Canad. Math. Bull. Vol. 44 (3), 2001 pp. 266-269

Extension of Maps to Nilpotent Spaces

M. Cencelj and A. N. Dranishnikov

Abstract. We show that every compactum has cohomological dimension 1 with respect to a finitely generated nilpotent group G whenever it has cohomological dimension 1 with respect to the abelianization of G. This is applied to the extension theory to obtain a cohomological dimension theory condition for a finite-dimensional compactum X for extendability of every map from a closed subset of X into a nilpotent CW-complex M with finitely generated homotopy groups over all of X.

1 Dimension Over Nilpotent Groups

Recall that for a group *G* and a space *X* the cohomological dimension $\dim_G X$ is defined by $\dim_G X \leq n$ whenever $X \tau K(G, n)$ (this is Kuratowski's notation for the case every map from a closed subspace of *X* to K(G, n) can be extended over all of *X*). Since all homotopy groups in dimension ≥ 2 are abelian, for a non-abelian group *G* the cohomological dimension $\dim_G X$ can only take values 0, 1 or ∞ .

Theorem 1 For a finitely generated nilpotent group G the following equality holds for every compactum X:

$$\dim_G X = \dim_{\operatorname{Ab} G} X_{\mathcal{A}}$$

where Ab G means the abelianization of G; for a non-abelian G this equality holds if on the right-hand side we identify all dimensions greater than 1 with infinity.

In order to prove this theorem we generalize Bockstein's basis theory to finitely generated nilpotent groups. For such a group *G* define a family $\tilde{\sigma}(G) \subset \{\mathbb{Z}\} \cup \{\mathbb{Z}_p; p \text{ prime}\}$, where $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, by: $\mathbb{Z} \in \tilde{\sigma}(G)$ whenever G_0 (the group *G* localized at 0) is non-trivial and $\mathbb{Z}_p \in \tilde{\sigma}(G)$ whenever G_p (the group *G* localized at the prime *p*) is non-trivial.

Proposition 2 Let G be a nilpotent group of class k and denote by $\Gamma^i G$ the *i*-th group of the lower central series of G. Then there is an inclusion

$$\tilde{\sigma}(\Gamma^k G) \subset \tilde{\sigma}(G/\Gamma^k G).$$

Proof Localizing the exact sequence

 $1 \to \Gamma^k(G) \to G \to G/\Gamma^k(G) \to 1$

The second author was supported in part by NSF grant DMS-997109.

AMS subject classification: Primary: 55M10, 55S36; secondary: 54C20, 54F45.

Keywords: cohomological dimension, extension of maps, nilpotent group, nilpotent space.

©Canadian Mathematical Society 2001.

Received by the editors September 9, 1999.

with respect to a prime *p* we obtain the exact sequence

$$1 \to \Gamma^k(G)_p \to G_p \to \left(G/\Gamma^k(G)\right)_p \to 1$$

which can be written also as

(1)
$$1 \to \Gamma^k(G_p) \to G_p \to G_p / \Gamma^k(G_p) \to 1.$$

Note that $\Gamma^i(G)_p = \Gamma^i(G_p)$, for every positive integer *i*. If $\mathbb{Z}_p \in \tilde{\sigma}(\Gamma^k(G))$ then $\Gamma^k(G)_p \neq 1$ and $G_p/\Gamma^k(G_p) = 1$, which is equivalent to $\mathbb{Z}_p \notin \tilde{\sigma}(G/\Gamma^k(G))$, would lead to $1 \neq \Gamma^k(G_p) = G_p$ which contradicts the fact that *G* (and thus G_p) is nilpotent.

The above holds also for localization at p = 0 with the group \mathbb{Z}_p replaced by \mathbb{Z} in this case.

Proposition 3 Let G be a nilpotent group of class k. Then

$$\tilde{\sigma}(G) = \tilde{\sigma}(G/\Gamma^k(G)).$$

Proof If $\mathbb{Z}_p \in \tilde{\sigma}(G/\Gamma^k(G))$ then $(G/\Gamma^k(G))_p \neq 1$ and thus $G_p \neq 1$ implying $\mathbb{Z}_p \in \tilde{\sigma}(G)$. If $\mathbb{Z}_p \in \tilde{\sigma}(G)$ then $G_p \neq 1$ implying that $(G/\Gamma^k(G))_p \neq 1$ or $\Gamma^k(G)_p \neq 1$. In the former case obtain $\mathbb{Z}_p \in \tilde{\sigma}(G/\Gamma^k(G))$ immediately, in the latter case apply Proposition 2 to G_p and obtain the same result.

From the structure of finitely generated abelian groups we directly obtain the following proposition.

Proposition 4 For a finitely generated abelian group G and any compactum X the cohomological dimension $\dim_G X$ equals the maximum of $\dim_H X$ over all $H \in \tilde{\sigma}(G)$.

We generalize this proposition to nilpotent groups (with dimension taking only values 0, 1 or ∞ if the group is non-abelian).

