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study factorization properties Prüfer of domains.
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1. Introduction and motivation. This paper is motivated by three areas of study,
namely, elemental factorization, ideal factorization, and Prüfer domains of finite
character. For the interested reader, the following are recent works in these three areas
respectively: [1–3; 6, 13, 15] and [4, 5, 8]. In this paper, we attempt to combine some of
these classical approaches in a new theatre of operations, namely, Prüfer domains of
finite character.

We first recall that in a domain D, an element a is said to be an irreducible, or
an atom, if a = bc implies that either b or c is a unit. And a domain D is said to be
atomic if for every nonzero, nonunit b ∈ D there exists atoms a1, a2, . . . , ak such that
b = a1a2 . . . ak. This paper explores various aspects of classical factorization in the
realm of domains that are not necessarily Noetherian (or even atomic). In particular,
certain factorization properties in Prüfer domains of finite character are characterized
by adapting some standard tools to a more general setting.

Another aspect of classic factorization theory is the study of ideal decomposition,
in particular, if D is a Dedekind domain, then every nonzero proper ideal of D factors
uniquely into a product of maximal ideals. Classically, a tool that is utilized extensively
in the study of factorization (both at the elemental level as well as factorization at the
ideal level) is the Dedekind–Hasse norm. To this end, we construct a norm-like map
on the set of ideals of a Prüfer domain. Our norm map will serve two purposes, first
it will be used to characterize invertible ideals and second it will give an aesthetically
pleasing viewpoint for ideal decomposition.

For ease of reading, we first acquaint the reader with some more definitions
pertinent to this study. An atomic domain D is said to be finite factorization domain
(FFD) if every nonzero nonunit has only finitely many nonassociate divisors. An
atomic domain D is said to be a bounded factorization domain (BFD) if for all
nonzero nonunits b ∈ D there exists π (b) ∈ �, such that whenever b = a1a2 · · · ak is a
factorization of b, we have k ≤ π (b). Last, a domain is said to satisfy the ascending
chain condition on principal ideals (ACCP), if every increasing chain of principal
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ideals stabilizes. It was shown in [3] that FFD =⇒ BFD =⇒ ACCP =⇒ atomic,
and none of the arrows can be reversed.

Let D be an integral domain. We will denote the set of maximal ideals of D by
Max(D) and the set of prime ideals by Spec(D). A Noetherian domain D is said to be
Dedekind if for all maximal ideals M, the localization DM is a Noetherian valuation
domain. One natural generalization of this concept is to drop the initial Noetherian
requirement. A domain D is said to be almost Dedekind if DM is a Noetherian valuation
domain for all maximal ideals M. Generalizing further, we say a domain D is Prüfer if
DM is a valuation domain for all M ∈ Max(D) (equivalently DP is a valuation domain
for all primes P ∈ Spec(D), see [9]). Thus, all Dedekind domains are almost Dedekind
and all almost Dedekind domains are Prüfer. A (Prüfer) domain D is said to be of
finite character if for all nonzero ideals I ⊆ D, I is contained in at most finitely many
maximal ideals.

A natural question arising from [3] is can we characterize Prüfer domains in which
one or all of the arrows of FFD =⇒ BFD =⇒ ACCP =⇒ atomic can be reversed?
We will show if D is an atomic Prüfer domains of finite character, then D is a BFD.
This result shows that in the realm of Prüfer domains of finite character, the concepts
atomic, ACCP, and BFD are all equivalent (and this is far from true for general integral
domains). Additionally, we provide a characterization of FFD in the class of Prüfer
domains of finite character.

In [12], the second-named author constructed a norm-like map to study atomicity
in almost Dedekind domains. We generalize this norm to Prüfer domains and use it to
glean information about atomicity in Prüfer domains with nonzero Jacobson radical.
In [13], ideal factorization of a similar spirit was studied in almost Dedekind domains.
In this paper, we consider some similar ideal factorization questions, and to this end, we
construct a norm on the set of ideals of one-dimensional Prüfer domains. This norm is
developed to avoid some of the hazards raised in the realm of general one-dimensional
Prüfer domains, in particular, the possibility of the existence of idempotent maximal
ideals. The norm is then used to classify the set of invertible ideals for Prüfer domains
of finite character.

