SOME THEOREMS ON MATRICES WITH REAL QUATERNION ELEMENTS

N. A. WIEGMANN

1. Introduction. Matrices with real quaternion elements have been dealt with in earlier papers by Wolf (10) and Lee (4). In the former, an elementary divisor theory was developed for such matrices by using an isomorphism between $n \times n$ real quaternion matrices and $2 n \times 2 n$ matrices with complex elements. In the latter, further results were obtained (including, mainly, the transforming of a quaternion matrix into a triangular form under a unitary similarity transformation) by using a different isomorphism. Certain other related results have also been obtained (1). Others, including Moore and Ingraham, have considered quaternion matrices earlier.

The intent here is to consider how other theorems which hold for matrices in the complex field may hold for quaternion matrices. To do this, the isomorphism in (4) is employed. First, an analog of the Jordan normal form is obtained; this result is closely related, of course, to the final result in (10) concerned with necessary and sufficient conditions for similarity of quaternion matrices, but here a proof is employed which depends entirely on known complex matrix theory, which throws light on the structure of the similarity transformation, and which leads in a natural way to a definition of elementary divisors for quaternion matrices. Next, this Jordan form is used to obtain some results concerning commutative matrices. In part 4, the familiar polar form of a complex matrix is shown to hold in the quaternion case. Next, some further properties of normal quaternion matrices are verified and, in the final section, some properties of quaternion matrices relative to unitary (quaternion) equivalence transformations are obtained.
2. An analog of the Jordan normal form. Let the $n \times n$ quaternion matrix A be written in the form $A=A_{1}+j A_{2}$ where A_{1} and A_{2} are (uniquely determined) matrices with complex elements (where every quaternion element is considered as written in the form $a=\left(a_{1}+a_{2} i\right)+j\left(a_{3}+a_{4} i\right)$ where each a_{i} is real). Form the $2 n \times 2 n$ complex matrix

$$
A^{*}=\left[\begin{array}{cc}
A_{1}-A_{2}{ }^{c} \\
A_{2} & A_{1}{ }^{c}
\end{array}\right]
$$

(where A^{C} denotes the matrix obtained by taking the complex conjugate of each element of A and, later, $A^{C T}$ denotes the transpose of A^{C}). According to (4), the correspondence between A and A^{*} is an isomorphism and has properties as developed there.

[^0]If it is possible to show that for a given A^{*} there is determined an $n \times n$ matrix J_{1} in the (complex) Jordan normal form such that a non-singular matrix P and a matrix J exist so that $A^{*} P=P J$ where P and J have the forms, respectively,

$$
\left[\begin{array}{cc}
P_{1} & -P_{2}{ }^{c} \\
P_{2} & P_{1}{ }^{C}
\end{array}\right] \text { and }\left[\begin{array}{ll}
J_{1} & 0 \\
0 & J_{1}{ }^{C}
\end{array}\right],
$$

then an analog of the Jordan normal form can be obtained for the quaternion matrix A. For it can be easily seen that the inverse of P must also be of the form

$$
\left[\begin{array}{rr}
Q_{1} & -Q_{2}^{C} \\
Q_{2} & Q_{1}^{C}
\end{array}\right]
$$

so that $P^{-1} A^{*} P=J$. But according to the nature of the correspondence between A^{*} and A this implies that $\left(Q_{1}+j Q_{2}\right)\left(A_{1}+j A_{2}\right)\left(P_{1}+j P_{2}\right)=J_{1}+j \cdot 0$ or that $\left(Q_{1}+j Q_{2}\right) A\left(P_{1}+j P_{2}\right)=J_{1}$ where $\left(Q_{1}+j Q_{2}\right)\left(P_{1}+j P_{2}\right)=I$, so that A is similar to a complex $n \times n$ Jordan form J_{1}.

Since A^{*} is a matrix with complex elements, there exists a non-singular matrix P such that $P^{-1} A^{*} P=J$ is the Jordan form of A^{*} so that $A^{*} P=P J$. In the following steps it will be shown that a P and a J can be obtained which satisfy this relation and are of the desired form.
(a) Let $\alpha_{1}, \ldots, \alpha_{m}$ be the distinct (complex) characteristic roots of A^{*}. Then each column of P is a column vector v with $2 n$ elements satisfying one and only one of the following relations:
(i) $A^{*} v=v \alpha_{i}$,
(ii) $A^{*} v=w+v \alpha_{i}$,
where w is the column vector adjacent to v on the left. All $2 n$ column vectors are linearly independent and for each α_{i} there exists at least one column of the type (i).
(b) For simplicity in notation let α be a root for which $v_{1}, v_{2}, \ldots, v_{t}$ are the set of column vectors of P of type (i) relative to α. Let the column vector $v_{1}{ }^{*}$ be defined relative to v_{1} as follows: If v_{1} is a column vector whose transpose is the row vector

$$
\left[v_{11}, v_{21}, \ldots, v_{n 1}, w_{11}, w_{21}, \ldots w_{n 1}\right]
$$

then v_{1}^{*} is the column vector whose transpose is the row vector

$$
\left[-\bar{w}_{11},-\bar{w}_{21}, \ldots-\bar{w}_{n 1}, \bar{v}_{11}, \bar{v}_{21}, \ldots \bar{v}_{n 1}\right] .
$$

