Weighted Brianchon-Gram Decomposition

J. Agapito

Abstract. We give in this note a weighted version of Brianchon and Gram's decomposition for a simple polytope. We can derive from this decomposition the weighted polar formula of Agapito and a weighted version of Brion's theorem, in a manner similar to Haase, where the unweighted case is worked out. This weighted version of Brianchon and Gram's decomposition is a direct consequence of the ordinary Brianchon-Gram formula.

1 Introduction

Let $A \subset \mathbb{R}^{n}$ be a closed convex subset. The characteristic function $\mathbf{1}_{A}$ of A is the function $\mathbf{1}_{A}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ given by

$$
\mathbf{1}_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

Let $\mathcal{K}\left(\mathbb{R}^{n}\right)$ be the complex vector space spanned by the functions $\mathbf{1}_{A}$. Thus, a function $f \in \mathcal{K}\left(\mathbb{R}^{n}\right)$ is a linear combination

$$
f=\sum_{i=1}^{m} \alpha_{i} \mathbf{1}_{A_{i}}
$$

where the A_{i} are closed convex sets in \mathbb{R}^{n} and the α_{i} are complex numbers.
Among the elements of $\mathcal{K}\left(\mathbb{R}^{n}\right)$ there are three well known decomposition formulas: the Brianchon-Gram decomposition [Br, G] (see also [B, S]), which determines the characteristic function of any polytope as a signed sum of characteristic functions of cones associated to its faces, the polar decomposition of a simple polytope P $[L, V]$, which uses the notion of polarization ${ }^{1}$ and Brianchon and Gram's formula in order to write the characteristic function of P in terms of the characteristic functions of cones based on the vertices of P only, and the Brion decomposition of a polytope [Br 1], which is also a direct consequence of the Brianchon-Gram formula. We can put weights to the faces of P in a meaningful way and get a new element of $\mathcal{K}\left(\mathbb{R}^{n}\right)$. For instance, let q be any complex number and let $[a, b]$ be any interval. We can write (see Figure 1)

[^0]

Figure 1: Decomposition of an interval.

That is, as an element of $\mathcal{K}(\mathbb{R})$, the function $(q-1) \mathbf{1}_{\{a\}}+(q-1) \mathbf{1}_{\{b\}}+\mathbf{1}_{[a, b]}$ defines a weighted characteristic function over $[a, b]$. We denote it by $\mathbf{1}_{[a, b]}^{q}$. In general, we can assign arbitrary complex values to the facets of a polytope P and construct a new element $\mathbf{1}_{P}^{w}$ of $\mathcal{K}\left(\mathbb{R}^{n}\right)$. (See (3).)

Figure 2: Weighted Brianchon-Gram decomposition for an interval.

When we assign the same value q to the facets of P, we also denote $\mathbf{1}_{P}^{w}$ by $\mathbf{1}_{P}^{q}$. The weighted polar decomposition formula of $[\mathrm{A}]$ expresses $\mathbf{1}_{P}^{q}$ as an alternating sum of weighted characteristic functions of cones based on the vertices of P. For example, in the case of $\mathbf{1}_{[a, b]]}^{q}$, we have $\mathbf{1}_{[a, b]}^{q}=\mathbf{1}_{[a, \infty)}^{q}-\mathbf{1}_{(-\infty, b]}^{1-q}$. The purpose of this note is to show that $\mathbf{1}_{P}^{w}$ (defined in (3)) satisfies a weighted version of the BrianchonGram formula, from which it readily follows the weighted polar formula of [A] and a weighted version of Brion's theorem [Br1]. The relationship among these formulas has already been pointed out by Haase [H] in the unweighted case. Our main result is the weighted version of the Brianchon-Gram formula as stated in (4). (See Figures 2,3 and 4 for illustrations of this formula.)