2. Norms on Prüfer domains. Most of our focus in this paper will be on Prüfer
domain of dimension one. But the first few results of this section hold for general
Prüfer domains. When the “one-dimensional” assumption needs to be employed will
be made clear in the sequel.

Here, we wish to generalize the norm from [12] to a Prüfer domain D. For P ∈
Spec(D), we let νP : DP \ {0} → GP denote the local valuation map into the value group
GP (written additively).

DEFINITION 2.1. Let D be a Prüfer domain. For nonzero b ∈ D, we define

N(b) = (νM(b))M∈Max(D) ∈
∏

M∈Max(D)

GM

and

N̄(b) = (νP(b))P∈Spec(D) ∈
∏

P∈Spec(D)

GP.
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From the properties of valuations, we see that N(ab) = N(a) + N(b) and N̄(ab) =
N̄(a) + N̄(b), where addition is defined componentwise.

We define the images of these two norms, called normsets, as follows:

Norm(D) = {N(b) : b ∈ D \ {0}}

and

Norm(D) = {N̄(b) : b ∈ D \ {0}}.

We observe that both Norm(D) and Norm(D) form additive monoids with the
identity element being the zero net. It is also worth noting that if U(D) denotes the set
of units of D, then both N and N̄ are homomorphisms from D∗ into their respective
normsets with kernel U(D) we get the following theorem.

THEOREM 2.2. D∗/U(D) ∼= Norm(D) and D∗/U(D) ∼= Norm(D). Moreover, we see
Norm(D) ∼= Norm(D).

The previous shows it suffices to only consider the set of norms determined by the
maximal ideals. Factorization in Prüfer domains (from this perspective) is completely
determined by localizations at maximal ideals, regardless of the dimension of the Prüfer
domain.

DEFINITION 2.3. We say N(a) ≤ N(b) if for all M ∈ Max(D) we have νM(a) ≤
νM(b). We say N(a) < N(b) if N(a) ≤ N(b) and there exists an M ∈ Max(D) with
νM(a) < νM(b).

We pause for the following elementary, but useful observation.

PROPOSITION 2.4. Let D be a Prüfer domain with a, b ∈ D∗, then a|b if and only if
N(a) ≤ N(b). Furthermore, a is a proper divisor of b if and only if N(a) < N(b).

Proof. We prove only the first statement as the second is very similar. Suppose
first that a|b and we write b = da for some d ∈ D∗. Since N(b) = N(d) + N(a) and
d ∈ D∗, we have that N(a) ≤ N(b). Conversely, if N(a) ≤ N(b) then νM(a) ≤ νM(b) for
all M ∈ Max(D). Hence, for any M ∈ Max(D), b

a ∈ DM . So, b
a ∈ ⋂

M∈Max(M) DM = D
and so a|b. �

We also have the following theorem.

THEOREM 2.5. Let X be any one of the conditions (a) unique factorization, (b)
half-factorial, (c) bounded factorization, (d) finite factorization, (e) ACCP, (f) atomic.
A Prüfer domain D has factorization property X if and only if Norm(D) has factorization
property X.

Proof. D has factorization property X if and only if D∗ has factorization property
X if and only if D∗/U(D) has factorization property X if and only if Norm(D) has
factorization property X . �

Let D be a one-dimensional Prüfer domain and let H = {I ⊆
D|I is a nonzero ideal of D}. We wish to extend this notion to define a norm, N̂
on H. We want the property that if I = (a), then the N̂(I) = N(a). If D is almost
Dedekind, the value of an ideal at a localization of a maximal ideal M must be
νM(I) = k, where I ⊆ Mk and I 
⊂ Mk+1. If D is not almost Dedekind, then a problem
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could potentially arise when a maximal ideal M is idempotent, since Mk = M for all
k ∈ �.

