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Weighted Brianchon-Gram Decomposition

J. Agapito

Abstract. We give in this note a weighted version of Brianchon and Gram’s decomposition for a sim-

ple polytope. We can derive from this decomposition the weighted polar formula of Agapito and

a weighted version of Brion’s theorem, in a manner similar to Haase, where the unweighted case is

worked out. This weighted version of Brianchon and Gram’s decomposition is a direct consequence of

the ordinary Brianchon–Gram formula.

1 Introduction

Let A ⊂ R
n be a closed convex subset. The characteristic function 1A of A is the

function 1A : R
n → C given by

1A(x) =

{

1 if x ∈ A,

0 if x /∈ A.

Let K(R
n) be the complex vector space spanned by the functions 1A. Thus, a

function f ∈ K(R
n) is a linear combination

f =

m
∑

i=1

αi1Ai
,

where the Ai are closed convex sets in R
n and the αi are complex numbers.

Among the elements of K(R
n) there are three well known decomposition formu-

las: the Brianchon–Gram decomposition [Br, G] (see also [B, S]), which determines

the characteristic function of any polytope as a signed sum of characteristic func-

tions of cones associated to its faces, the polar decomposition of a simple polytope P

[L, V], which uses the notion of polarization1 and Brianchon and Gram’s formula in

order to write the characteristic function of P in terms of the characteristic functions

of cones based on the vertices of P only, and the Brion decomposition of a polytope

[Br1], which is also a direct consequence of the Brianchon–Gram formula. We can

put weights to the faces of P in a meaningful way and get a new element of K(R
n).

For instance, let q be any complex number and let [a, b] be any interval. We can write

(see Figure 1)
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1A polarizing vector is a generic element of (R
n)∗ which is nonconstant on each edge of P. (See [L, V]

and compare with [A].)

161

https://doi.org/10.4153/CMB-2006-017-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-017-x


162 J. Agapito
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Figure 1: Decomposition of an interval.

That is, as an element of K(R), the function (q− 1)1{a} + (q− 1)1{b} + 1[a,b] defines

a weighted characteristic function over [a, b]. We denote it by 1
q
[a,b]

. In general, we

can assign arbitrary complex values to the facets of a polytope P and construct a new

element 1w
P of K(R

n). (See (3).)

q1 1 q2

= −
1

+

1

b

q1

1

b

q2

Figure 2: Weighted Brianchon–Gram decomposition for an interval.

When we assign the same value q to the facets of P, we also denote 1w
P by 1

q
P. The

weighted polar decomposition formula of [A] expresses 1
q
P as an alternating sum of

weighted characteristic functions of cones based on the vertices of P. For example,

in the case of 1
q
[a,b]

, we have 1
q
[a,b]

= 1
q
[a,∞)

− 1
1−q
(−∞,b]

. The purpose of this note

is to show that 1w
P (defined in (3)) satisfies a weighted version of the Brianchon–

Gram formula, from which it readily follows the weighted polar formula of [A] and

a weighted version of Brion’s theorem [Br1]. The relationship among these formulas

has already been pointed out by Haase [H] in the unweighted case. Our main result

is the weighted version of the Brianchon–Gram formula as stated in (4). (See Figures

2, 3 and 4 for illustrations of this formula.)

2 The Weighted Formula

Let P be a d-dimensional polyhedron in R
d (for standard definitions on polyhedra

we refer to [B]). We can write it as the intersection of a finite number of half-spaces

(1) P = H1 ∩ · · · ∩ HN ,

where Hi = {x | 〈ui, x〉 + µi ≥ 0}, with µi ∈ R and ui ∈ (R
d)∗ for 1 ≤ i ≤ N . Note

that R
d = {x | 〈0, x〉 + 0 ≥ 0}, hence R

d is trivially a polyhedron. It follows that P is

a closed convex set. We assume that P is obtained with the smallest possible N . The

facets of P are σi = P ∩ ∂Hi for i = 1, . . . , N . If the intersection (1) is bounded then

P is a polytope. We say that a d-dimensional polyhedron P is simple if every vertex of

P belongs (when it exists) to exactly d facets of P. In the case of a polyhedron without

vertices, we assume that this condition is trivially satisfied.
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Let P be any d-dimensional polyhedron in R
d. For each i = 1, . . . , N , we assign

arbitrary complex numbers qi to the facets σi of P. Each non-trivial face F of P

(F 6= φ, P) can be uniquely described as an intersection of facets

(2) F =
⋂

i∈IF

σi ,

where IF denotes the set of all facets of P containing F. When P is simple, the number

of elements in IF is equal to the codimension of F.

