingX = [0, 1],A = {0, 1}, and � = X×A, soA(x) = A for all x ∈ X,
and, for k = 0, 1, . . . , letting fk(x) be equal to the (k + 1)th digit in the binary expansion of
x. The functions f0, f1, . . . are Borel measurable, and are therefore stationary, deterministic
policies as defined in Section 2. However, given any subsequence (fki ) of (fk), we can find an
x ∈ X such that fki (x) = 0 if i is even and fki (x) = 1 if i is odd, so the sequence (fk) does
not have a convergent subsequence.

We cannot therefore use Theorem 3 directly to show that the optimal value function is
bounded below in the general case. It would be nice to know whether parts (i)–(iv) of Theorem 1
hold when the set of states is uncountable without the additional assumption that the optimal
value function is bounded below, but the authors have been unable to either prove that this is
the case or find a counterexample.

5. Uniform termination results

This section extends the results of Pliska [16] by showing that under his assumptions, which
represent a strengthening of those considered so far, the dynamic programming operator is
a k-stage contraction with respect to the usual supremum norm, for some k, and a 1-stage
contraction with respect to a weighted supremum norm. Specifically, Pliska [16] derived results
under Assumption 1 and the following assumption, which is a strengthening of Assumption 2.

Assumption 3. There exists a θ < ∞ such that, for all f ∈ F ,∥∥∥∥
∞∑
k=0

Q(f )k
∥∥∥∥ ≤ θ.
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Clearly, if Assumption 3 holds then all stationary, deterministic policies are transient. The
converse is obviously true when the sets of states and actions available in each state are finite,
since in this case the set of stationary, deterministic policies is also finite. Pliska [16] showed
that the following are equivalent:

(i) Assumption 3 holds;

(ii) there exist α > 0 and β ∈ (0, 1) such that ‖Q(f )k‖ ≤ αβk for k = 0, 1, . . . and all
f ∈ F ;

(iii) for all ε > 0, there exists a k such that ‖Q(f )k‖ ≤ ε for all f ∈ F ;

(iv) there exists a κ > 0 such that, for all f ∈ F ,

∞∑
k=0

‖Q(f )k‖ ≤ κ;

(v) there exists a ζ < 1 such that ρ(Q(f )) ≤ ζ for all f ∈ F .

Hernández-Lerma et al. [10] showed that if Assumption 3 holds then

∥∥∥∥
∞∑
k=0

Q(π)k
∥∥∥∥ ≤ θ

for all Markov policies π ∈ �. This means that if Assumption 3 holds then the optimal value
function is bounded below by −θ‖c‖. We can conclude from this that if Assumptions 1 and 3
hold then parts (i)–(iv) of Theorem 1 hold. It fact, it is not actually necessary to use the result of
[10] to reach this conclusion, since the proof of Theorem 1 holds directly under Assumptions 1
and 3.

The k-stage contraction property of the dynamic programming operator T under Assump-
tions 1 and 3 stems from the following lemma, which was essentially proved by Pliska [16].
The proof of the lemma is restated here, partly for convenience and partly because the result
as stated here is more general than that proved by Pliska [16], who only proved it in the case
δ = 1

2 , although the extension to different values of δ is trivial.

Lemma 8. Let Assumptions 1 and 3 hold. Then ‖Q(π)k‖ ≤ δ for all δ ∈ (0, 1), all k > θδ−1,
and all Markov policies π ∈ �.

Proof. Fix a δ ∈ (0, 1) and a k > θδ−1 and let π ∈ � be a Markov policy. Suppose that
there exists an x ∈ X such that Q(π)kχ(x) > δ. Then Q(π)iχ(x) > δ for i = 0, 1, . . . , k
and, therefore,

k∑
i=0

Q(π)iχ(x) > kδ > θ,

which contradicts Assumption 3.

The main result of this section is given by the following theorem, which generalizes Theorem
5.1 of [4] to the case where the set of states may be infinite.

Theorem 4. Let Assumptions 1 and 3 hold. Then, for all δ ∈ (0, 1), k > θδ−1, and v, v̄ ∈ V ,

‖T kv − T kv̄‖ ≤ δ‖v − v̄‖.
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Proof. Let v, v̄ ∈ V and let f, f̄ ∈ F be stationary, deterministic policies satisfying
T (f )v = T v and T (f̄ )v̄ = T v̄, respectively. Then

T v − T v̄ ≤ Q(f̄ )|v − v̄|, T v̄ − T v ≤ Q(f )|v − v̄|.
Define the stationary, deterministic policy f0 ∈ F by

f0(x) =
{
f (x), Q(f )|v − v̄|(x) ≥ Q(f̄ )|v − v̄|(x),
f̄ (x), Q(f )|v − v̄|(x) < Q(f̄ )|v − v̄|(x).

Then it is clear that
|T v − T v̄| ≤ Q(f0)|v − v̄|.