To get around this difficulty, we use valuation ideals. Let M be a maximal ideal
and let γ ∈ GM , we define

γ M = {b ∈ D : νM(b) ≥ γ },
and

γ M = {b ∈ D : νM(b) > γ }.
Now γ M and γ M are ideals for all γ ∈ GM . We wish to use these types of ideal

to define the value of an ideal at a particular maximal ideal. The problem is that the
difference between these two types of ideals is very subtle, so we need to extend our
value group to a set that has the ability to distinguish between these two types of ideals
while preserving the property that N̂(IJ) = N̂(I) + N̂(J).

Recall a value group is said to be Archimedean if given a, b ∈ G with a < b there
exists an n ∈ � such that na > b. Hölder’s theorem states that every Archimedean value
group is isomorphic to some subgroup of the additive group of real numbers with the
standard order (see [7] p. 45.) A Prüfer domain is locally Archimedean (every local
value group is Archimedean) if and only if it is one-dimensional (see [14], Corollary
1.4).

Restricting to one-dimensional Prüfer domains will allow us to use the
completeness of the real numbers; however, in order to distinguish between gM and
gM, we will need to extend the real numbers to the surreal numbers �. A thorough
treatment of the surreal numbers may be found in [10].

Let ω denote the cardinality of the natural numbers. We set ε = 1
w

∈ �. It is known
that ε has the property that for r ∈ � and n ∈ � we have r + nε < t for all real numbers
t > r (see [10]). For the remainder of the paper, ε will be this fixed surreal number.

Now for M ∈ Max(D) and ideal I , we define

TM(I) = {νM(b)}b∈I\{0}

and we set

sM(I) = inf TM(I).

DEFINITION 2.6. Let D be a one-dimensional Prüfer domain and let I be an ideal
of D. We define the value of I at the maximal ideal M as

νM(I) =
{

sM(I) : sM(I) ∈ TM(I)
sM(I) + ε : sM(I) 
∈ TM(I)

.

Note if νM(I) = sM(I) + ε, we have γ > sM(I) + ε for all γ ∈ TM(I). For s, t ∈ �,
we say s ∼M t if and only if tM = sM. Note that mε ∼M nε for all m, n ∈ �, and if
GM ∼= �, then ε ∼M 1. Now for M ∈ Max(D) and nonzero ideal I of D, we will assign
a value to I from IGM = �/ ∼M . We will now use ideals of the form

γ M = {b ∈ D : νM(b) ≥ γ },
where γ ∈ IGM to construct our norm.
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LEMMA 2.7. Let I and J be ideals of a one-dimensional Prüfer domain. Then,
νM(IJ) = νM(I) + νM(J) for all M ∈ Max(D).

Proof. If t is the infimum of a set S and t /∈ S, then there exists a countable sequence
that converges to t. If t ∈ S, we will take the sequence to be constant.

Now, we have sequences {ak} ⊆ I and {bk} ⊆ J with limk→∞ νM(ak) = sM(I) and
limk→∞ νM(bk) = sM(J). Hence,

sM(IJ) = lim
k→∞

νM(akbk) = lim
k→∞

(νM(ak) + νM(bk)) = sM(I) + sM(J).

The definition of the product of ideals makes an element of smaller value impossible,
since IJ = {∑ rixiyi : ri ∈ D, xi ∈ I, yi ∈ J} and ν(a + b) ≥ min{ν(a), ν(b)} for any
valuation ν.

Now if both sM(I) and sM(J) are in TM(I) and TM(J), respectively, it is clear that
sM(IJ) ∈ TM(IJ), hence νM(IJ) = sM(IJ) = sM(I) + sM(J) = νM(I) + νM(J).

Suppose sM(I) ∈ TM(I) and sM(J) 
∈ TM(J). Then, sM(IJ) 
∈ TM(IJ). Thus,
νM(IJ) = sM(IJ) + ε = sM(I) + sM(J) + ε = νM(I) + νM(J).