If v_{1} is not the zero vector, then v_{1} and $v_{1}{ }^{*}$ are linearly independent, for if $c_{1} v_{1}+c_{2} v_{1}^{*}=0$, it follows that

$$
\left(c_{1} \bar{c}_{1}+c_{2} \bar{c}_{2}\right) w_{k 1}=0, \quad\left(c_{1} \bar{c}_{1}+c_{2} \bar{c}_{2}\right) v_{k 1}=0 \quad(k=1,2, \ldots, n)
$$

so that $c_{1}=c_{2}=0$. Also, if $A^{*} v_{1}=v_{1} \alpha$, it follows that $A^{*} v_{1}{ }^{*}=v_{1}{ }^{*} \bar{\alpha}$. Let us consider, first, vectors of type (i).

Let α be real. Then v_{1} and $v_{1}{ }^{*}$ are linearly independent vectors of type (i) for α, and either exhaust the number of such linearly independent column vectors or there exists another, say v_{2}, which is linearly independent of v_{1} and $v_{1}{ }^{*}$. Form $v_{2}{ }^{*}$; then $v_{1}, v_{1}{ }^{*}, v_{2}$, and $v_{2}{ }^{*}$ are linearly independent, for if $c_{1} v_{1}+c_{2} v_{1}{ }^{*}+c_{3} v_{2}+c_{4} v_{2}{ }^{*}=0$, then $\bar{c}_{1} v_{1}{ }^{*}-\bar{c}_{2} v_{1}+\bar{c}_{3} v_{2}{ }^{*}-\bar{c}_{4} v_{2}=0$. But by properly combining these relations, it would follow that

$$
\left(\bar{c}_{3} c_{1}+c_{4} \bar{c}_{2}\right) v_{1}+\left(\bar{c}_{3} c_{2}-c_{4} \bar{c}_{1}\right) v_{1}^{*}+\left(c_{3} \bar{c}_{3}+c_{4} \bar{c}_{4}\right) v_{2}=0
$$

so that $c_{3}=c_{4}=0$ and so, from above, $c_{1}=c_{2}=0$. Either $v_{1}, v_{1}{ }^{*}, v_{2}, v_{2}{ }^{*}$ exhaust the number of linearly independent vectors of type (i) for α, or they do not. By means of this process there is obtained a set of linearly independent vectors of the form $v_{1}, v_{1}{ }^{*}, \ldots, v_{k}, v_{k}{ }^{*}$ which provide a basis for the vectors of type (i) corresponding to each real α.

Let α be non-real complex. Then if the matrix P contains a set of vectors $v_{1}, v_{2}, \ldots, v_{i}$ such that $A^{*} v_{j}=v_{j} \alpha \quad(j=1,2, \ldots, t)$, it follows that $A^{*} v_{j}{ }^{*}=v_{j}{ }^{*} \bar{\alpha}(j=1,2, \ldots, t)$ (where the $v_{j}{ }^{*}$ are linearly independent since the v_{j} are), that there are no other vectors linearly independent of these for which this is true, and that $\bar{\alpha}$ is also a root of A^{*}.

Since $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are distinct, the sets of linearly independent vectors of type (i) obtained in this way are linearly independent and are equal in number to those column vectors of type (i) in the matrix P.
(c) Consider vectors v of type (ii); these may be written as $\left(A^{*}-\alpha_{i} I\right) v=w$; and it follows that $\left(A^{*}-\bar{\alpha}_{i} I\right) v^{*}=w^{*}$.

Let α be real. Let there be $2 k$ vectors $v_{1}, v_{2}, \ldots, v_{p}, \ldots, v_{2 k}$ of P of type (i) corresponding to α and let them be written in such an order that if there exist for some v_{i} vectors $v_{i}{ }^{(1)}$ of P so that

$$
\begin{equation*}
\left(A^{*}-\alpha I\right) v_{i}^{(1)}=v_{i}, \tag{iii}
\end{equation*}
$$

these vectors, $v_{1}, v_{2}, \ldots, v_{p}$ are written together and first in this ordering. Then p must be even and a set of linearly independent vectors of the above v, v^{*} type can be obtained which span the same space as $v_{1}, v_{2}, \ldots, v_{p}$. For if $\left(A^{*}-\alpha I\right) v_{1}{ }^{(1)}=v_{1}$, then $\left(A^{*}-\alpha I\right) v_{1}{ }^{(1) *}=v_{1}{ }^{*}$, and since v_{1} and $v_{1}{ }^{*}$ are linearly independent, $v_{1}{ }^{(1)}$ and $v_{1}{ }^{(1) *}$ are also. Either $p=2$, or the process can be continued as before, so that $p=2 q$. In this way we see that there exists a set of linearly independent vectors, $v_{1}, v_{1}{ }^{*}, \ldots, v_{q}, v_{q}{ }^{*}, \ldots, v_{k}, v_{k}{ }^{*}$ (which form a basis for all vectors of type (i) corresponding to α) such that $v_{1}{ }^{(1)}$, $v_{1}{ }^{(1) *}, \ldots, v_{q}{ }^{(1)} v_{q}{ }^{(1) *}$, provide a basis for the space spanned by $v_{1}{ }^{(1)}, \ldots, v_{2 q}{ }^{(1)}$ as taken above where v_{i} and $v_{i}{ }^{(1)}$ are related as above. If for some of the $v_{j}{ }^{(1)}$ there exist $v_{j}{ }^{(2)}$ in P such that