By repeating the argument above, we can show that, for k = 0, 1, . . . , there exists a stationary,
deterministic policy fk ∈ F such that

|T k+1v − T k+1v̄| ≤ Q(fk)|T kv − T kv̄|.
It follows that, for k = 0, 1, . . . ,

|T kv − T kv̄| ≤ Q(π)k|v − v̄|, (18)

where π = (fk) ∈ �. Fix a δ ∈ (0, 1). It follows from Lemma 8 that ‖Q(π)k‖ ≤ δ for all
k > θδ−1. It therefore follows from (18) that, for all k > θδ−1,

‖T kv − T kv̄‖ ≤ ‖Q(π)k‖ ‖v − v̄‖ ≤ δ‖v − v̄‖,
which proves the result.

Pliska [16] showed that if Assumptions 1 and 3 hold then there exists a unique function
w : X → [1, θ ] satisfying

w(x) = max
a∈A(x)

{
1 +

∫
X

w(y)q(dy|x, a)
}

(19)

for all x ∈ X. In fact, by considering a modified process in which c(x, a) = −1 for all (x, a) ∈
�, it can be seen that the existence and uniqueness of the function w under Assumptions 1 and
3 follows from Theorem 1. Define the norm ‖ · ‖w on V by

‖v‖w =
∥∥∥∥ vw

∥∥∥∥ = sup
x∈X

|v(x)|
w(x)

.

The norms ‖ · ‖ and ‖ · ‖w are equivalent, since, for all v ∈ V ,

‖v‖w ≤ ‖v‖ ≤ ‖w‖ ‖v‖w ≤ θ‖v‖w
(using the fact that 1 ≤ w(x) ≤ θ for all x ∈ X). Thus, convergence in the norm ‖ · ‖ implies
convergence in the norm ‖ · ‖w, and vice versa. If L is a linear operator on V then let

‖L‖w = sup
v∈V

{‖Lv‖w : ‖v‖w ≤ 1}.
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IfL is a nonnegative linear operator on V then ‖L‖w = ‖Lw‖w. Thus, ifψ ∈ 	 is a stationary
policy then

‖Q(ψ)‖w = sup
x∈X

1

w(x)

∫
A

∫
X

w(y)q(dy|x, a)ψ(da|x). (20)

The following theorem says that if Assumption 3 holds then the dynamic programming operator
is a contraction mapping on V with respect to ‖ · ‖w. The theorem generalizes Lemma 3 of
[19] to the case where the set of states may be infinite.

Theorem 5. Let Assumptions 1 and 3 hold. Then, for all v, v̄ ∈ V ,

‖T v − T v̄‖w ≤ δ‖v − v̄‖w,
where δ = 1 − θ−1 < 1.

Proof. Fix an x ∈ X. Multiplying (19) by 1/w(x) and then subtracting 1/w(x) yields

1 − 1

w(x)
= max
a∈A(x)

{
1

w(x)

∫
X

w(y)q(dy|x, a)
}
.

It follows from this and (20) that, for all stationary, deterministic policies f ∈ F ,

‖Q(f )‖w ≤ 1 − 1

‖w‖ ≤ 1 − 1

θ
< 1. (21)

As in the proof of Theorem 4, for all v, v̄ ∈ V there exists a stationary, deterministic policy
f0 ∈ F such that

|T v − T v̄| ≤ Q(f0)|v − v̄|.
It follows from this and (21) that

‖T v − T v̄‖w ≤ ‖Q(f0)‖w‖v − v̄‖w ≤ δ‖v − v̄‖w,
which proves the result.

With the aid of either Theorem 4 or Theorem 5 we can prove the following.

Theorem 6. Let Assumptions 1 and 3 hold and let (vk) be generated by the value iteration or
policy iteration algorithm. Then ‖vk − v∗‖ → 0.

Proof. It follows from Theorem 1 that if (vk) is generated by the value iteration algorithm
then vk → v∗ and, therefore, ‖vk − v∗‖ → 0 from Theorem 4 or Theorem 5 and the Banach
fixed-point theorem. Now let ((fk, vk)) be generated by the policy iteration algorithm and
let (uk) be generated by the value iteration algorithm starting from v0. It will be shown by
induction that uk ≥ vk for all k. The result is true when k = 0, by definition. Suppose that the
result is true for arbitrary k. Then, by the monotonicity of the operator T ,

uk+1 = T uk ≥ T vk. (22)

Also, by the monotonicity of T (fk) and Lemma 1,

vk = T (fk)vk ≥ T vk = T (fk+1)vk ≥ lim
i→∞ T (fk+1)

ivk = vk+1. (23)

Combining (22) and (23) yields uk+1 ≥ vk+1, so the induction hypothesis holds. Since vk ↓ v∗
by the proof of Theorem 1, uk ≥ vk for all k, and ‖uk−v∗‖ → 0, it follows that ‖vk−v∗‖ → 0.
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