Now suppose sM(I) 
∈ TM(I) and sM(J) 
∈ TM(J). Then, we must have sM(IJ) 
∈
TM(IJ). Thus, we have νM(IJ) = sM(IJ) + ε = (sM(I) + sM(J) + ε) ∼M (sM(I) +
sM(J) + 2ε) = νM(I) + νM(J). �

Now, we define a norm on the set of nonzero ideals of a one-dimensional Prüfer
domain.

DEFINITION 2.8. Let D be a one-dimensional Prüfer domain, and let I be an ideal
of D. The norm of I is defined to be

N̂(I) = (νM(I))M∈Max(D) ∈
∏

M∈Max(D)

IGM .

From the lemma, we immediately get the desired theorem.

THEOREM 2.9. Let D be a one-dimensional Prüfer domain, and let I and J be ideals
of D. Then, N̂(IJ) = N̂(I) + N̂(J) where addition is done componentwise.

The norm on the set of ideals also satisfies several nice properties. We partially
order the image of N̂ in the same manner as we ordered the image of N.

THEOREM 2.10. Let D be a one-dimensional Prüfer domain, and let I and J be an
ideals of D. Then,

(i) N̂(I) = N̂(J) if and only if I = J
(ii) N̂(I) < N̂(J) if and only if J ⊂ I.

Proof. Suppose N̂(I) = N̂(J) and a is in I , then νM(a) ≥ νM(I) for all M, hence
νM(a) ≥ νM(J) for all M. Thus, a ∈ J. The proof of the other containment is similar.

The proof of (ii) is almost identical and is omitted. �

3. One-dimensional Prüfer domains with J 
= (0). In this section, we investigate
factorization properties of Prüfer domains with nonzero Jacobson radicals. We denote
the Jacobson radical of D by J , and let max(a) = {M : a ∈ M}. It will be assumed that
all Prüfer domains are one-dimensional.
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DEFINITION 3.1. Let D be a one-dimensional Prüfer domain. We say D is uniformly
bounded if for all nonzero nonunit b ∈ D, there exists δ, ρ > 0 ∈ � such that for all
M ∈ Max(D), we have δ < νM(b) < ρ.

THEOREM 3.2. Let D be a uniformly bounded one-dimensional Prüfer domain. If D
is atomic, then J = (0), or D is a semilocal PID.

Proof. First, suppose D has only finitely many maximal ideals, say
{M1, M2, . . . , Ml}. Then, clearly J 
= (0). Now for all i = 1, . . . , l, there exists b ∈ D
with max(b) = {Mi}. Thus, we conclude that for all i there exists an atom αi with
max(αi) = {Mi}.

Now suppose some maximal ideal is idempotent, say M1. Set νM1 (α1) = r for
some r ∈ GM1 . Since GM1 is nondiscrete there must exist b1 ∈ D with νM1 (b1) = t where
t < r in GM1 . Now, we find b2, b3, . . . , bl where bi ∈ Mi and bi 
∈ M1. Now N(α1 +
b1b2 . . . bl) = (t, 0, 0, . . . , 0). Hence, α1 + b1b2 . . . bl divides α1 which is impossible as
α1 is an atom and not associated to α1 + b1b2 . . . bl by construction. Thus, M1 is not
idempotent. We conclude that Max(D) contains no idempotents, and hence D must be
almost Dedekind. But an almost Dedekind domain with only finitely many maximal
ideals must be Dedekind, hence a semilocal PID (see [9]).

Now, we suppose that |Max(D)| = ∞.
For b ∈ J \ {0}, we set

bk = min{k : b = α1α2 · · ·αk is an atomic factorization of b}.

We set k = minb∈J \{0}{bk}.
Suppose k = 1, then there exists an atom b ∈ J . Now, we find a ∈ D with a 
∈ J .

Since D is one-dimensional and hence Archimedean and also uniformly bounded, we
can find n ∈ � such that νM(an) > νM(b) for all M ∈ max(a). Now we see that

νM(an + b) =
{

νM(b) : M ∈ max(a)
0 : M 
∈ max(a)

hence, an + b strictly divides b and b is not an atom.
Now suppose k > 1. We find b ∈ J with b = α1α2 · · · αk an atomic factorization.