2 The Weighted Formula

Let P be a d-dimensional polyhedron in \mathbb{R}^{d} (for standard definitions on polyhedra we refer to [B]). We can write it as the intersection of a finite number of half-spaces

$$
\begin{equation*}
P=H_{1} \cap \cdots \cap H_{N}, \tag{1}
\end{equation*}
$$

where $H_{i}=\left\{x \mid\left\langle u_{i}, x\right\rangle+\mu_{i} \geq 0\right\}$, with $\mu_{i} \in \mathbb{R}$ and $u_{i} \in\left(\mathbb{R}^{d}\right)^{*}$ for $1 \leq i \leq N$. Note that $\mathbb{R}^{d}=\{x \mid\langle 0, x\rangle+0 \geq 0\}$, hence \mathbb{R}^{d} is trivially a polyhedron. It follows that P is a closed convex set. We assume that P is obtained with the smallest possible N. The facets of P are $\sigma_{i}=P \cap \partial H_{i}$ for $i=1, \ldots, N$. If the intersection (1) is bounded then P is a polytope. We say that a d-dimensional polyhedron P is simple if every vertex of P belongs (when it exists) to exactly d facets of P. In the case of a polyhedron without vertices, we assume that this condition is trivially satisfied.

Let P be any d-dimensional polyhedron in \mathbb{R}^{d}. For each $i=1, \ldots, N$, we assign arbitrary complex numbers q_{i} to the facets σ_{i} of P. Each non-trivial face F of P ($F \neq \phi, P$) can be uniquely described as an intersection of facets

$$
\begin{equation*}
F=\bigcap_{i \in I_{F}} \sigma_{i} \tag{2}
\end{equation*}
$$

where I_{F} denotes the set of all facets of P containing F. When P is simple, the number of elements in I_{F} is equal to the codimension of F.

To each non-trivial face F we assign the value $\prod_{i \in I_{F}} q_{i}$. When $F=P$, we give it the value 1 . This amounts to defining the weighted function $w: P \rightarrow \mathbb{C}$ by $w(x)=$ $\prod_{i \in I_{F}} q_{i}$, where F is the face of P of smallest dimension containing x. If x is in the interior of P, we set $w(x)=1$. We extend this definition to all \mathbb{R}^{d} and get the weighted characteristic function

$$
\mathbf{1}_{P}^{w}(x)= \begin{cases}w(x) & \text { if } x \in P \tag{3}\\ 0 & \text { if } x \notin P\end{cases}
$$

Now, let F be any face of P. The tangent cone to P at F is

$$
\mathbf{C}_{F}=\{y+r(x-y) \mid r \geq 0, y \in F, x \in P\}
$$

It follows that \mathbf{C}_{F} is also a polyhedron. For example, when $F=P$, we have $\mathbf{C}_{P}=\mathbb{R}^{d}$ and $\mathbf{1}_{\mathrm{C}_{P}}^{w}=\mathbf{1}_{\mathbb{R}^{d}}$.

Theorem 1 (Weighted Brianchon-Gram) Let P be a simple polytope of dimension d in \mathbb{R}^{d}. We have

$$
\begin{equation*}
\mathbf{1}_{P}^{w}=\sum_{F \preceq P}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}^{w}, \tag{4}
\end{equation*}
$$

where the sum is over all faces F of P.
When $q_{1}=\cdots=q_{N}=1$, we have the ordinary Brianchon-Gram formula. We illustrate this theorem for a triangle in Figure 3. (See also Figure 2.)

