
JFP 15 (5): 771–796, 2005. c© 2005 Cambridge University Press

doi:10.1017/S095679680500554X Printed in the United Kingdom

771

Typed λ-calculi with one binder

FAIROUZ KAMAREDDINE

School of Mathematical and Computer Sciences, Heriot-Watt University,

Riccarton, Edinburgh EH14 4AS, Scotland

http://www.macs.hw.ac.uk/˜fairouz

(e-mail: fairouz@macs.hw.ac.uk)

Abstract

Type theory was invented at the beginning of the twentieth century with the aim of avoiding

the paradoxes which result from the self-application of functions. λ-calculus was developed in

the early 1930s as a theory of functions. In 1940, Church added type theory to his λ-calculus

giving us the influential simply typed λ-calculus where types were simple and never created by

binders (or abstractors). However, realising the limitations of the simply typed λ-calculus, in

the second half of the twentieth century we saw the birth of new more powerful typed λ-calculi

where types are indeed created by abstraction. Most of these calculi use two binders λ and Π to

distinguish between functions (created by λ-abstraction) and types (created by Π-abstraction).

Moreover, these calculi allow β-reduction but not Π-reduction. That is, (πx:A.B)C → B[x := C]

is only allowed when π is λ but not when it is Π. This means that, modern systems do not

allow types to have the same instantiation right as functions. In particular, when b has

type B, the type of (λx:A.b)C is taken immediately to be B[x := C] instead of (Πx:A.B)C .

Extensions of modern type systems with both Π-reduction and type instantiation have

appeared in (Kamareddine, Bloo and Nederpelt, 1999; Kamareddine and Nederpelt, 1996;

Peyton-Jones and Meijer, 1997). This makes the λ and Π very similar and hence leads to

the obvious question: why not use a unique binder instead of the λ and Π? This makes

more sense since already, versions of de Bruijn’s Automath unified λ and Π giving more

elegant systems. This paper studies the main properties of type systems with unified λ and Π.

1 Introduction

In Church’s simply typed λ-calculus, the function which takes f : �→ � and x : �
and returns f(f(x)) is given below together with its type:

doubling function on � λf:�→�.λx:�.f(f(x))

type of doubling function on � (�→ �)→ (�→ �)

If we want the same function on booleans B, we would need to write:

doubling function on B λf:B→B.λx:B.f(f(x))

type of doubling function on B (B → B)→ (B → B)

Instead of repeating the work, we can bind the varying type α. So, if we let α : ∗
stand for “α is a type” (any type), we can define the polymorphic doubling function

in the polymorphic λ-calculus, as follows:

polymorphic doubling function λα:∗.λf:α→α.λx:α.f(f(x)).

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

772 F. Kamareddine

Now, we can instantiate α to what we need:

• α = � then: (λα:∗.λf:α→α.λx:α.f(f(x)))� = λf:�→�.λx:�.f(f(x)).

• α = B then: (λα:∗.λf:α→α.λx:α.f(f(x)))B = λf:B→B.λx:B.f(f(x)).
• α = (B → B) then: (λα:∗.λf:α→α.λx:α.f(f(x)))(B → B) =

λf:(B→B)→(B→B).λx:(B→B).f(f(x)).

So, types (like terms) can be abstracted over and can be passed as arguments. The

types of the new polymorphic terms are given by a new binder usually written as ∀
or Π. We use Π. The type of the polymorphic doubling function is:

type of polymorphic doubling function Πα:∗.(α→ α)→ (α→ α).

Hence, unlike simple types, modern non-simple types have similar features to

functions. In particular, like functions, types can be:

• Created by abstraction. Functions are created via λ where λx:A.B stands for

the function from A to B which given a ∈ A returns B[x := a] (i.e., B where

a is substituted for x); and types are created via Π where Πx:A.B stands for

the type of the functions from A to ∪a∈AB[x := a] which given a ∈ A return

fa ∈ B[x := a]. For example, the type ΠA:∗.A→ A of the polymorphic identity

function λA:∗.λy:A.y, is obtained by taking any type A and returning the type

A→ A of the identity function on A, λy:A.y.

• Instantiated. For example, if A above is the set of natural numbers � then we

are concerned with the identity function over � whose type is A → A where

A is substituted by � (written (A→ A)[A := �]), i.e. �→ �.

Looking at the behaviour of λ and Π, it seems questionable why one needs two

different binders. In fact, in the literature, there were several attempts to unify the

binders λ and Π in type systems:

• Sometimes, in his Automath, de Bruijn identified the abstractions obtained

by λ and Π. He wrote [x : A]B for both λx:A.B and Πx:A.B. But what are

the properties of such type systems and is there a correspondence between

ordinary type systems and those where abstractions are identified?

• Others (Kamareddine, Bloo and Nederpelt, 1999; Kamareddine and Nederpelt,

1996; Peyton-Jones and Meijer, 1997) argued that Π-reduction and β-reduction

should be both allowed. That is, (Πx:AB)C →Π B[x := C] and (λx:AB)C →β

B[x := C] should be both allowed. Moreover, Π-reduction was a main feature

of Automath (de Bruijn, 1970). When de Bruijn did not identify λ and Π,

he gave Π-terms the same instantiation power as λ-terms and allowed Π-

reduction. In some sense, adding Π-reduction to a type system has similar effect

as replacing the λ and Π by a unique binder.
• In a private communication, during his PhD studies, Laan attempted to unify

binders in the cube, however, no progress was made there except stating

(without any proof) a generation lemma and a weaker form of isomorphism.
• Coquand (Coquand, 1985) first presented the calculus of constructions using de

Bruijn’s identification of binders. However, he did not investigate the connec-

tion with type systems where binders have not been identified, nor did he

establish how contexts, terms and types behave under the exchange of binders.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 773

• De Groote (de Groote, 1993) defined a system λλ which departs from the usual

systems as in for example, the Barendregt cube (Barendregt, 1992), in the sense

that degrees are no longer restricted to 0, 1, 2 or 3. The system λλ uses the

same binder λ for both λ and Π.

Despite the above-mentioned work, modern type systems with unified binders

have still not been investigated. Although Kamareddine (Kamareddine, 2002) gave

a tutorial on functions and types in which unified binders also featured, this

unification concentrated on the concepts of parameters, definitions, Π-reduction and

explicit substitutions, and studied an extension containing all these concepts. This is

unsatisfactory since there is no agreement on which system of explicit substitution

should be used (or indeed whether one needs explicit substitution at all), and the

same holds for systems of definitions. So, how can the idea of unifying binders

be accepted if it is built on top of controversial calculi of definitions and explicit

substitutions? This paper fills these gaps and gives the first extensive account of

modern type systems (as we know them, without any controversial extensions) where

the λ and the Π are unified. We carry our study in Barendregt’s β-cube (Barendregt,

1992) which hosts eight influential type systems.

The paper is divided as follows. Section 2 presents the basic notions of reduction

and typing and relates flat terms (where binders are unified) to ordinary terms.