Now it must be the case that one of these atoms is contained in infinitely many
maximal ideals, say α1. We set b′ = α2 . . . αk. Now as k is minimal, it must be the case
that b′ 
∈ J . Further, there must exist P ∈ max(α1) with P 
∈ max(b′) and Q ∈ max(b′)
with Q 
∈ max(α1). We find c ∈ D with c ∈ Q and c 
∈ P.

Now by assumption, we can find n ∈ � such that νM((cb′)n) > νM(α1) for all
M ∈ max(cb′). Now we have

νM(α1 + (cb′)n) =
{

νM(α1) : M ∈ max(α1) ∩ max(cb′)
0 : M 
∈ max(α1) ∩ max(cb′) .

But then we have α1 + (cb′)n strictly dividing α1. Thus, no element of J can be
factored into a finite product of atoms. We conclude that D is not atomic.

Thus, if D is atomic, we must have J = (0). �

4. One-dimensional Prüfer domains of finite character. A Prüfer domain is said
to be of finite character if for all b ∈ D, max(b) is finite.
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DEFINITION 4.1. Let D be a one-dimensional Prüfer domain of finite character.
For nonzero b ∈ D, we define the length of b to be ‖b‖ = ∑

M∈Max(D) νM(b).

It is clear that ‖ab‖ = ‖a‖ + ‖b‖. Further, if a|b, then νM(a) ≤ νM(b) for all M ∈
Max(D) thus ‖a‖ ≤ ‖b‖. The converse is clearly not true, as we can have ‖a‖ ≤ ‖b‖
with max(a) ∩ max(b) = ∅.

We denote the set of nonunit divisors of b by Z(b). That is Z(b) = {a : a|b, a /∈
U(D)}.

DEFINITION 4.2. Let D be a one-dimensional Prüfer domain of finite character.
For b ∈ D, we define Sb = {‖d‖ : d ∈ Z(b)}.

THEOREM 4.3. Let D be a one-dimensional Prüfer domain of finite character. The
following are equivalent:

(i) For all b ∈ D, inf Sb > 0
(ii) D is a BFD.

(iii) D satisfies ACCP.
(iv) D is atomic.

Proof. Let b ∈ D and assume inf Sb = t > 0. Now for all d ∈ Z(b), we have ‖d‖ ≥ t.
Thus, π (b) = �‖(b)‖

t � is a bound on the length of all possible factorizations of b. Thus,
D is a BFD.

Clearly (ii) implies (iii) and (iii) implies (iv).
Now we assume that D is atomic and let b ∈ D with |max(b)| = k. Now, set

H = {A ∈ P(max(b)) : there exists an atom a with max(a) = A}, where P(max(b)) is
the power set of max(b). Since H is finite, we will rewrite H = {A1, A2, . . . Al}. Now
we find atoms a1, a2, . . . , al with max(ai) = Ai.

Now set ti = min{νM(ai) : M ∈ max(ai)} and set T = min{t1, t2, . . . , tl}. Now we
claim that ξ = T

2 is a lower bound for Sb.
Suppose d ∈ Z(b) with ‖d‖ = ξ . Now since D is atomic, d must be divisible by

some atom a. It must be the case that max(a) = Ai for some i. We have ξ < νM(ai) for
all M ∈ max(ai). But this is impossible as it implies d divides the atom ai. Therefore,
we conclude that Sb has a lower bound. �

Let D be a Prüfer domain. We let MI2 = {M ∈ Max(D) : M = M2} and MI =
{M ∈ Max(D) : M 
= M2}

DEFINITION 4.4. We say MI2 is covered by nonidempotents if

∪M∈MI2 M ⊂ ∪M∈MI M.

THEOREM 4.5. Let D be a one-dimensional Prüfer domain of finite character. If MI2

covered by nonidempotents, then D is a BFD.