Proof Let Σ be the set of facets of P and let F be a proper face of P. Let $I_{F}=\{\sigma \in$ $\Sigma \mid F \subset \sigma\}$. Then $F=\bigcap_{i \in I_{F}} \sigma_{i}$. Since P is simple, the cardinality of I_{F} is equal to the codimension of F and for all possible non-empty subsets J of I_{F}, the face $\bigcap_{i \in J} \sigma_{i}$ of P contains F. A straightforward computation shows that

$$
\begin{equation*}
\prod_{i \in I_{F}} q_{i}=1+\sum_{\phi \neq J \subset I_{F}} \prod_{i \in J}\left(q_{i}-1\right) \tag{5}
\end{equation*}
$$

where the q_{i} are arbitrary complex numbers assigned to the facets σ_{i} of P. We decompose P into all its faces F (including $F=P$). By (3) and (5), we have

$$
\begin{equation*}
\mathbf{1}_{P}^{w}=\mathbf{1}_{P}+\sum_{F \neq P} \prod_{i \in I_{F}}\left(q_{i}-1\right) \mathbf{1}_{F} . \tag{6}
\end{equation*}
$$

Figure 3: Weighted Brianchon-Gram decomposition for a triangle.

We can apply the ordinary Brianchon-Gram formula to each F and get

$$
\begin{equation*}
\mathbf{1}_{P}^{w}=\sum_{F \preceq P}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}+\sum_{F \neq P} \prod_{i \in I_{F}}\left(q_{i}-1\right) \sum_{G \preceq F}(-1)^{\operatorname{dim} G} \mathbf{1}_{\mathbf{C}_{G}} . \tag{7}
\end{equation*}
$$

Formula (6) also holds for the tangent cone \mathbf{C}_{F} of P at F; that is

$$
\begin{equation*}
\mathbf{1}_{\mathbf{C}_{F}}^{w}=\mathbf{1}_{\mathbf{C}_{F}}+\sum_{H \neq \mathbf{C}_{F}} \prod_{i \in I_{H}}\left(q_{i}-1\right) \mathbf{1}_{H} \tag{8}
\end{equation*}
$$

The proper faces H of the tangent cone \mathbf{C}_{F} are in turn tangent cones of lower dimension associated to faces G of other faces of P . By regrouping the characteristic functions in (7) according to (8), we obtain

$$
\mathbf{1}_{P}^{w}=\sum_{F \preceq P}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}^{w} .
$$

Theorem 1 can be extended to non-simple polytopes where the only faces F which are non-generic (i.e., F has dimension f but $\left|I_{F}\right| \neq d-f$) are vertices. Indeed, in

Figure 4: Weighted Brianchon-Gram decomposition for a pyramid.
dimension three, only vertices may be non-generic for an arbitrary non-simple polytope. In higher dimensions though, there may be other faces which are the intersection of too many facets. We illustrate this special extension for a pyramid in Figures 4-7.

Let P be any non-simple polytope of dimension d in \mathbb{R}^{d} whose non-generic faces are only vertices. Let $V_{n s}(P)$ be the set of non-simple vertices of P. If $v \in V_{n s}(P)$, then $\left|I_{v}\right|>d$. (Recall that in the simple case $\left|I_{v}\right|=d$ for all vertices of P.) We chop off all the non-simple vertices v of P by taking hyperplanes σ_{v} very close to these vertices. We orient the σ_{v} away from v and denote the corresponding half-space associated to σ_{v} by H_{v}. We assign the constant value 1 to the hyperplanes σ_{v}. We obtain a simple polytope P_{s} for which formula (4) holds; that is

$$
\begin{equation*}
\mathbf{1}_{P_{s}}^{w}=\sum_{F_{s} \preceq P_{s}}(-1)^{\operatorname{dim} F_{s}} \mathbf{1}_{\mathbf{C}_{F_{s}}}^{w}, \tag{9}
\end{equation*}
$$