To each non-trivial face F we assign the value
∏

i∈IF
qi . When F = P, we give it

the value 1. This amounts to defining the weighted function w : P → C by w(x) =
∏

i∈IF
qi , where F is the face of P of smallest dimension containing x. If x is in the

interior of P, we set w(x) = 1. We extend this definition to all R
d and get the weighted

characteristic function

(3) 1
w
P (x) =

{

w(x) if x ∈ P,

0 if x /∈ P.

Now, let F be any face of P. The tangent cone to P at F is

CF = {y + r(x − y) | r ≥ 0, y ∈ F, x ∈ P}.

It follows that CF is also a polyhedron. For example, when F = P, we have CP = R
d

and 1w
CP

= 1Rd .

Theorem 1 (Weighted Brianchon–Gram) Let P be a simple polytope of dimension d

in R
d. We have

(4) 1
w
P =

∑

F�P

(−1)dim F
1

w
CF

,

where the sum is over all faces F of P.

When q1 = · · · = qN = 1, we have the ordinary Brianchon–Gram formula. We

illustrate this theorem for a triangle in Figure 3. (See also Figure 2.)

Proof Let Σ be the set of facets of P and let F be a proper face of P. Let IF = {σ ∈
Σ | F ⊂ σ}. Then F =

⋂

i∈IF
σi . Since P is simple, the cardinality of IF is equal to the

codimension of F and for all possible non-empty subsets J of IF , the face
⋂

i∈ J σi of

P contains F. A straightforward computation shows that

(5)
∏

i∈IF

qi = 1 +
∑

φ6= J⊂IF

∏

i∈ J

(qi − 1),

where the qi are arbitrary complex numbers assigned to the facets σi of P. We de-

compose P into all its faces F (including F = P). By (3) and (5), we have

(6) 1
w
P = 1P +

∑

F 6=P

∏

i∈IF

(qi − 1)1F.
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Figure 3: Weighted Brianchon–Gram decomposition for a triangle.

We can apply the ordinary Brianchon–Gram formula to each F and get

(7) 1
w
P =

∑

F�P

(−1)dim F
1CF

+
∑

F 6=P

∏

i∈IF

(qi − 1)
∑

G�F

(−1)dim G
1CG

.

Formula (6) also holds for the tangent cone CF of P at F; that is

(8) 1
w
CF

= 1CF
+

∑

H 6=CF

∏

i∈IH

(qi − 1)1H .

The proper faces H of the tangent cone CF are in turn tangent cones of lower di-

mension associated to faces G of other faces of P. By regrouping the characteristic

functions in (7) according to (8), we obtain

1
w
P =

∑

F�P

(−1)dim F
1

w
CF

.

Theorem 1 can be extended to non-simple polytopes where the only faces F which

are non-generic (i.e., F has dimension f but |IF| 6= d − f ) are vertices. Indeed, in
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fP =

b

b b

b

b

− +

−

Figure 4: Weighted Brianchon–Gram decomposition for a pyramid.

dimension three, only vertices may be non-generic for an arbitrary non-simple poly-

tope. In higher dimensions though, there may be other faces which are the intersec-

tion of too many facets. We illustrate this special extension for a pyramid in Figures

4–7.

Let P be any non-simple polytope of dimension d in R
d whose non-generic faces

are only vertices. Let Vns(P) be the set of non-simple vertices of P. If v ∈ Vns(P), then

|Iv| > d. (Recall that in the simple case |Iv| = d for all vertices of P.) We chop off all

the non-simple vertices v of P by taking hyperplanes σv very close to these vertices.