In Section 3 we review the β-cube and establish the properties of typing modulo

flattened binders. We show that in any typing judgement of the β-cube, λs and Πs

cannot be exchanged and hence, from the judgement itself, one can decide the status

of any binder. So, why use different binders when the typing judgement carries the

unique identity of a binder? In Section 4, we present the �-cube where both λ and

Π are written as �. We show that this �-cube satisfies all the desirable properties

except for the unicity of types. We also show that this �-cube is isomorphic to the

β-cube in the sense that for any typing judgement in the �-cube, there corresponds a

unique typing judgement in the β-cube. We show furthermore that despite the loss of

the unicity of types, all the different types of the same term obey the same pattern.

In Section 5, we discuss type checking and type inference. In Section 6, we discuss

Coquand’s calculus of constructions with unified binders. In Section 7 we conclude.

2 Notions of reduction and typing

In this section we present the basic notions of reduction and typing. We use two

basic sets of terms: the set T of typed terms as written in modern type systems and

the set T� where λ and Π have been flattened into the single binder �.

Definition 1

[Terms and translations] We let π range over {λ,Π}.

1. We define the set of terms T by: T ::= ∗ |� | V | πV:T.T |TT.

2. We define the set of �-terms (or terms when no confusion occurs) T� by:

T� ::= ∗ |� | V | �V:T�
.T� | T�T�.

3. For A ∈ T, we define A ∈ T� by: s ≡ s, x ≡ x, AB ≡ A B, πx:A.B ≡ �x:A.B.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

774 F. Kamareddine

4. Let A ∈ T�. We define [A] to be {A′ in T | A′ ≡ A}. We also define Aλ ∈ T
by: sλ ≡ s, xλ ≡ x, (AB)λ ≡ AλBλ and (�x:A.B)λ ≡ λx:Aλ .Bλ.

Note that, if A ∈ T then A ∈ [A]. Moreover, if A ∈ T� then Aλ ∈ [A].

Notation 2

We let s, s′, s1, etc. range over the sorts {∗,�}. We takeV to be a set of variables over

which, x, y, z, x1, etc. range. We divide V into two disjoint subsets V∗ and V�. We

use xs, ys, etc., to range over Vs. We assume that {∗,�}∩V = ∅. We take A, A1, A2,

B, a, b, etc. to range over bothT andT�. We use fv(A) to denote the free variables

of A, and A[x := B] to denote the substitution of all the free occurrences of x in A

by B. We assume familiarity with the notion of compatibility. As usual, we take terms

to be equivalent up to variable renaming and let ≡ denote syntactic equality. We

assume the Barendregt convention (BC) where names of bound variables are chosen

to differ from free ones in a term and where different abstraction operators bind

different variables. Hence, for example, we write (πy:A.y)x instead of (πx:A.x)x and

πx:A.πy:B.yz instead of πx:A.πx:B.xz. We also assume (BC) for contexts and typings so

that for example, if Γ � πx:A.B : C then x will not occur in Γ. We define subterms

in the usual way. For Λ ∈ {λ,Π, �}, we write Λxm:Am
. . .Λxn:An

.A as Λi:m..n
xi:Ai

.A.

2.1 Reduction

Definition 3

[Reductions]

• β-reduction →β is the compatible closure of (λx:A.B)C →β B[x := C].

• �-reduction →� is the compatible closure of (�x:A.B)C →� B[x := C].

• Π-reduction →Π is the compatible closure of (Πx:A.B)C →Π B[x := C].

• We define the union of reduction relations as usual. For example, βΠ-reduction

→βΠ, is the union of →β and →Π.

• Let r ∈ {β,Π, βΠ, �}. We define r-redexes in the usual way. Moreover:

— →→r is the reflexive transitive closure of →r and =r is the equivalence

closure of →r . We write
+→→r to denote one or more steps of r-reduction.

— If A→r B (resp. A→→r B), we also write B r← A (resp. B r←← A).

— We say that A is strongly normalising with respect to →r (we use the

notation SN→r
(A)) if there are no infinite →r-reductions starting at A.

— We say that A is in r-normal form if there is no B such that A→r B.

— We use nfr(A) to refer to the r-normal form of A if it exists.

Theorem 4 (Church-Rosser for T and →β/βΠ/�)

Let r ∈ {β, βΠ, �}.
If B1 r←← A→→r B2 then there exists C ∈ T such that B1 →→r C r←← B2.

Proof

For β see Barendregt (Barendregt, 1992). For βΠ see Kamareddine et al. (Kamared-

dine, Bloo and Nederpelt, 1999). For �, note that for A ∈ T�, A
λ ∈ T. �

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 775

Corollary 5

For r ∈ {β, βΠ, �}, r-normal forms are unique. Moreover,

if SN→�
(�i:1..nxi:Bi

.A), SN→�
(�j:1..myj :Cj

.A) and n = m then �i:1..nxi:Bi
.A =� �

j:1..m
yj :Cj

.A.

The next lemma will be used to connect the different kinds of terms.

Lemma 6

1. If A,B ∈ T then A[x := B] ≡ A[x := B].

2. Let A,B ∈ T� and R ∈ {→,→→}. If AR�B then for all A′ ∈ [A] there is B′ ∈ [B]

such that A′RβΠB
′.

3. Let A,B ∈ T, r ∈ {β, βΠ} and R ∈ {→,→→,=}. If ARrB then AR�B.

4. Let A ∈ T. a) If SN→βΠ
(A) then SN→�

(A).

b) If A is in βΠ-normal form then A is in �-normal form.

5. Let r ∈ {β, βΠ} and A ∈ T�.

a) If SN→�
(A) then SN→r

(A′) for all A′ ∈ [A].

b) If A is in �-normal form then A′ is in r-normal form for all A′ ∈ [A].

6. Let A ∈ T. A is in βΠ-normal form if and only if A is in �-normal form.

Proof

1. By induction on the structure of A.

2. →�: induction on A→� B using 1. →→�: induction on the length of A→→� B.

3. →r and →→r: similar to 2. =r: use Church-Rosser and the property for →→r .

4. 2 maps any →�-path from A into the same length →βΠ-path from A ∈ [A].

5. 3 maps any →r-path from A′ ∈ [A] into the same length →
�
-path from A.

6. This is a corollary of 4 and 5 above. �

Remark 7

In Lemma 6.2 and 6.4, we cannot replace βΠ by β. For example:

• (�x:∗.x)y →� y and (Πx:∗.x)y ∈ [(�x:∗.x)y] but (Πx:∗.x)y is in β-normal form.

• (�x:∗.xy)(�z:∗.z)→→� y and (λx:∗.xy)(Πz:∗.z) ∈ [(�x:∗.xy)(�z:∗.z)]

but (λx:∗.xy)(Πz:∗.z) →→β C where C ∈ [y].

• SN→β
((Πx:∗.xx)(Πx:∗.xx)) but it is not the case that SN→�

((�x:∗.xx)(�x:∗.xx)).

The next lemma relates normal forms in T and T�.