$$
\left(A^{*}-\alpha I\right) v_{j}^{(2)}=v_{j}^{(1)}
$$

the above process can be repeated, and a set of vectors, taken notationally as $v_{1}{ }^{(2)}, v_{1}{ }^{(2) *}, \ldots, v_{s}{ }^{(2)}, v_{s}{ }^{(2) *}$ (which span the same space as the linearly independent $v_{j}{ }^{(2)}$), is obtained which stand in the same relation to $v_{1}{ }^{(1)}, v_{1}{ }^{(1) *}, \ldots, v_{q}{ }^{(1)}$, $v_{q}{ }^{(1) *}$ as the latter do to $v_{1}, v_{1}{ }^{*}, \ldots, v_{k}, v_{k}{ }^{*}$.

If α is non-real complex, let $v_{1}, v_{2}, \ldots, v_{p}, \ldots, v_{t}$ (the vectors of type (i) corresponding to α) be ordered in such a way that for $v_{1}, v_{2}, \ldots, v_{p}$ there exist $v_{1}{ }^{(1)}, v_{2}{ }^{(1)}, \ldots, v_{p}{ }^{(1)}$ satisfying (iii). Then $\left(A^{*}-\bar{\alpha} I\right) v_{i}{ }^{(1) *}=v_{i}{ }^{*}, i=1,2$, \ldots, p, and $v_{1}{ }^{(1) *}, v_{2}{ }^{(1) *}, \ldots, v_{p}{ }^{(1) *}$ are such that there exists no vector, w, linearly independent of them such that $\left(A^{*}-\bar{\alpha} I\right) w$ is in the space generated by $v_{1}{ }^{*}, v_{2}{ }^{*}, \ldots, v_{p}{ }^{*}$. For some $v_{i}{ }^{(1)}$ there may exist $v_{i}{ }^{(2)}$ such that

$$
\left(A^{*}-\alpha I\right) v_{i}^{(2)}=v_{i}^{(1)} ;
$$

in this way a set of $v_{i}{ }^{(2) *}$ are determined and the process is seen to be a general one.
(d) By the above, a set of $2 n$ linearly independent vectors, taken notationally as $w_{1}, w_{2}, \ldots, w_{n}, w_{1}{ }^{*}, w_{2}^{*}, \ldots, w_{n}^{*}$, are obtained such that either $A^{*} w_{i}=w_{i} \alpha$ (and so $A^{*} w_{i}^{*}=w_{i}{ }^{*} \bar{\alpha}$, for any α), or, for some w_{i} satisfying $A^{*} w_{i}=w_{i} \alpha$, there exist among the above $2 n$ vectors certain vectors taken notationally as $w_{i}^{(1)}, w_{i}{ }^{(2)}, \ldots, w_{i}^{(s)}$ such that

$$
\begin{aligned}
& \left(A^{*}-\alpha I\right) w_{i}^{(1)}=w_{i}, \\
& \left(A^{*}-\alpha I\right) w_{i}^{(j)}=w_{i}^{(j-1)},
\end{aligned} \quad j=2,3, \ldots, s ;
$$

in this case it follows that

$$
\begin{aligned}
& \left(A^{*}-\bar{\alpha} I\right) w_{i}^{(1)^{*}}=w_{i}^{*}, \\
& \left(A^{*}-\bar{\alpha} I\right) w_{i}^{(j)^{*}}=w_{i}^{(j-1)^{*}},
\end{aligned} \quad j=2,3, \ldots, s .
$$

It is now evident that by properly arranging the w_{i} and w_{i}^{*}, a $2 n \times 2 n$ matrix P can be obtained such that $A^{*} P=P J$ as indicated above. If in J_{1} (as used there), the roots $\alpha=a+b i$ are such that $b \geqq 0$, then a canonical form has been obtained for A^{*} and hence for the quaternion matrix A.

Theorem 1. Every $n \times n$ matrix with real quaternion elements is similar under a matrix transformation with real quaternion elements to a matrix in (complex) Jordan normal form with diagonal elements of the form $a+b i, b \geqq 0$.
3. Properties of commutative matrices. According to a theorem due to Taber (5), if a matrix A with complex elements is non-derogatory, the only matrices commutative with A are polynomial functions of A. An equivalent theorem had been previously given by Frobenius (3, Theorem XIII).

In order to obtain an analog for this theorem where A contains real quaternion elements, let such a matrix A be defined to be non-derogatory when its Jordan normal form matrix (as obtained in the preceding) is non-derogatory.