Proof. Take b ∈ D, then inf Sb = 1, since every b is contained in an M with GM ∼=
�0. Thus, D is a BFD. �

THEOREM 4.6. Let D be a one-dimensional Prüfer domain of finite character with
MI2 = {M}. If M is covered by nonidempotents, then D is an FFD.

Proof. Suppose M is covered by nonidempotents. Let b ∈ D. Now if max(b) ⊂ MI
the number of divisors of b is bounded by

∏
M∈max(b)(νM(b) + 1). Suppose b ∈ M

and b has infinitely many divisors, then there must exist nonassociate c, d ∈ Z(b) with
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νP(c) = νP(d) for all P ∈ max(b) \ {M}. Now without loss of generality we may assume
that νM(c) < νM(d). But now max( d

c ) = {M} which is a contradiction. �
COROLLARY 4.7. The atomic Prüfer domain constructed in [11] is an FFD.

We now present a characterization of FFDs in the class of Prüfer domains of finite
character. We let H = {(d1, d2) ∈ Z(b) × Z(b) : d1 
= d2}. For M ∈ max(b), we define

WM(b) = inf
H

{|νM(d1) − νM(d2)| : νM(d1) 
= νM(d2)}.

THEOREM 4.8. Let D be a one-dimensional Prüfer domain of finite character. D is an
FFD if and only if for all b ∈ D and for all M ∈ max(b) we have WM(b) > 0.

Proof. If WM(b) = 0 for some b ∈ D and some M ∈ max(b) there must be infinitely
many divisors, hence D is not an FFD. Thus, the forward direction holds.

Now suppose for a given b ∈ D with max(b) = {M1, M2, . . . , Mk}, we have
WMi (b) > 0 for all i = 1, 2, . . . , k. Set WMi (b) = ri > 0 for some ri ∈ �. Now there
are only � νMi (b)

ri
� possible values for any divisor contained in Mi, since any two distinct

values must be at least ri apart. Thus, the number of divisors for b is bounded above by

k∏
i=1

⌈
νMi (b)

ri

⌉
.

We conclude that every b ∈ D has only finitely many divisors, hence D is an FFD. �
We finish the paper by returning to the norm we defined on the set of ideals of a

one-dimensional Prüfer domain.

DEFINITION 4.9. Let D be a one-dimensional Prüfer domain, and let I be an ideal
of D. We say I is real if N̂(I) contains no surreal entries.

THEOREM 4.10. Let D be a one-dimensional Prüfer domain, and let I be an ideal of
D. If I is invertible, then I is real. Moreover if D is of finite character, then I is invertible
if and only if I is real.

Proof. Suppose I is invertible, then I is finitely generated, say I =
(g1, g2, . . . , gn). Let b = r1g1 + r2g2 + · · · + rngn. Now for all maximal ideals M ⊇ I , we
have νM(b) = νM(r1g1 + r2g2 + · · · + rngn) ≥ min{νM(r1g1), νM(r2g2), . . . , νM(rngn)} ≥
min{νM(g1), νM(g2), . . . , νM(gn)}. Now it is clear that

sM(I) = min{νM(g1), νM(g2), . . . , νM(gn)}.

Thus, sM(I) ∈ TM(I), hence νM(I) ∈ GM . We conclude for all maximal ideals M
containing I that ν(I) is real.

Suppose I is real and D is of finite character. Now I is contained in only
finitely many maximal ideals say M1, M2, . . . , Mk. Since I is real, there exists bi ∈ I
with νMi (bi) = νMi (I), for i = 1, 2, . . . , k. We have N(I) = N((b1, b2, . . . , bl)), hence
I = (b1, b2, . . . , bl). Since I is finitely generated, I is invertible. �

If D is a one-dimensional Prüfer domain of finite character, then all ideals factor
uniquely into products of primal ideals (see [8]). The exact factorization is easily seen
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using our norm. In particular, I ⊆ D is contained in only finitely many maximal ideals
we have

I =νM1 (I) M1 . . . νMk (I)Mk.
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