Lemma 8

1. If SN→βΠ
(πi:1..n

xi:Ci
.A), SN→βΠ

(πj:1..m
yj :Dj

.B), A ≡ B and n = m then πi:1..n
xi:Ci

.A =βΠ

π
j:1..m
yj :Dj

.B.

2. Let SN→βΠ
(A). a) nfβΠ(A) ≡ nf�(A). b) If A ≡ B then nfβΠ(A) ≡ nfβΠ(B).

Proof

1. By Lemma 6,4 SN→�
(�i:1..n

xi:Ci
.A) and SN→�

(�j:1..m
yj :Dj

.B). If πi:1..n
xi:Ci

.A =βΠ π
j:1..m
yj :Dj

.B, then

by Lemma 6.3, �i:1..n
xi:Ci

.A =� �
j:1..m

yj :Dj
.B ≡ �

j:1..m

yj :Dj
.A, contradicting Corollary 5.

2. a) By Lemma 6.4, SN→�
(A). By Lemma 6.6, nfβΠ(A) is in �-normal form. By

Lemma 6.3, A→→� nfβΠ(A). By Corollary 5, nfβΠ(A) ≡ nf�(A).

b) By Lemma 6.4, SN→�
(A) and SN→�

(B). As B ∈ [A], by Lemma 6.5,

SN→βΠ
(B). Since nf�(A) ≡ nf�(B), by a) nfβΠ(A) ≡ nfβΠ(B). �

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

776 F. Kamareddine

(axiom) 〈〉 � ∗ : �

(start)
Γ � A : s xs ∈ dom (Γ)

Γ, xs:A � xs : A

(weak)
Γ � A : B Γ � C : s xs ∈ dom (Γ)

Γ, xs:C � A : B

(Π)
Γ � A : s1 Γ, x:A � B : s2 (s1, s2) ∈ R

Γ � Πx:A.B : s2

(λ)
Γ, x:A � b : B Γ � Πx:A.B : s

Γ � λx:A.b : Πx:A.B

(convβ)
Γ � A : B Γ � B′ : s B =β B′

Γ � A : B′

(appl)
Γ � F : Πx:A.B Γ � a : A

Γ � Fa : B[x:=a]

Fig. 1. Typing rules with two binders λ and Π.

2.2 Typing

Definition 9

[Declarations, contexts, ⊆]

1. A declaration d is of the form x : A. We define var(d) ≡ x, type(d) ≡ A, and

fv(d) = fv(A). We let d, d′, d1, . . . range over declarations.

2. A context Γ is a concatenation of declarations d1, d2, · · · , dn such that if i = j

then var(di) ≡ var(dj). We define dom (Γ) = {var(d) | d ∈ Γ} and use 〈〉 to

denote the empty context. We let Γ,∆,Γ′,Γ1, . . . range over contexts.

3. Assume Γ is a context such that x ∈ dom (Γ). We define the substitution of A

for x on Γ, denoted Γ[x := A], inductively as follows:

〈〉[x := A] ≡ 〈〉, and (Γ′, y : B)[x := A] ≡ Γ′[x := A], y : B[x := A].

4. We define ⊆ between contexts as the least reflexive transitive relation closed

under: Γ,∆ ⊆ Γ, d,∆.

We extend the translations in Definition 1 to contexts as follows:

• In T: 〈〉 ≡ 〈〉 Γ, x : A ≡ Γ, x : A.

• In T�: [Γ] ≡ {Γ′ | Γ′ ≡ Γ}.

Since we want to assess unified binders in a variety of type systems, we chose

to use the eight powerful systems of Barendregt’s β-cube. In the β-cube of Bar-

endregt (Barendregt, 1992), eight well-known type systems are given in a uniform

way. The weakest system is Church’s simply typed λ-calculus β→ (Church, 1940),

and the strongest system is the Calculus of Constructions βC (Coquand, 1988).

The second order λ-calculus (Girard, 1972; Reynolds, 1974) figures on the β-cube

between β→ and βC (cf. Figure 2). Moreover, via the Propositions-as-Types principle

(see (Howard, 1980)), many logical systems can be described in the β-cube.

The β-cube has two sorts ∗ (the set of types) and � (the set of kinds) where

∗ : �. If A : ∗ (resp. A : �) we say A is a type (resp. a kind). All systems of the

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 777

����

����
����

����
β→ βP

β2 βP2

βω
βPω

βC
βω

� �

��

� �

��

�

�

���
(∗,�) ∈ R

(�,�) ∈ R

(�, ∗) ∈ R

Fig. 2. Barendregt’s β-cube.

β-cube have the same typing rules (cf. Figure 1) but differ by the set R of pairs of

sorts (s1, s2) allowed in the type-formation or Π-formation rule, (Π). Each system has

its own set R such that (∗, ∗) ∈ R ⊆ {(∗, ∗), (∗,�), (�, ∗), (�,�)}. With rule (Π), the

β-cube factorises the expressive power of βC into three features: polymorphism, type

constructors, and dependent types:

• (∗, ∗) is basic. All the β-cube systems have this rule.

• (�, ∗) takes care of polymorphism. β2 is the weakest system on the β-cube

that features this rule.

• (�,�) takes care of type constructors. βω is the weakest system on the β-cube

that features this rule.

• (∗,�) takes care of term dependent types. βP is the weakest system on the

β-cube that features this rule.

These features make the β-cube an excellent bed for testing unified binders. Since we

will give another cube (the �-cube), we refer to each system of Figure 2 according

to the cube we are in. So, βC resp. �C , is the calculus of constructions of the β-cube

resp. the �-cube. Now we give basic notions of type systems:

Definition 10

[Statements, judgements]

1. Γ � A : B is a judgement which states that A has type B in context Γ. When Γ

is empty, we simply write � A : B.

2. Γ is �-legal (or simply legal) if there exist A,B where Γ � A : B.

3. A is �-legal (or simply legal) if there exist Γ, B where Γ � A : B ∨ Γ � B : A.

4. A is Γ �-legal (or simply Γ-legal) if there exists B where Γ � A : B∨Γ � B : A.

2.3 Desired Lemmas for Type Systems

Lemma 11 (Free Variable Lemma for � and →r)

1. If x : A and y : B are different elements in a legal context Γ, then x ≡ y.

2. If Γ1, x : A,Γ2 � B : C then fv(A) ⊆ dom (Γ1) and

fv(B), fv(C) ⊆ dom (Γ1, x : A,Γ2).

Lemma 12 (Start/Context Lemma for � and →r)

If Γ is �-legal then

1. Γ � ∗ : � and for all x : A ∈ Γ, Γ � x : A.

2. If Γ ≡ Γ1, x : A,Γ2 then Γ1 � A : s for some sort s.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

778 F. Kamareddine

Lemma 13 (Thinning Lemma for � and →r)

If Γ and ∆ are �-legal, Γ ⊆ ∆, and Γ � A : B then ∆ � A : B.

Lemma 14 (Substitution Lemma for � and →r)

Let Γ, x : A,∆ be �-legal.

