A NOTE ON CERTAIN INTEGRAL EQUATIONS OF ABEL-TYPE

by R. P. SRIVASTAV
(Received 7th February 1963)

Let $f(x)$ be a function of a real variable x, such that $f(x)$ is monotone increasing for $a \leqq x \leqq b$. Integral equations of the kind

$$
\begin{align*}
& \int_{a}^{x}\{f(x)-f(t)\}^{-\alpha} h(t) d t=g(x), \quad a<x<b, \quad 0<\alpha<1 \tag{1}\\
& \int_{x}^{b}\{f(t)-f(x)\}^{-\alpha} h(t) d t=g(x), \quad a<x<b, \quad 0<\alpha<1 \tag{2}
\end{align*}
$$

frequently occur in problems of mathematical physics, where $g(x)$ is known and $h(t)$ is to be determined. The solution, however, does not appear to be well known. The purpose of this note is to give an elementary solution of these integral equations.

To solve (1), we consider

$$
\begin{equation*}
\int_{a}^{x} f^{\prime}(u)\{f(x)-f(u)\}^{\alpha-1} g(u) d u \tag{3}
\end{equation*}
$$

Substituting the value of $g(u)$ from (1) in (3) and interchanging the order of integrations we get

$$
\begin{align*}
& \int_{a}^{x} f^{\prime}(u)\{f(x)-f(u)\}^{\alpha-1} g(u) d u \\
& \quad=\int_{a}^{x} h(t) d t \int_{t}^{x} f^{\prime}(u)\{f(u)-f(t)\}^{-\alpha}\{f(x)-f(u)\}^{\alpha-1} d u \tag{4}
\end{align*}
$$

However, it is easily shown that

$$
\begin{equation*}
\int_{1}^{x} f^{\prime}(u)\{f(u)-f(t)\}^{-\alpha}\left\{f(x)-f(u),^{\alpha-1} d u=\pi \operatorname{cosec} \pi \alpha\right. \tag{5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
h(t)=\frac{\sin \alpha \pi}{\pi} \frac{d}{d t} \int_{a}^{t} f^{\prime}(u)\{f(t)-f(u)\}^{\alpha-1} g(u) d u . \tag{6}
\end{equation*}
$$

In a similar manner it may be shown that

$$
\begin{equation*}
\int_{t}^{b} f^{\prime}(u)\{f(u)-f(t)\}^{\alpha-1} g(u) d u=\pi \operatorname{cosec} \pi \alpha \int_{t}^{b} h(x) d x \tag{7}
\end{equation*}
$$

and hence that the solution of (2) is

$$
\begin{equation*}
h(t)=-\frac{\sin \pi \alpha}{\pi} \frac{d}{d t} \int_{t}^{b} f^{\prime}(u)\{f(u)-f(t)\}^{a-1} g(u) d u \tag{8}
\end{equation*}
$$

Department of Mathematics
University of Glasgow
Glasgow, W. 2