We orient the σv away from v and denote the corresponding half-space associated to

σv by Hv. We assign the constant value 1 to the hyperplanes σv. We obtain a simple

polytope Ps for which formula (4) holds; that is

(9) 1
w
Ps

=
∑

Fs�Ps

(−1)dim Fs 1
w
CFs

,
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Figure 5: Weighted Brianchon–Gram for a truncated pyramid.

where the sum is over all the faces Fs of Ps. On the other hand, we set

(10) fP =
∑

F�P

(−1)dim F
1

w
CF

,

where the sum is now over all the faces F of the non-simple polytope P.

We can clearly see that 1w
CF

= 1w
CFs

for all the faces of P and Ps which are not the

non-simple vertices v ∈ Vns(P) and are not the faces of Ps contained in the various σv.

Thus, we have

(11) 1
w
Ps
− fP =

∑

v∈Vns(P)

(

∑

Fs⊂σv

(−1)dim Fs 1
w
CFs

− 1
w
Cv

)

.

Notice that all the cross sections of Cv contained in Hv and parallel to σv, are simple

polytopes (of the same type) in R
d−1. This is a consequence of the imposed con-

dition on P, that its only non-generic faces be vertices. We can apply the weighted

Brianchon–Gram formula to these cross sections and get weighted characteristic

functions over its faces, which are equal in absolute value but with opposite signs,
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Figure 6: Key difference 1
w

Ps
− fP for a pyramid.

to the weighted characteristic functions over the faces of the corresponding cross sec-

tions of the cones CFs
, where Fs ⊂ σv, for all v ∈ Vns(P). Then, we can write (11)

as

(12) 1
w
Ps
− fP = −

∑

v∈Vns(P)

1
w
Cv\Hv

.

On the other hand, it can be easily checked that

(13) 1
w
Ps
− 1

w
P = −

∑

v∈Vns(P)

1
w
Cv\Hv

.

− =

Figure 7: Difference of the pyramid and the truncated pyramid.

Therefore, we conclude that

(14) 1
w
P =

∑

F�P

(−1)dim F
1

w
CF

.

As an immediate consequence of Theorem 1 we obtain a weighted version of

Brion’s theorem2 [Br1]. (See also [Br2, p. 82].)

2Brion already proved a more general weighted version of his formula in [Br1].
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Corollary 1 For any simple polytope P, we have

1
w
P = g +

∑

v

1
w
Cv

,

where g is a linear combination of characteristic functions of cones with straight lines

and the sum is over all vertices v of P.

This readily follows from grouping together all tangent cones in (4) that contain

straight lines, just as in [H].

When P is a simple polyhedron and the same value q ∈ C is assigned to all its

facets, the weighted characteristic function (3) gets the form

(15) 1
w
P (x) = 1

q
P(x) =

{

qcodim(F) if x ∈ P,

0 if x /∈ P,

where F is the face of P of smallest dimension containing x. Theorem 1 implies the

weighted polytope decomposition of [A]. To show this, let ξ be a polarizing vector

in (R
d)∗ and let ∆ be a simple polytope in R

d. (We now follow the definitions and

notation of [A].) We put together the faces of P according to where they achieve their

minimum in the ξ-direction. We obtain

(−1)#v
1

wv

C
♯
v

=
∑

v�F�P

ξ(v)≤ξ(F)

(−1)dim F
1

q
CF

,

where #v denotes the number of edges of Cv flipped according to ξ and where 1wv

C
♯
v

is the weighted characteristic function of the ξ-polarized tangent cone C♯
v defined

in [A]. (To agree with the weighted formulas in [A] we use the substitution q =

1/(1 + y).) Then

∑

v

(−1)#v
1

wv

C
♯
v

=
∑

v

∑

v�F�P

ξ(v)≤ξ(F)

(−1)dim F
1

q
CF

=
∑

F

(−1)dim F
1

q
CF

= 1
q
P.

Thus, the weighted polar decomposition of [A] is a direct consequence of Theo-

rem 1, which can be proved exactly in the same fashion as in [L].
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