If Γ, x : A,∆ � B : C and Γ � a : A then Γ,∆[x := a] � B[x := a] : C[x := a].

Lemma 15 (Generation Lemma for � and →r)

1. If Γ � s : C then s ≡ ∗ and C ≡ �.

2. If Γ � x : C then for some s, A, x : A ∈ Γ, C =r A, x ≡ xs and Γ � C : s.

3. If r = β then

(a) If Γ � λx:A.B : C then for some D, s, Γ � Πx:A.D : s; Γ, x:A � B : D;

Πx:A.D =β C and if Πx:A.D ≡ C then Γ � C : s′ for some sort s′.

(b) If Γ � Πx:A.B : C then there is (s1, s2) ∈ R such that Γ � A : s1,

Γ, x:A � B : s2, C =β s2 and if C ≡ s2 then Γ � C : s for some sort s.

(c) If Γ � Fa : C then there are A,B such that Γ � F : Πx:A.B, Γ � a : A and

C =β B[x:=a] and if C ≡ B[x:=a] then Γ � C : s for some s.

4. If r = � then

(a) If Γ � �x:A.B : C then only one of the following holds:

i Either there are s and D where Γ � �x:A.D : s; Γ, x:A � B : D;

�x:A.D =� C and if �x:A.D ≡ C then Γ � C : s′ for some sort s′.

ii Or there is (s1, s2) ∈ R such that Γ � A : s1, Γ, x:A � B : s2, C =� s2
and if C ≡ s2 then Γ � C : s for some sort s.

(b) If Γ � Fa : C then there are A,B such that Γ � F : �x:A.B, Γ � a : A and

C =� B[x:=a] and if C ≡ B[x:=a] then Γ � C : s for some s.

Lemma 16 (Correctness of types for � and →r)

If Γ � A : B then (B ≡ � or Γ � B : s for some sort s).

Lemma 17 (Subject Reduction for � and →r)

If Γ � A : B and A→→r A
′ then Γ � A′ : B.

Lemma 18 (Reduction preserves types for � and →r)

If Γ � A : B and B →→r B
′ then Γ � A : B′.

Lemma 19 (Strong Normalisation for � and →r)

If A is �-legal then SN→r
(A).

Lemma 20 (Typability of subterms for � and →r)

If A is �-legal and B is a subterm of A, then B is �-legal.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 779

Lemma 21 (Unicity of Types for � and →r)

1. If Γ � A : B1 and Γ � A : B2, then B1 =r B2.

2. If Γ � A1 : B1 and Γ � A2 : B2 and A1 =r A2, then B1 =r B2.

3. If Γ � B1 : s, B1 =r B2 and Γ � A : B2 then Γ � B2 : s.

3 The β-cube and typing modulo flattened binders

Definition 22

[The β-cube] The β-cube has terms T and the reduction relation →β . We use �β to

denote type derivation in the β-cube given by the rules of Figure 1. Sometimes, we

annotate �β with particular systems. For example, �βC is type derivation in βC , the

calculus of constructions of the β-cube.

All of Lemmas 11..21 hold for the β-cube (see Barendregt (Barendregt, 1992)).

Moreover, we have the next lemma, which enables us to freely interchange β and

βΠ for �β-legal terms.

Lemma 23

1. Γ �β � : A, Γ �β AB : �, Γ �β λx:A.B : s and Γ �β (Πx:A.B)a : C .

2. If Γ �β A : B then all of Γ, A and B are free of Π-redexes.

3. Let A be �β-legal and R ∈ {→,→→}. ARβΠA
′ if and only if ARβA

′.

4. Let A,A′ be �β-legal. A =βΠ A′ if and only if A =β A′.

5. Let A be �β-legal.

(a) A is in βΠ-normal form if and only if A is in β-normal form.

(b) nfβΠ(A) ≡ nfβ(A).

(c) SN→βΠ
(A) if and only if SN→β

(A).

(d) If A ≡ A′ and A is in β-normal form then A′ is in β-normal form.

Proof

1. See Barendregt (Barendregt, 1992).

2. First we show by induction on the derivation Γ1, x : D,Γ2 �β E : F that if E

and a are free of Π-redexes, Γ1,x : D,Γ2 �β E : F andΓ1 �β a : D, thenE[x := a]

is free of Π-redexes. We only do the (appl) case. Take a and E ′b (hence E ′

and b) free of Π-redexes, Γ1 �β a : D and let Γ1, x : D,Γ2 �β E ′b : F ′[y:=b]

come from Γ1, x : D,Γ2 �β E ′ : Πy:E ′′ .F
′ and Γ1, x : D,Γ2 �β b : E ′′.

By IH, E ′[x := a] and b[x := a] are free of Π-redexes.

By Lemma 14, Γ1,Γ2[x := a] �β E ′[x := a]b[x := a] : F ′[y:=b][x := a].

By 1., E ′[x := a]b[x := a] is not a Π-redex. Hence, (E ′b)[x := a] is free

of Π-redexes.

Now, we show 2 by induction on Γ �β A : B. We only do the (appl) case. If

Γ �β Fa : B′[x:=a] comes from Γ �β F : Πx:A′ .B
′ and Γ �β a : A′, by IH,

Γ, F, a, A′ and B′ are free of Π-redexes. By 1., Fa is not a Π-redex. Hence,

Γ and Fa are free of Π-redexes. Since Γ �β a : A′, Γ, x : A′ �β B′ : s (by

Lemmas 16 and 15 on Γ �β F : Πx:A′ .B
′), and a, B′ are free of Π-redexes, then

by what we first proved above, B′[x := a] is free of Π-redexes.

3. For →, use 2. For A→→βΠ A′ implies A→→β A′, use induction on the length of

A→→βΠ A′ (by Lemmas 17 and 18, if A→→β C then C is �β-legal).

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

780 F. Kamareddine

4. Use Church–Rosser and 3.

5. (a) and (c): Corollary of 3. (d): Use (a), Lemma 6.4, and Lemma 6.5.

(b) By Lemma 17 or 18 and (a), nfβ(A) is �β-legal and in βΠ-normal form.

By Corollary 5, nfβ(A) ≡ nfβΠ(A). �

The normal forms of �β-legal terms follow an organised pattern:

Lemma 24

Assume Γ �β A1 : B1, Γ �β A2 : B2 and A1 ≡ A2.

1. If A1, A2, B1, B2 are in β-normal form then for some 0 � n1, n2 � m:

• A1 ≡ λi:1..n1

xi:Fi
.Πi:n1+1..m

xi:Fi
.C , A2 ≡ λi:1..n2

xi:Fi
.Πi:n2+1..m

xi:Fi
.C , where C ≡ ∗ or C ≡

xL1 · · ·Lk for k � 0,

• B1 ≡ Πi:1..n1

xi:Fi
.D, B2 ≡ Πi:1..n2

xi:Fi
.D, where Γ, x1 : F1, . . . , xm : Fm �β C : D.