Proposition 5 If G is a finitely generated nilpotent group then

$$\dim_G X = \max\{\dim_H X; H \in \tilde{\sigma}(G)\}.$$

Proof Let *G* be nilpotent of class *k* and we prove the proposition by induction on *k*. The exact sequence

$$1 \to \Gamma^k(G) \to G \to G/\Gamma^k(G) \to 1$$

gives rise to the fibration

$$K(\Gamma^k(G), 1) \to K(G, 1) \to K(G/\Gamma^k(G), 1).$$

It is a well-known fact that for a fibration $F \to E \to B$ the properties $X\tau B$ and $X\tau F$ imply $X\tau E$. Thus

$$\dim_G X \leq \max\{\dim_{\Gamma^k(G)} X, \dim_{G/\Gamma^k(G)} X\}$$

Since $\Gamma^k(G)$ is abelian and $G/\Gamma^k(G)$ is nilpotent of class k-1, the inductive assumption implies that the maximum above equals to

$$\max\left\{\max\{\dim_H X; H \in \tilde{\sigma}(\Gamma^k(G))\}, \max\{\dim_H X; H \in \tilde{\sigma}(G/\Gamma^k(G))\}\right\}.$$

By Proposition 2 this equals to

$$\max\left\{\dim_{H} X; H \in \tilde{\sigma}(G/\Gamma^{k}(G))\right\}$$

and by Proposition 3 this equals to

$$\max\{\dim_H X; H \in \tilde{\sigma}(G)\}.$$

Proof of Theorem 1 First show that $X\tau K(G, 1)$ implies $X\tau K(Ab G, 1)$ for an arbitrary group *G*. From [1] (Theorem 6) it follows that $X\tau SP^{\infty} K(G, 1)$, by [2], [3], we obtain $X\tau K(H_1(K(G, 1)), 1)$ which is equivalent to $X\tau K(Ab G, 1)$.

Now we show the opposite inequality. Proposition 5 implies that $\dim_G X$ is less or equal to

$$\max\{\dim_H X; H \in \tilde{\sigma}(G)\} = \max\{\dim_H X; H \in \tilde{\sigma}(Ab G)\}\$$

(the latter equality follows from Proposition 3) which equals to $\dim_{Ab G} X$.

2 Extension of Maps

First we prove a version of the Hurewicz theorem in cohomological dimension theory.

Theorem 6 Let M be a nilpotent CW-complex with finitely generated homotopy groups and X a compactum. Then the following are equivalent:

dim_{H_i(M)} X ≤ k for every k > 0;
dim_{π_i(M)} X ≤ k for every k > 0.

Proof Let $\pi_k = \pi_k(M)$ and $H_k = H_k(M; \mathbb{Z})$. Define $h(G) = \{\min k : G \in \tilde{\sigma}(H_k)\}$ and $\pi(G) = \{\min k : G \in \tilde{\sigma}(\pi_k)\}$. Note that given any generalized Serre class \mathcal{C} of groups and any positive integer *k* one obtains the Hurewicz theorem modulo \mathcal{C} from Theorem II.2.16 of [4] applied to the *k*-th stage of the Postnikov system. Thus, in particular, for the generalized Serre class of groups whose elements have finite order we obtain $h(\mathbb{Z}) = \pi(\mathbb{Z})$. From the Hurewicz theorem modulo the generalized Serre class of groups whose elements have orders q^k , for q prime different from p, we obtain $h(\mathbb{Z}_p) = \pi(\mathbb{Z}_p)$.

Let us show that 2 implies 1. Proposition 5 implies that $\dim_{H_k} X = \dim_G X$ for some group $G \in \tilde{\sigma}(H_k)$. Therefore $l = h(G) \leq k$. From $h(G) = \pi(G)$ we obtain

$$\dim_G X \leq \dim_{\pi_l} X \leq l \leq k.$$

The other implication can be proved similarly.

As a corollary we obtain the following variation of the main theorem of [1].

Theorem 7 For any nilpotent CW-complex M with finitely generated homotopy groups and finite-dimensional compactum X, the following are equivalent:

- 1. *X*τ*M*;
- 2. $X\tau \operatorname{SP}^{\infty} M$;
- 3. dim_{$H_i(M)$} $X \le i$ for every i > 0;
- 4. dim_{$\pi_i(M)$} $X \leq i$ for every i > 0.

Proof The proof follows the original proof of [1] except in the step $3 \Rightarrow 4$ which follows from the Theorem 6 above.

References

- A. N. Dranishnikov, Extension of mappings into CW-complexes. Mat. Sb. (9) 182(1991), 1300–1310; in English, Math. USSR-Sb. (1) 74(1993), 47–56.
- [2] Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. (2) 67(1958), 239–281.
- [3] Peter Hilton, Homotopy theory and duality. Gordon and Breach, New York, 1965.
- [4] Peter Hilton, Guido Mislin and Joseph Roitberg, *Localization of Nilpotent Groups and Spaces*. North-Holland, Amsterdam, 1975.

IMFM University of Ljubljana P. O. B. 2964 SI-1001 Ljubljana Slovenia e-mail: matija.cencelj@uni-lj.si Pennsylvania State University Mathematics Department 218 McAllister Building University Park, Pennsylvania 16802 U.S.A. e-mail: dranish@math.psu.edu 269