Let A and B be quaternion matrices such that $A B=B A$ where A is nonderogatory. Let $P A P^{-1}=J=J_{1} \dot{+} J_{2} \dot{+} \ldots \dot{+} J_{m}$ be the Jordan form of A where:

$$
J_{i}=\left[\begin{array}{lllll}
\alpha_{i} & 1 & 0 & \ldots & 0 \\
0 & \alpha_{i} & 1 & \ldots & 0 \\
& \cdots & & \ldots & \\
0 & \cdots & & \alpha_{i} & 1 \\
0 & \cdots & 0 & \alpha_{i}
\end{array}\right], \quad i=1,2, \ldots, m
$$

where $\alpha_{i} \neq \alpha_{j}$ when $i \neq j$ and $\alpha_{k}=a_{k}+i b_{k}, b_{k} \geqq 0$. Let $P B P^{-1}=B_{1}$ so that $J B_{1}=B_{1} J$.

Lemma. $B_{1}=B_{11} \dot{+} B_{12} \dot{+} \ldots \dot{+} B_{1 m}$ where $B_{1 i}$ has the same order as J_{i}, where

$$
B_{1 i}=\left[\begin{array}{lllll}
b_{i 1} & b_{i 2} & b_{i 3} & \cdots & b_{i n} \\
0 & b_{i 1} & b_{i 2} & \cdots & \\
0 & 0 & b_{i 1} & \cdots & \\
& \cdots & & \cdots & \\
& \cdots & & b_{i 1} & b_{i 2} \\
& \cdots & 0 & b_{i 3} \\
0 & \cdots & 0 & b_{i 1} & b_{i 2} \\
0 & 0 & b_{i 1}
\end{array}\right]
$$

and where
(i) if α_{i} is real, the non-diagonal elements of $B_{1 i}$ are quaternions while the diagonal elements are complex;
(ii) if α_{i} is non-real complex, the elements of the corresponding $B_{1 i}$ are complex.

The following may be noted: if α is a non-real complex element, b a quaternion element, and $\alpha b=b \alpha$, then b is a complex number; if α is non-real complex, if β is complex, and c a quaternion element such that $\alpha c=c \alpha+\beta$, then c is complex and $\beta=0$. Also no α_{i}, above, is the conjugate of an α_{j}.

Let $B_{1}=\left(b_{i j}\right)$, let J_{1} be of order $r \times r$, and consider the upper left $r \times r$ sub-matrix of the product $J B_{1}=B_{1} J$. The following relations result:

$$
\begin{array}{ll}
\alpha_{1} b_{r 1}=b_{r 1} \alpha_{1}, & \\
a_{1} b_{r i}=b_{r i-1}+b_{r i} \alpha_{1}, & i=2,3, \ldots, r \\
\alpha_{1} b_{i 1}+b_{i+1,1}=b_{i 1} \alpha_{1}, & i=1,2, \ldots, r-1, \\
\alpha_{1} b_{i t}+b_{i+1, t}=b_{i, t-1}+b_{i t} \alpha_{1}, & \left\{\begin{array}{l}
t=2,3, \ldots, r \\
i
\end{array}, 1,2, \ldots, r-1 .\right.
\end{array}
$$

If α_{1} is real then, although the $b_{i j}$ are quaternion elements, all commutative properties hold for these relations (as in the complex case as treated by Taber) and the upper left $r \times r$ matrix has the form B_{11} with all quaternion elements, in general. If α_{1} is non-real complex, it follows from the first relation that $b_{r 1}$ is complex; from this and the third relation it follows that all elements in the first column above $b_{r 1}$ are complex (and in fact, except for b_{11}, all are 0); from the second relation it can be seen that all elements of the r th row of this submatrix are 0 except $b_{r r}$ which is complex. Using the fourth set of relations, we see that the remaining elements are complex, all necessary commutative properties hold, and that the submatrix has the B_{11} form. B_{11} now has the required form unless, for a real α_{1}, the diagonal elements are quaternions; if so, there exists a quaternion element b such that $b b_{i 1} \bar{b}=\beta$ is a complex number where $b \bar{b}=1$. Form the $n \times n$ matrix $Q=b I_{1} \dot{+} I_{2}$ where I_{1} and I_{2} are identity matrices and I_{1} is of order $r \times r$. Then $Q^{-1}=\bar{b} I_{1}+I_{2}$ and $Q B_{1} Q^{-1}$ has the form required and $Q J Q^{-1}=J$.

Let J_{2} be of order $s \times s$, and consider the $s \times r$ submatrix directly below B_{11} in the matrix B_{1}. Upon comparing corresponding elements of this $s \times r$ submatrix in the product $J B_{1}=B_{1} J$, we see that the set of following relations appear:

$$
\begin{array}{ll}
\alpha_{2} b_{r+s, 1}=b_{r+s, 1} \alpha_{1}, & \\
\alpha_{2} b_{r+s, i}=b_{r+s, i-1}+b_{r+s, i} \alpha_{1}, & i=2, \ldots, r \\
\alpha_{2} b_{i 1}+b_{i+1,1}=b_{i 1} \alpha_{1}, & i=r+1, \ldots, r+s-1 \\
\alpha_{2} b_{i t}+b_{i+1, t}=b_{i, t-1}+b_{i t} \alpha_{1}, & \begin{cases}t & =2,3, \ldots, r \\
i & =r+1, r+2, \ldots r+s-1\end{cases}
\end{array}
$$

Since, for $i \neq j, \alpha_{i} \neq \alpha_{j}$ and $\alpha_{i} \neq \bar{\alpha}_{j}$, it follows from these relations that all elements of this $s \times r$ submatrix of B_{1} are zero. In this way it can be shown that $B_{1}=B_{11} \dot{+} B_{2}$ where B_{11} has the form given in the lemma. When B_{2} is treated in like fashion, the lemma follows.