2. nfβ(B1) ≡ Πi:1..n1

xi:Fi
.D and nfβ(B2) ≡ Πi:1..n2

xi:Fi
.D where n1, n2 � 0.

3. If B1 ≡ s1 and B2 ≡ s2 then s1 ≡ s2 and nfβ(A1) ≡ nfβ(A2).

Proof

1. By induction on the structure of A1 in β-normal form.

• A1 ≡ � is not possible by Lemma 23.1.

• If A1 is x or ∗ then take n1 = n2 = m = 0, C ≡ A1 ≡ A2 and D ≡ B1 ≡ B2

(by unicity of types B1 =β B2 and as B1, B2 are in β-normal form, B1 ≡ B2).

• If for 1 � p � 2, Ap ≡ Πx1:Ep
.Gp where E1 ≡ E2 and G1 ≡ G2, by

generation, ∃(sp, s′p) such that Γ �β Ep : sp, Γ, x1 : Ep �β Gp : s′p and Bp ≡ s′p
(B1, B2 in β-normal form). By IH, E1 ≡ Πi:1..l

yi:Ki
.R ≡ E2 (let F1 ≡ E1 ≡ E2),

G1 ≡ Πi:1..r
xi+1:Fi+1

.H ≡ G2 and s′1 ≡ s′2 (let D ≡ s′1 ≡ s′2) where H ≡ ∗ or

H ≡ xL1 · · ·Lk for k � 0, Γ, x1 : F1, x2 : F2, . . . , xr+1 : Fr+1 �β H : D and

r � 0. Let m = r + 1. Then, A1 ≡ Πi:1..m
xi:Fi

.H ≡ A2 and B1 ≡ B2 ≡ D.

• If for 1 � p � 2, Ap ≡ λx1:Ep
.Gp where E1 ≡ E2 and G1 ≡ G2, by generation,

∃Hp, sp where Γ �β Πx1:Ep
.Hp : sp, Γ, x1 : Ep �β Gp : Hp and Bp ≡ Πx1:Ep

.Hp

(by Lemmas 19, 17 and 18, we take Hp in β-normal form). By generation,

∃s′p where Γ �β Ep : s′p. By IH, E1 ≡ E2 (let F1 ≡ E1 ≡ E2) and for

0 � np � m:

— Gp ≡ λ
i:1..np
xi+1:Fi+1

.Π
i:np+1..m
xi+1:Fi+1

.C where C is ∗ or xL1 · · ·Lk , for k � 0,

— Hp ≡ Π
i:1..np
xi+1:Fi+1

.D, where Γ, x1 : F1, x2 : F2, . . . , xm+1 : Fm+1 �β C : D.

Hence, Ap ≡ λx1:F1
.Gp ≡ λ

i:1..np+1
xi:Fi

.Π
i:np+2..m+1
xi:Fi

.C where 1 � np + 1 � m + 1.

• If A1 ≡ λx1:E1
.G1, A2 ≡ Πx1:E2

.G2, E1 ≡ E2 and G1 ≡ G2, by generation:

— ∃H, s where Γ �β Πx1:E1
.H : s, Γ, x1 : E1 �β G1 : H and B1 ≡ Πx1:E1

.H

(by Lemmas 19, 17 and 18, take H in β-normal form).

— ∃(s′1, s′2) where Γ �β E2 : s′1, Γ, x1 : E2 �β G2 : s′2 and B2 ≡ s′2.

— ∃s1 where Γ �β E1 : s1, and by IH, E1 ≡ E2. Let F1 ≡ E1 ≡ E2.

By IH, G1 ≡ λi:1..nxi+1:Fi+1
.Πi:n+1..m

xi+1:Fi+1
.C , G2 ≡ Πi:1..m

xi+1:Fi+1
.C (by Lemma 23.1, G2

is not the form λx:E.F), H ≡ Πi:1..n
xi+1:Fi+1

.s′2 where C ≡ ∗ or C ≡ xL1 · · ·Lk

for k � 0, and Γ, x1 : F1, x2 : F2, . . . , xm+1 : Fm+1 �β C : s′2. Hence,

A1 ≡ λi:1..n+1
xi:Fi

.Πi:n+2..m+1
xi:Fi

.C , A2 ≡ Πi:1..m+1
xi:Fi

.C , B1 ≡ Πi:1..n+1
xi:Fi

.s′2 and B2 ≡ s′2.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 781

• A1 ≡ Πx1:E1
.G1, A2 ≡ λx1:E2

.G2 where E1 ≡ E2 and G1 ≡ G2 is similar.

• If for 1 � p � 2, Ap ≡ xLp1 · · ·Lpk where k � 0 and L1i ≡ L2i for 1 � i � k:

— If k = 0, by generation B1 ≡ B2. Take n1 = n2 = m = 0, C ≡ x and

D ≡ B1 ≡ B2.

— If k = 0, by generation Γ �β xLp1 · · ·Lp(k−1) : Πy:Cp
.Dp and Γ �β Lpk : Cp.

By IH, xL11 · · ·L1(k−1) ≡ xL21 · · ·L2(k−1) and Πy:C1
.D1 ≡ Πy:C2

.D2.

Hence, C1 ≡ C2 and L1i ≡ L2i for 1 � i � k−1. By IH on Γ �β Lpk : Cp,

L1k ≡ L2k . Hence, A1 ≡ A2 ≡ xL1 · · ·Lk and by generation B1 ≡ B2.

2. By Lemma 19, SN→β
(Ap) and SN→β

(Bp) for 1 � p � 2. By Lemmas 17 and 18,

Γ �β nfβ(Ap) : nfβ(Bp). By Lemmas 8.2 and 23.5, nfβ(A1) ≡ nfβ(A2). By 1,

nfβ(B1) ≡ Πi:1..n1

xi:Ai
.D and nfβ(B2) ≡ Πi:1..n2

xi:Ai
.D where n1, n2 � 0.

3. By Lemma 19, SN→β
(Ap) for 1 � p � 2. By Lemma 17, Γ �β nfβ(Ap) : sp. By

1. above, nfβ(A1) ≡ nfβ(A2) and s1 ≡ s2. �

The next lemma relates legal contexts and terms of the same class: λs and Πs cannot

be exchanged in legal contexts, nor in the types of a term, nor in the terms belonging

to a type. This is basic for the isomorphism of both cubes.

Lemma 25

Assume Γ �β A1 : B1 and Γ �β A2 : B2.

1. If A1 ≡ A2 and B1 =β B2 then A1 ≡ A2 and B1 ≡ B2.

2. If B1 ≡ s1, B2 ≡ s2 and A1 ≡ A2 then A1 ≡ A2 and s1 ≡ s2.

3. If Γ1 and Γ2 are �β-legal and if Γ1 ≡ Γ2 then Γ1 ≡ Γ2.

4. If B1 ≡ B2 then B1 ≡ B2.

5. If A1 ≡ A2 and B1 ≡ B2 then A1 ≡ A2 and B1 ≡ B2.

6. If B1 ≡ s1, B2 ≡ s2, A1 =� A2 then A1 =β A2.

Proof

1. By Lemma 24.1 for 1 � p � 2, Ap ≡ λ
i:1..np
xi:Fi

.Π
i:np+1..m
xi:Fi

.C and Bp ≡ Π
i:1..np
xi:Fi

.D. As

Bp is �β-legal and B1 =β B2, by Lemmas 19 and 23.(5 and 4), SN→βΠ
(Bp) and

B1 =βΠ B2. By Lemma 8.1, n1 = n2. So, A1 ≡ A2 and B1 ≡ B2.