Figure 5: Weighted Brianchon-Gram for a truncated pyramid.
where the sum is over all the faces F_{s} of P_{s}. On the other hand, we set

$$
\begin{equation*}
f_{P}=\sum_{F \preceq P}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}^{w}, \tag{10}
\end{equation*}
$$

where the sum is now over all the faces F of the non-simple polytope P.
We can clearly see that $\mathbf{1}_{\mathbf{C}_{F}}^{w}=\mathbf{1}_{\mathbf{C}_{F_{s}}}^{w}$ for all the faces of P and P_{s} which are not the non-simple vertices $v \in V_{n s(P)}$ and are not the faces of P_{s} contained in the various σ_{v}. Thus, we have

$$
\begin{equation*}
\mathbf{1}_{P_{s}}^{w}-f_{P}=\sum_{v \in V_{n s}(P)}\left(\sum_{F_{s} \subset \sigma_{v}}(-1)^{\operatorname{dim} F_{s}} \mathbf{1}_{\mathbf{C}_{F_{s}}}^{w}-\mathbf{1}_{\mathbf{C}_{v}}^{w}\right) . \tag{11}
\end{equation*}
$$

Notice that all the cross sections of \mathbf{C}_{v} contained in H_{v} and parallel to σ_{v}, are simple polytopes (of the same type) in \mathbb{R}^{d-1}. This is a consequence of the imposed condition on P, that its only non-generic faces be vertices. We can apply the weighted Brianchon-Gram formula to these cross sections and get weighted characteristic functions over its faces, which are equal in absolute value but with opposite signs,

Figure 6: Key difference $\mathbf{1}_{P_{s}}^{w}-f_{P}$ for a pyramid.
to the weighted characteristic functions over the faces of the corresponding cross sections of the cones $\mathbf{C}_{F_{s}}$, where $F_{s} \subset \sigma_{v}$, for all $v \in V_{n s}(P)$. Then, we can write (11) as

$$
\begin{equation*}
\mathbf{1}_{P_{s}}^{w}-f_{P}=-\sum_{v \in V_{n s}(P)} \mathbf{1}_{\mathbf{C}_{v} \backslash H_{v}}^{w} . \tag{12}
\end{equation*}
$$

On the other hand, it can be easily checked that

$$
\begin{equation*}
\mathbf{1}_{P_{s}}^{w}-\mathbf{1}_{P}^{w}=-\sum_{v \in V_{n s}(P)} \mathbf{1}_{\mathbf{C}_{v} \backslash H_{v}}^{w} . \tag{13}
\end{equation*}
$$

Figure 7: Difference of the pyramid and the truncated pyramid.

Therefore, we conclude that

$$
\begin{equation*}
\mathbf{1}_{P}^{w}=\sum_{F \preceq P}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}^{w} . \tag{14}
\end{equation*}
$$

As an immediate consequence of Theorem 1 we obtain a weighted version of Brion's theorem ${ }^{2}$ [Br 1$]$. (See also [Br2, p. 82].)

[^1]Corollary 1 For any simple polytope P, we have

$$
\mathbf{1}_{P}^{w}=g+\sum_{v} \mathbf{1}_{\mathbf{C}_{v}}^{w},
$$

where g is a linear combination of characteristic functions of cones with straight lines and the sum is over all vertices v of P.

This readily follows from grouping together all tangent cones in (4) that contain straight lines, just as in [H].

When P is a simple polyhedron and the same value $q \in \mathbb{C}$ is assigned to all its facets, the weighted characteristic function (3) gets the form

$$
\mathbf{1}_{P}^{w}(x)=\mathbf{1}_{P}^{q}(x)= \begin{cases}q^{\operatorname{codim}(F)} & \text { if } x \in P \tag{15}\\ 0 & \text { if } x \notin P\end{cases}
$$

where F is the face of P of smallest dimension containing x. Theorem 1 implies the weighted polytope decomposition of [A]. To show this, let ξ be a polarizing vector in $\left(\mathbb{R}^{d}\right)^{*}$ and let Δ be a simple polytope in \mathbb{R}^{d}. (We now follow the definitions and notation of $[\mathrm{A}]$.) We put together the faces of P according to where they achieve their minimum in the ξ-direction. We obtain