Consider next the possibility of representing this B_{1} as a polynomial in J_{1} where J_{1} contains only complex elements. It is evident (from the work of Taber or by merely considering the set of equations obtained) that it is possible to determine two sets, x_{i} and $x_{i}{ }^{\prime}, i=0,1,2, \ldots, n-1$, of quaternion elements such that

$$
B_{1}=\sum_{i=0}^{n-1} x_{i} J^{i}=\sum_{i=0}^{n-1} J^{i} x_{i}^{\prime}
$$

If all the diagonal elements of J are real, $x_{i} J^{i}=J^{i} x_{i}$; if all the diagonal elements of J are non-real complex, all elements of B_{1} are complex and so are the x_{i} so that again $x_{i} J^{i}=J^{i} x_{i}$; and the same would be true if all the elements of B_{1} were complex regardless of the nature of the α_{i} in J. In these instances if $x_{j}=\rho_{j} u_{j}$ (where ρ_{j} is the real absolute value of the quaternion element x_{j} and u_{j} the related quaternion of absolute value one), then

$$
B=P^{-1} B_{1} P=\sum_{i=0}^{n-1} \rho_{i} P^{-1}\left(u_{i} I\right) P \cdot P^{-1}\left(J^{i}\right) P=\sum_{i=0}^{n-1} \rho_{i} U_{i} A^{i}
$$

where $U_{i}=P^{-1}\left(u_{i} I\right) P$ and $U_{i} A=A U_{i}$ for each i. It follows that:
Theorem 2. If A and B are quaternion matrices, if $A B=B A$, and if A is non-derogatory with either all real or all non-real complex roots, then

$$
B=\sum_{i=0}^{n-1} \rho_{i} U_{i} A^{i}
$$

where the ρ_{i} are real, $U_{i} A=A U_{i}$ for each i, and each U_{i} has a single characteristic root of absolute value one.
4. A polar form. Every complex number has the familiar polar form $\rho e^{i \theta}$ and, as has been seen, the same is true for a quaternion. For a matrix A with complex elements a polar representation has been obtained when A is non-singular by Wintner and Murnaghan (9) and when A is singular by Williamson (7). It also exists for quaternion matrices according to the following:

Theorem 3. Every $n \times n$ matrix A with real quaternion elements can be expressed as $A=H_{1} W_{1}=W_{1} K_{1}$ where H_{1} and K_{1} are hermitian (quaternion) matrices and W_{1} is a unitary (quaternion) matrix; if A is non-singular the representation is unique, and if A is singular, H_{1} and K_{1} are unique but W_{1} is arbitrary to some extent.

Let $A=A_{1}+j A_{2}$ where A_{1} and A_{2} are (as in §2) uniquely determined matrices with complex elements. Then A is isomorphic to A^{*} where

$$
A^{*}=\left[\begin{array}{rr}
A_{1} & -A_{2}{ }^{c} \tag{i}\\
A_{2} & A_{1}{ }^{C}
\end{array}\right] .
$$

Since A^{*} has complex elements $A^{*}=H U=U K$ by (9) and (7), where H and K are hermitian and U unitary. Then $A A^{C T}$ corresponds to H^{2} and there exists a unitary quaternion matrix (see (4), for example) $V_{3}=V_{1}+j V_{2}$ so that $V_{3} A A^{C T} V_{3}^{C T}=D$ is a diagonal matrix with real elements and, consequently, if

$$
V=\left[\begin{array}{rr}
V_{1} & -V_{2}^{c} \\
V_{2} & V_{1}^{C}
\end{array}\right],
$$

then $V A^{*} A^{* C T} V^{C T}=D \dot{+} D$. Since H is hermitian with non-negative real roots, there exists a unitary matrix W such that $W H W^{C T}=D_{1}$ is diagonal with these non-negative real roots along the diagonal; and this W can be chosen in such a way that

$$
W H^{2} W^{C T}=W A^{*} A^{* C T} W^{C T}=D \dot{+} D
$$

so that $D_{1}{ }^{2}=D \dot{+} D$ and so $D_{1}=D_{2} \dot{+} D_{2}$ where the diagonal elements of D_{2} are the positive square roots of the corresponding real roots of D. Then H must be of the same form as A^{*} in (i) for if $X=V W^{C T}$, then

$$
X W A^{*} A^{* C T} W^{C T} X^{c T}=X(D \dot{+} D) X^{c T}=V A^{*} A^{* C T} V^{C T}=D \dot{+} D
$$

so that $X(D \dot{+} D)=(D \dot{+} D) X$ and so $X\left(D_{2} \dot{+} D_{2}\right)=\left(D_{2} \dot{+} D_{2}\right) X$. From this, $X W H W^{C T} X^{C T}=X D_{1} X^{C T}=D_{1}=V H V^{C T}$ so that $H=V^{C T} D_{1} V$ and from the form of the matrices on the right side of this equality, their product is of type (i).