2. By Lemma 24.3, s1 ≡ s2. By 1 above, A1 ≡ A2.

3. By induction on the length of Γ1 using start/context Lemma 12 and 2 above.

4. If B1 ≡ � then B2 ≡ � and B1 ≡ B2. If B1 ≡ � then B2 ≡ � and by

correctness of types, Γ �β B1 : s1 and Γ �β B2 : s2. Hence, by 2, B1 ≡ B2.

5. By 4 above, B1 ≡ B2. Hence, by 1 above, A1 ≡ A2.

6. By Church–Rosser A1 →→� C �←← A2. By Lemma 6.2, ∀i, 1 � i � 2 then ∃Di

where Di ≡ C and Ai →→βΠ Di. Since Ai is �β-legal by Lemma 23.3 Ai →→β Di.

By Lemma 17, Γ � Di : si. By 2 above, D1 ≡ D2. So, A1 =β A2. �

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

782 F. Kamareddine

(axiom) 〈〉 � ∗ : �

(start)
Γ � A : s xs ∈ dom (Γ)

Γ, xs:A � xs : A

(weak)
Γ � A : B Γ � C : s xs ∈ dom (Γ)

Γ, xs:C � A : B

(�1)
Γ � A : s1 Γ, x:A � B : s2 (s1, s2) ∈ R

Γ � �x:A.B : s2

(�2)
Γ, x:A � b : B Γ � �x:A.B : s

Γ � �x:A.b : �x:A.B

(conv�)
Γ � A : B Γ � B′ : s B =� B

′

Γ � A : B′

(appl�)
Γ � F : �x:A.B Γ � a : A

Γ � Fa : B[x:=a]

Fig. 3. Typing rules with one binder.

4 The �-cube: Identifying λ and Π in the cube

Definition 26

[The �-cube] The �-cube has T� as the set of terms and �-reduction →� for the

reduction relation. We use �� to denote type derivation in the �-cube given by the

rules of Figure 3. If needed, we annotate �� with particular systems. For example,

��C is type derivation in �C , the calculus of constructions of the �-cube.

Lemmas 11.14 hold for the �-cube and have the same proofs as in the β-cube. Next

we prove Lemma 15 for the �-cube. Note the unicity clause in 3 which allows one

to easily unpack the status of a � as a λ or a Π:

Proof

(Of Generation Lemma 15 for the �-cube)

1. By induction on the derivation Γ �� E : C where E ≡ s.

2. By induction on the derivation Γ �� E : C where E ≡ x.

4(a). By induction on the derivation Γ �� E : C where E ≡ �x:A.B. We only do

the interesting cases. Assume Γ �� �x:A.B : C comes from:

— (�1): then ii holds. Moreover, i is impossible in this case since otherwise,

there is D such that �x:A.D =� s2 which is impossible by Church-Rosser.

— (�2): then i holds where C ≡ �x:A.D. If also ii holds then there is (s1, s2)

such that �x:A.D =� s2 which is impossible by Church–Rosser.

4(b). By induction on the derivation Γ �� E : C where E ≡ Fa. �

Also, Lemmas 16.18 and 20 hold for the �-cube and have the same proofs as

those for the β-cube. Before showing strong normalisation Lemma 19 and before

discussing unicity of types Lemma 21, we will establish the isomorphism of the

�-cube and the β-cube. First, we write the rules of Figure 3, in a syntax-directed

fashion as in Figure 4, which gives a type checking algorithm for the �-cube. We

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 783

(tc1) 〈〉 � ∗ : �

(tc2)
Γ � A : s xs ∈ dom (Γ)

Γ, xs : A � ∗ : �

(tc3)
Γ � C : s xs : A ∈ Γ A =� C

Γ � xs : C

(tc4)
C =� s2 Γ � A : s1 Γ, x : A � B : s2 (s1, s2) ∈ R C ≡ s2 ⇒ Γ � C : s

Γ � �x:A.B : C

(tc5)
C =� �x:A.D Γ � �x:A.D : s Γ, x : A � B : D C ≡ �x:A.D ⇒ Γ � C : s′

Γ � �x:A.B : C

(tc6)
Γ � F : �x:A.B Γ � a : A C =� B[x := a] C ≡ B[x := a]⇒ Γ � C : s

Γ � Fa : C

Fig. 4. Type checking in the syntax-directed version of the rules of the �-cube.

use ��tc to denote type derivation using the rules of Figure 4. Note that rules (tc4)

and (tc5) do not overlap since by Church–Rosser we cannot have both C =� s2 and

C =� �x:A.D. Below, we show that �� and ��tc are equivalent.

Lemma 27

Γ �� A : B if and only if Γ ��tc A : B.

Proof

“if”: by induction on Γ ��tc A : B using Lemma 12.

“only if”: by induction on Γ �� A : B using 1 and 2 below which we show by

induction on Γ ��tc A : B.

1. If Γ ��tc A : B, Γ ⊆ Γ′ and Γ′ ��tc ∗ : � then Γ′ ��tc A : B.

2. If Γ ��tc A : B, Γ ��tc B′ : s and B =� B′ then Γ ��tc A : B′. �

Hence, we use �� for both �� and ��tc. Next, we give an algorithm to construct for

each Γ �� A : B, a triple (Γ′, A′, B′) ∈ [Γ]× [A]× [B] such that Γ′ �β A′ : B′.

Definition 28

Let Γ �� A : B. We define (Γ �� A : B)−1 ∈ [Γ]× [A]× [B] by:

(〈〉 �� ∗ : �)−1 = (〈〉, ∗,�)

(Γ, xs : A �� ∗ : �)−1 = (Γ′, xs : A′, ∗,�) where (Γ �� A : s)−1 = (Γ′, A′, s)

(Γ �� xs : C)−1 = (Γ′, xs, C ′) where (Γ �� C : s)−1 = (Γ′, C ′, s)

(Γ �� �x:A.B : C)−1 =

{
(Γ′,Πx:A′ .B

′, C ′) if C =� s2 and i.

(Γ′, λx:A′ .B
′, C ′) if C =� �x:A.D and ii.