$$
(-1)^{\# v} \mathbf{1}_{\mathbf{C}_{v}^{\#}}^{w_{v}}=\sum_{\substack{v \preceq F \preceq P \\ \xi(v) \leq \xi(F)}}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}^{q},
$$

where $\# v$ denotes the number of edges of \mathbf{C}_{v} flipped according to ξ and where $\mathbf{1}_{\mathbf{C}_{v}^{\psi}}^{w_{p}}$ is the weighted characteristic function of the ξ-polarized tangent cone \mathbf{C}_{v}^{\sharp} defined in $[\mathrm{A}]$. (To agree with the weighted formulas in [A] we use the substitution $q=$ $1 /(1+y)$.) Then

$$
\sum_{v}(-1)^{\# v} \mathbf{1}_{\mathbf{C}_{v}^{\sharp}}^{w_{v}}=\sum_{v} \sum_{\substack{v \leq F \preceq P \\ \xi(v) \leq \xi(F)}}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}^{q}=\sum_{F}(-1)^{\operatorname{dim} F} \mathbf{1}_{\mathbf{C}_{F}}^{q}=\mathbf{1}_{P}^{q}
$$

Thus, the weighted polar decomposition of $[\mathrm{A}]$ is a direct consequence of Theorem 1, which can be proved exactly in the same fashion as in [L].

References

[A] J. Agapito, A weighted version of quantization commutes with reduction for a toric manifold. In: Integer Points in Polyhedra: Geometry, Number Theory, Algebra, Optimization, Contemporary Mathematics 374, American Mathematical Society, Providence, RI, 2005, pp. 1-14.
[B] A. Barvinok, A Course in Convexity. Graduate Studies in Mathematics 54, American Mathematical Society, Providence, RI, 2002.
$[\mathrm{Br}] \quad \mathrm{C} . \mathrm{J}$. Brianchon, Théorème nouveau sur les polyèdres. J. École Polytechnique, 15(1837), 317-319.
[Br1] M. Brion, Points entiers dans les polyèdres convexes. Ann. Sci. École Norm. Sup. (4) 21(1988), 653-663.
[Br2] , Polyèdres et réseaux, Enseign. Math (2) 38(1992), no. 1-2, 71-88.
[G] J. P. Gram, Om rumvinklerne i et polyeder. Tidsskrift for Math. (Copenhagen) (3) 4(1874), 161-163.
[H] C. Haase, Polar decomposition and Brion's theorem. In: Integer Points in Polyhedra: Geometry, Number Theory, Algebra, Optimization, Contemporary Mathematics 374, American Mathematical Society, Providence, RI, 2005, pp. 91-99.
[L] J. Lawrence, Polytope volume computation. Math. Comp. 57(1991), no. 195, 259-271.
[S] G. C. Shephard, An elementary proof of Gram's theorem for convex polytopes. Canad. J. Math. 19(1967), 1214-1217.
[V] A. N. Varchenko, Combinatorics and topology of the arrangement of affine hyperplanes in the real space. (English translation) Funct. Anal. Appl. 21(1987), no. 1, 9-19.

Departamento de Matemática
Instituto Superior Técnico
Av. Rovisco Pais
1049-001 Lisbon
Portugal
e-mail: agapito@math.ist.utl.pt

[^0]: Received by the editors April 30, 2004; revised March 14, 2005.
 Partially supported by United States NSF DMS 99/71914 and NSF DMS 04/05670 and by Portugal FCT POCTI/SFRH/BPD/2002/2004.

 AMS subject classification: 52B.
 (C)Canadian Mathematical Society 2006.
 ${ }^{1}$ A polarizing vector is a generic element of $\left(\mathbb{R}^{n}\right)^{*}$ which is nonconstant on each edge of P. (See $[\mathrm{L}, \mathrm{V}]$ and compare with [A].)

[^1]: ${ }^{2}$ Brion already proved a more general weighted version of his formula in [Br 1$]$.