From $A^{*}=H U$, it follows that $V A^{*} V^{C T}=V H V^{C T} V U V^{C T}$ where the matrices have the form

$$
\left[\begin{array}{cc}
B_{1} & -B_{2}{ }^{c} \\
B_{2} & B_{1}^{C}
\end{array}\right]=\left[\begin{array}{ll}
D_{2} & 0 \\
0 & D_{2}
\end{array}\right]\left[\begin{array}{ll}
U_{1} & U_{2} \\
U_{3} & U_{4}
\end{array}\right] .
$$

If A^{*} is non-singular, D_{2} is non-singular and by equating corresponding block matrices, $U_{4}=U_{1}{ }^{C}$ and $U_{2}=-U_{3}{ }^{C}$.

If A^{*} is singular (in which case there is some arbitrariness involved in the choice of U in $H U$), then D_{2} is singular; let the first r diagonal elements be non-zero, the remaining being 0 . From this it can be seen that $D_{2}\left(U_{1}-U_{4}{ }^{C}\right)$ $=0$ and $D_{2}\left(U_{3}+U_{2}{ }^{C}\right)=0$; this means that the first r rows of U_{4} are the
conjugates of the first r rows of U_{1} and the first r rows of U_{2} are the negative conjugates of the first r rows of U_{3}. Since $V U V^{C T}$ is unitary, these $2 r$ rows are linearly independent and by means of the v, v^{*}-basis procedure employed in $\S 2$ above, it is seen that it is possible to complete the remaining rows of this matrix so that it is unitary and of the form (i). From the form of each matrix in the $2 n \times 2 n$ matrix relation $A^{*}=H U$, it follows that A can be expressed as required by the theorem. Since $U^{C T} A^{*}=U^{C T} H U=K$ is hermitian, $A^{*}=U K$ holds (uniquely if A^{*} is non-singular) and the theorem is true.
5. Properties of normal quaternion matrices. If A is a normal quaternion matrix, it can be brought into diagonal form under a unitary similarity transformation (see (4), for example). Some further properties of normal quaternion matrices are verified here.

It is known that a complex matrix A is normal if and only if $A^{C T}$ is a polynomial in A. If A is a normal quaternion matrix, there exists a unitary quaternion matrix U such that $U A U^{C T}=D$ where the characteristic roots of A appear in the diagonal matrix D. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are the distinct roots of A, the set of equations

$$
\bar{\alpha}_{i}=\sum_{j=0}^{m-1} x_{j} \alpha_{i}{ }^{j}, \quad i=1,2, \ldots, m,
$$

in x_{j} always have solutions in the complex field. This implies that

$$
D^{C T}=\sum_{j=0}^{m-1} x_{j} D^{j}
$$

and, if $x_{j}=\rho_{j} \cdot e^{i \theta_{j}}$,

$$
A^{C T}=\sum_{j=0}^{m-1} \rho_{j} U\left(e^{i \theta} I\right) U^{C T} A^{j}=\sum_{j=0}^{m-1} \rho_{j} V_{j} A^{j}
$$

where $V_{j}=U\left(e^{i \theta_{j}} I\right) U^{C T}$ is unitary and $V_{j} A=A V_{j}$ for all j. If more latitude is allowed for the degree of the polynomial, let the distinct roots be written in the form $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \ldots, \alpha_{m}$ where $\alpha_{1}, \ldots, \alpha_{r}$ are the non-real complex roots. Let the roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \ldots \alpha_{m}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{r}$ be used to form the $m+r$ equations

$$
\bar{\beta}_{i}=\sum_{j=0}^{m+r-1} x_{j} \beta_{i}{ }^{j}
$$

where β_{i} runs through the latter set of α_{i} and $\bar{\alpha}_{i}$; in this case the x_{j} will all be real and it follows that:

Theorem 4. A quaternion matrix A is normal if and only if $A^{C T}$ is a polynomial in A with real coefficients.

The following theorem will now be shown to hold as in the complex case:
Theorem 5. Two normal quaternion matrices A and B are commutative if and only if they can be diagonalized by the same unitary transformation.

If $A B=B A$, let $U A U^{C T}=D$ where D is diagonal such that like roots are in consecutive order, with real roots $\alpha_{1}, \ldots, \alpha_{s}$ first, and complex roots $\beta_{1}, \ldots, \beta_{t},\left(\beta_{k}=\gamma_{k}+i \delta_{k}, \delta_{k}>0\right)$ next. Let

$$
\left[\begin{array}{ll}
D & 0 \\
0 & D^{C}
\end{array}\right] \text { and }\left[\begin{array}{lr}
C_{1} & -C_{2}{ }^{c} \\
C_{2} & C_{1}{ }^{c}
\end{array}\right]
$$

be the $2 n \times 2 n$ complex matrices which are isomorphic to D and $U B U^{C T}$, respectively. From the commutative property $D C_{1}=C_{1} D$ and $D^{C} C_{2}=C_{2} D$, and so