(Γ �� Fa : C)−1 = (Γ′, F ′a′, C ′) where iii.
Where i, ii, and iii are as follows:

i all the following hold:

— (Γ �� A : s1)
−1 = (Γ′, A′, s1) for some s1 where (s1, s2) ∈ R,

— (Γ, x : A �� B : s2)
−1 = (Γ′′, x : A′′, B′, s2) and

— if C ≡ s2 then C ′ ≡ s2 else

if C ≡ s2 then (Γ �� C : s)−1 = (Γ′′′, C ′, s) for some s.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

784 F. Kamareddine

ii all the following hold:

— (Γ �� �x:A.D : s)−1 = (Γ′, πx:A′ .D
′, s) for some s,

— (Γ, x : A �� B : D)−1 = (Γ′′, x : A′′, B′, D′′) and

— if C ≡ �x:A.D then C ′ ≡ Πx:A′ .D
′, else

if C ≡ �x:A.D then (Γ �� C : s′)−1 = (Γ′′′, C ′, s′) for some s′.

iii for some A,B where C =� B[x := a], all the following hold:

— (Γ �� F : �x:A.B)−1 = (Γ′, F ′, πx:A′ .B
′),

— (Γ �� a : A)−1 = (Γ′′, a′, A′′) and

— if C ≡ B[x := a] then C ′ ≡ B′[x := a′], else

if C ≡ B[x := a] then (Γ �� C : s)−1 = (Γ′′′, C ′, s) for some s.

Lemma 29

The following hold:

1. If (Γ �� A : B)−1 = (Γ′, A′, B′) then (Γ′, A′, B′) ∈ [Γ]× [A]× [B].

2. If Γ �� A : B then there is (Γ′, A′, B′) such that (Γ �� A : B)−1 = (Γ′, A′, B′).

3. If (Γ �� A : B)−1 = (Γ′, A′, B′) then Γ′ �β A′ : B′.

4. If Γ �� A : B then (Γ �� A : B)−1 is unique.

Proof

1. By induction on the derivation of (Γ �� A : B)−1 = (Γ′, A′, B′) according to

Definition 28 (use Lemma 6.1 in the last clause).

2. By induction on the derivation Γ �� A : B using the rules of Figure 4 (use 1,

in (tc5) and (tc6)).

3. By induction on the derivation of (Γ �� A : B)−1 = (Γ′, A′, B′) according to

Definition 28.
• Case (〈〉 �� ∗ : �)−1 = (〈〉, ∗,�), trivial.

• Let (Γ, xs : A �� ∗ : �)−1 = (Γ′, xs : A′, ∗,�) where (Γ �� A : s)−1 =

(Γ′, A′, s). By IH, Γ′ �β A′ : s and by Lemma 12, Γ′ �β ∗ : �. Since

Γ, xs : A �� ∗ : �, then xs ∈ dom (Γ). By 1., Γ′ ∈ [Γ] and so xs ∈ dom

(
Γ′

)
.

Hence, by (weak) Γ′, xs : A′ �β ∗ : �.

• Let (Γ �� xs : C)−1 = (Γ′, xs, C ′) where (Γ �� C : s)−1 = (Γ′, C ′, s). By IH,

Γ′ �β C ′ : s. Since Γ �� xs : C , by generation, there is xs : A ∈ Γ where

A =� C . Let xs : A′ ∈ Γ′ where A′ ∈ [A]. By 1, Γ′ ∈ [Γ] and C ′ ∈ [C]. As

Γ′ is �β-legal, by Lemmas 12 and 15, Γ′ �β xs : A′ and Γ′ �β A′ : s. By

Lemma 25.6 A′ =β C ′. Hence, by (convβ) Γ′ �β xs : C ′.

• Let (Γ �� �x:A.B : C)−1 = (Γ′,Πx:A′ .B
′, C ′) where C =� s2 and:

— (Γ �� A : s1)
−1 = (Γ′, A′, s1) for some s1 where (s1, s2) ∈ R.

— (Γ, x : A �� B : s2)
−1 = (Γ′′, x : A′′, B′, s2).

— If C ≡ s2 then C ′ ≡ s2 else

if C ≡ s2 then (Γ �� C : s)−1 = (Γ′′′, C ′, s) for some s.
By IH, Γ′ �β A′ : s1 and Γ′′, x : A′′ �β B′ : s2. By 1., Γ′,Γ′′ ∈ [Γ], A′, A′′ ∈ [A]

and B′ ∈ [B]. By Lemma 12 Γ′′ �β A′′ : s′′. By Lemma 25.3 Γ′ ≡ Γ′′. By

Lemma 25.2, A′ ≡ A′′. By (Π), Γ′ �β Πx:A′ .B
′ : s2. If C ≡ s2 then C ′ ≡ s2

and Γ′ �β Πx:A′ .B
′ : C ′. If C ≡ s2 then since (Γ �� C : s)−1 = (Γ′′′, C ′, s),

by IH Γ′′′ �β C ′ : s and by 1, Γ′′′ ∈ [Γ] and C ′ ∈ [C]. By Lemma 25.3

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 785

Γ′ ≡ Γ′′′. As C =� s2, C →→� s2. By Lemmas 6.2 and 23.3 C ′ →→β s2. Since

Γ′ �β C ′ : s, Γ′ �β Πx:A′ .B
′ : s2 and C ′ =β s2, by (convβ), Γ

′ �β Πx:A′ .B
′ : C ′.

• Let (Γ �� �x:A.B : C)−1 = (Γ′, λx:A′ .B
′, C ′) where C =� �x:A.D and:

— (Γ �� �x:A.D : s)−1 = (Γ′, πx:A′ .D
′, s) for some s.

— (Γ, x : A �� B : D)−1 = (Γ′′, x : A′′, B′, D′′).
— if C ≡ �x:A.D then C ′ ≡ Πx:A′ .D

′, else

if C ≡ �x:A.D then (Γ �� C : s′)−1 = (Γ′′′, C ′, s′) for some s′.
By IH, Γ′ �β πx:A′ .D

′ : s and Γ′′, x : A′′ �β B′ : D′′. By 1., Γ′,Γ′′ ∈ [Γ],

A′, A′′ ∈ [A], B′ ∈ [B] and D′, D′′ ∈ [D]. By Lemma 15 Γ′ �β A′ : s′′ and

Γ′′ �β A′′ : s′′′. By Lemma 25.(3, 2) Γ′ ≡ Γ′′ and A′ ≡ A′′. By Lemma 23.1

Γ′ �β λx:A′ .D
′ : s so Γ′ �β Πx:A′ .D

′ : s. By Lemma 15 Γ′, x : A′ �β D′ : s.

Since D′′ ≡ � (else D′ ≡ � and Γ′, x : A′ �β � : s absurd by Lemma 23.1),

by Lemma 16 Γ′, x : A′ �β D′′ : s1. By Lemma 25.2 D′ ≡ D′′. By (λ) Γ′ �β
λx:A′ .B

′ : Πx:A′ .D
′. If C ≡ �x:A.D then C ′ ≡ Πx:A′ .D

′ and Γ′ �β λx:A′ .B
′ : C ′.