$$
\begin{aligned}
& C_{1}=C_{11} \dot{+} \ldots \dot{+} C_{1 s} \dot{+} C_{11}^{\prime} \dot{+} \ldots \dot{+} C_{1 t}^{\prime} \\
& C_{2}=C_{21} \dot{+} \ldots+C_{2 s}+0 \quad+\ldots+0,
\end{aligned}
$$

where $D=\alpha_{1} I_{1} \dot{+} \ldots \dot{+} \alpha_{s} I_{s} \dot{+} \beta_{1} I^{\prime}{ }_{1} \dot{+} \ldots \dot{+} \beta_{t} I^{\prime}{ }_{t}$ and where $C_{1 j}$ and $C_{2 j}$ have the same order as the identity matrix I_{j} and $C^{\prime}{ }_{1 j}$ and the corresponding 0 matrix in C_{2} have the same order as the identity matrix $I^{\prime}{ }_{j}$. Therefore,

$$
\begin{aligned}
U B U^{C T} & =\left(C_{11} \dot{+} \ldots \dot{+} C_{1 s} \dot{+} C_{11}^{\prime} \dot{+} \ldots \dot{+} C_{1 t}^{\prime}\right)+j\left(C_{21} \dot{+} \ldots \dot{+} C_{2 s} \dot{+} 0 \dot{+} \ldots \dot{+} 0\right) \\
& =\left(C_{11}+j C_{21}\right) \dot{+} \ldots \dot{+}\left(C_{1 s}+C_{2 s}\right) \dot{+} C_{11}^{\prime} \dot{+} \ldots \dot{+} C_{1 t}^{\prime}
\end{aligned}
$$

where the $C^{\prime}{ }_{1 j}$ have only complex elements. Since $U B U^{C T}$ is normal, so is each matrix in the above direct sum; there exist, then, unitary quaternion matrices W_{k} which diagonalize $C_{1 k}+j C_{2 k}$ and unitary complex matrices V_{k} which diagonalize $C^{\prime}{ }_{1 k}$, for all the above k. If V is the unitary matrix formed by taking the appropriate direct sum of these W_{k} and V_{k}, it follows that $V U B U^{C T} V^{C T}$ is diagonal and that $V U A U^{C T} V^{C T}=V D V^{C T}=D$ is also diagonal. The converse is immediate.

The above generalizes as in the complex case:
Theorem 6. If $\left\{A_{i}\right\}$ is a set of normal quaternion matrices which commute in pairs, they can be diagonalized by the same unitary transformation.

If each of the A_{i} have a single characteristic root, α_{i}, the theorem is true. If these roots are all real, the theorem is trivially true. If at least one root, say α_{k}, is non-real complex, let $V A_{k} V^{C T}=\alpha_{k} I$ and $V A_{i} V^{C T}=A^{\prime}{ }_{i}$ for all other i; then each $A^{\prime}{ }_{i}$ commutes with $\alpha_{k} I$ and so all $A^{\prime}{ }_{i}$ are normal, complex, and commutative in pairs, and can all be diagonalized by a complex unitary matrix U. Therefore, the unitary matrix $U V$ diagonalizes all A_{i}.

In general, the proof follows by induction on the order of the A_{i}. The theorem is trivially true for 1×1 matrices. Assume the theorem to be true for $(n-1) \times(n-1)$ matrices. It may also be assumed that there is at least one matrix, A_{j}, which has at least two distinct roots; let $U A_{j} U^{C T}=D$ be diagonal (in the same form as D in the preceding theorem). Then each $U A_{i} U^{C T}$ commutes with D, the problem is reduced to that involving matrices of order less than n and the theorem is true.

The following theorems are true in the complex case (6); they are also true (obviously so from the isomorphism above) in the quaternion case:

Theorem 7. A quaternion matrix A is normal if and only if its polar matrices commute.

Theorem 8. If A, B and $A B$ are normal quaternion matrices, then $B A$ is normal.

Theorem 9. If A and B are normal quaternion matrices, then $A B$ is normal if and only if each of A and B commutes with the hermitian polar matrix of the other.
6. A diagonal form under unitary equivalence transformations. It is also possible to bring a quaternion matrix into a real diagonal matrix under a unitary equivalence transformation according to the following:

Theorem 10. For every $r \times s$ quaternion matrix A there exist two unitary quaternion matrices U and V (of dimensions $r \times r$ and $s \times s$, respectively) such that $U A V=D$ is diagonal with non-negative real roots along the diagonal.

Let $A=A_{1}+j A_{2}$ where A_{1} and A_{2} are complex, as before, but $r \times s$ in dimension. Let C be the $2 r \times 2 s$ matrix (composed of A_{1} and A_{2}) with complex elements which corresponds to A. According to a corollary due to Eckert and Young (2), if U is a $2 r \times 2 r$ unitary matrix which diagonalizes $C C^{C T}$, there exists a $2 s \times 2 s$ unitary matrix V such that $U C V=D_{1}$ is a $2 r \times 2 s$ diagonal matrix with non-negative real elements. From preceding work, this U may be taken as being in the form

$$
\left[\begin{array}{cc}
U_{1} & -U_{2}^{c} \\
U_{2} & U_{1}^{C}
\end{array}\right],
$$

so that $U C C^{C T} U^{C T}=D_{2} \dot{+} D_{2}$ is $2 r \times 2 r$ and so $U C V=D \dot{+} D$ where D is $r \times s$, where the elements are non-negative real, and where $(D \dot{+} D)(D \dot{+} D)^{c T}$ $=D_{2} \dot{+} D_{2}$. It remains to verify that V has the proper structure (i.e., like that of $U)$. By considering the relation $U C=(D \dot{+} D) V^{C T}$, it follows (as in the proof of the polar representation above) that V has this form where some arbitrariness may be involved, as before, in choosing V. If the components of V are V_{1} and V_{2}, then $\left(U_{1}+j U_{2}\right) A\left(V_{1}+j V_{2}\right)=D$ as required in the theorem.

As in the complex case (8), it is also true that
Theorem 11. If A and B are two $r \times s$ quaternion matrices, then there exist two unitary quaternion matrices U and V such that $U A V=D_{1}$ and $U B V=D_{2}$ are complex diagonal matrices if and only if $A B^{C T}$ and $B^{C T} A$ are normal matrices.

If such a U and V exist, the theorem is obviously true.
If $A B^{C T}$ and $B^{C T} A$ are normal, but the preceding theorem $U_{1} A V_{1}=D_{1}$ is a non-negative real diagonal matrix and $U_{1} B V_{1}=C$. Let

$$
D_{1}=\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad C_{1}=\left[\begin{array}{cc}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]
$$

where D is non-singular and B_{1} has the same order as D. From the given conditions $D_{1} C^{C T}$ and $C^{C T} D_{1}$ are normal; using the former, it follows that $\left(B_{3} D\right)\left(B_{3} D\right)^{C T}=0$ (where B_{3} has quaternion elements and D is real) so that $B_{3} D=0$ and so $B_{3}=0$. Similarly $B_{2}=0$. Therefore $D B_{1}{ }^{C T}$ and $B_{1}{ }^{C T} D$ are normal. Now the characteristic roots of $D B_{1}{ }^{C T}$ and $B_{1}{ }^{C T} D$ are the same. (In the complex case, the characteristic roots of $M N$ are the same as those of $N M$; from the isomorphism used above between $n \times n$ quaternion matrices and $2 n \times 2 n$ complex matrices, this result is seen to carry over). Therefore, from $\S 5$, there exists a polynomial $f(x)$ with real coefficients such that $B_{1} D$ $=f\left(D B_{1}{ }^{C T}\right)$ and $D B_{1}=f\left(B_{1}{ }^{C T} D\right)$ and so $D B_{1}=f\left(B_{1}{ }^{C T} D\right)=D^{-1} f\left(D B_{1}{ }^{C T}\right) D$ $=D^{-1} B_{1} D D$ or $D^{2} B_{1}=B_{1} D^{2}$. Since D has positive diagonal elements, $D B_{1}=B_{1} D$. Since $D B_{1}{ }^{C T} B_{1} D=B_{1} D \cdot D B_{1}{ }^{C T}$, then $B_{1}{ }^{C T} B_{1}=B_{1} B_{1}{ }^{C T}$ and B_{1} is a normal quaternion matrix which commutes with the (normal) real diagonal matrix D. There exists a quaternion unitary matrix W_{1} which diagonalizes each simultaneously; there also exist unitary matrices W_{2} and W_{3} so that $W_{2} B_{4} W_{3}$ is a real diagonal matrix. By multiplying D_{1} and C_{1} each on the left and right, respectively, by the matrices

$$
\left[\begin{array}{cl}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right], \quad\left[\begin{array}{cc}
W_{1}{ }^{C T} & 0 \\
0 & W_{3}
\end{array}\right]
$$

the theorem follows.

References

1. J. L. Brenner, Matrices of quaternions, Pac. J. Math., 1 (1951), 229-335.
2. C. Eckart and G. Young, A principal axis transformation for non-hermitian matrices, Bull. Amer. Math. Soc., 45 (1939), 118-121.
3. G. Frobenius, Ueber lineare Substitutionen und bilineare Formen, J. reine angew. Math., 84 (1878), 1-63.
4. H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Royal Irish Academy, 52, Section A, no. 117 (1949), 253-260.
5. H. Taber, On the matrix equation $\phi \Omega=\Omega \phi$, Proc. Amer. Acad. Arts. Sci., 26 (1890-1891), 64-66; On a theorem of Sylvester's relating to non-degenerate matrices, 27 (1891-1892), 46-56.
6. N. Wiegmann, Normal products of matrices, Duke Math. J., 15 (1948), 633-638.
7. J. Williamson, A polar representation of singular matrices, Bull. Amer. Math. Soc., 41 (1935), 118-123.
8. J. Williamson, Note on a principal axis transformation for non-hermitian matrices, Bull. Amer. Math., Soc., 45 (1939), 920-922.
9. A. Wintner and F. Murnaghan, On a polar representation of non-singular square matrices, Proc. Nat. Acad. Sci., U.S.A., 17 (1931), 676-678.
10. L. A. Wolf, Similarity of matrices in which the elements are real quaternions, Bull. Amer. Math. Soc., 42 (1936), 737-743.

Catholic University, Washington, D.C.

[^0]: Received April 30, 1954.