If C ≡ �x:A.D, by IH, Γ′′′ �β C ′ : s′. By 1., Γ′′′ ∈ [Γ] and C ′ ∈ [C]. By

Lemma 25.3 Γ′ ≡ Γ′′′. By Lemma 25.6 C ′ =β Πx:A′ .D
′. Hence, by (convβ),

Γ′ �β λx:A′ .B
′ : C ′.

• Let (Γ �� Fa : C)−1 = (Γ′, F ′a′, C ′) where for some A and B such that

C = B[x := a], all the following hold:
— (Γ �� F : �x:A.B)−1 = (Γ′, F ′, πx:A′ .B

′),
— (Γ �� a : A)−1 = (Γ′′, a′, A′′) and
— if C ≡ B[x := a] then C ′ ≡ B′[x := a′], else

if C ≡ B[x := a] then (Γ �� C : s)−1 = (Γ′′′, C ′, s) for some s.
By IH, Γ′ �β F ′ : πx:A′ .B

′ and Γ′′ �β a′ : A′′. By 1, Γ′,Γ′′ ∈ [Γ], A′, A′′ ∈ [A],

B′ ∈ [B], F ′ ∈ [F] and a′ ∈ [a]. By Lemma 25.3 Γ′ ≡ Γ′′. By Lemma 16

Γ′ �β πx:A′ .B
′ : s′ and by Lemma 23.1 π = Π. By Lemma 15 Γ′ �β

A′ : s′′. Moreover, A′′ ≡ � (else A′ ≡ � and Γ′ �β � : s′′ absurd by

Lemma 23.1). By Lemma 16 Γ′ �β A′′ : s′′′. By Lemma 25.2, A′ ≡ A′′. By

(appl) Γ′ �β F ′a′ : B′[x := a′]. If C ≡ B[x := a] then C ′ ≡ B′[x := a′]

and Γ′ �β F ′a′ : C ′. If C ≡ B[x := a] then by IH Γ′′′ �β C ′ : s and by 1,

Γ′′′ ∈ [Γ] and C ′ ∈ [C]. By Lemma 25.3 Γ′ ≡ Γ′′′. By Lemmas 15 and 14

Γ′ �β B′[x := a′] : s′. Recall that C =� B[x := a] and by Lemma 6.1

B′[x := a′] ≡ B[x := a]. Hence by Lemma 25.6 C ′ =β B′[x := a′]. Finally,

by (convβ), Γ′ �β F ′a′ : C ′.
4. Let (Γ �� A : B)−1 = (Γ1, A1, B1) and (Γ �� A : B)−1 = (Γ2, A2, B2). By 1.,

(Γ1, A1, B1), (Γ2, A2, B2) ∈ [Γ]×[A]×[B]. By 3., Γ1 �β A1 : B1 and Γ2 �β A2 : B2.

By Lemma 25.3 Γ1 ≡ Γ2 and by Lemma 25.5 A1 ≡ A2 and B1 ≡ B2. �

The next theorem shows the isomorphism between the �-cube and the β-cube.

It also says that given a typing judgement in terms of �, this judgement can be

uniquely written in terms of λ and Π. This means that the semantic meaning of all

the subterms of Γ, A and B of the judgement Γ �� A : B is preserved.

Theorem 30

1. If Γ �β A : B then Γ �� A : B.

2. If Γ �� A : B then

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

786 F. Kamareddine

• there exists a unique Γ′ ∈ [Γ] such that Γ′ is �β-legal, and

• there exist unique A′ ∈ [A], unique B′ ∈ [B] such that Γ′ �β A′ : B′.
Moreover, Γ′, A′ and B′ are constructed by −1 where (Γ �� A : B)−1 =

(Γ′, A′, B′).

Proof
1. By induction on the derivation Γ �β A : B.
2. By Lemma 29, let (Γ′, A′, B′) ∈ [Γ] × [A] × [B] such that (Γ �� A : B)−1 =

(Γ′, A′, B′). Again by Lemma 29, Γ′ �β A′ : B′. By Lemma 25.3, Γ′ is the unique

�β-legal element of [Γ]. By Lemma 25.5, (A′, B′) is unique in [A] × [B] such

that Γ′ �β A′ : B′. �

Strong normalisation for the �-cube can be established directly as for the β-cube,

or indirectly via Theorem 30. Below, we give the indirect proof.

Lemma 31 (Strong Normalisation for �� and →�)
If A is ��-legal then SN→�

(A).

Proof
Since A is legal, Γ �� A : B or Γ �� B : A. If Γ �� B : A, by Lemma 16, A ≡ �
(and SN→�

(A)) or Γ �� A : s. Hence, we only do the proof for Γ �� A : B. By

Theorem 30, Γ′ �β A′ : B′ for Γ′ ≡ Γ, A′ ≡ A and B′ ≡ B. By Lemma 19, SN→β
(A′).

By Lemma 23.5, SN→βΠ
(A′). By Lemma 6.4, SN→�

(A). �

Hence, all the properties of the β-cube (except for unicity of types), hold indeed for

the �-cube. What about unicity of types? This does not hold since �x:A.B represents

both λx:A′ .B
′ and Πx:A′ .B

′ which may both be typable. In other words, �x:A.B can

have two types C and D where C =� D. Here is an example:

Example 32
1. Using (�,�): �β λx:∗.x : Πx:∗.∗ and �� �x:∗.x : �x:∗.∗.

Using (�, ∗): �β Πx:∗.x : ∗ and �� �x:∗.x : ∗.
Note: �x:∗.∗ =� ∗.

2. Using (�, ∗) and (�,�): �β λx:∗.Πy:∗.y : Πx:∗.∗ and �� �x:∗.�y:∗.y : �x:∗.∗.
Using (�, ∗): �β Πx:∗.Πy:∗.y : ∗ and �� �x:∗.�y:∗.y : ∗.
Using (�,�): �β λx:∗.λy:∗.y : Πx:∗.Πy:∗.∗ and �� �x:∗.�y:∗.y : �x:∗.�y:∗.∗.
Note: Πx:∗.λy:∗.y is not typable and ∀A ≡ B ∈ {�x:∗.∗, ∗, �x:∗.�y:∗.∗}, A =� B.

3. If A ≡ �x1:∗.�x2:�y:C .∗.�x3:C.�x4:x2x3
.x2x3 then �� A : B for any B in the

set {�x1:∗.�x2:�y:C .∗.�x3:C.�x4:x2x3
.∗, �x1:∗.�x2:�y:C .∗.�x3:C.∗, �x1:∗.�x2:�y:C .∗.∗, �x1:∗.∗, ∗}.

(Note that you need the necessary (s1, s2) ∈ R.) In the β-cube, the only

possible judgements �β A′ : B′ where A′ ∈ [A] are as follows:

�β λx1:∗.λx2:Πy:C .∗.λx3:C.λx4:x2x3
.x2x3 : Πx1:∗.Πx2:Πy:C .∗.Πx3:C.Πx4:x2x3

. ∗
�β λx1:∗.λx2:Πy:C .∗.λx3:C.Πx4:x2x3

.x2x3 : Πx1:∗.Πx2:Πy:C .∗.Πx3:C. ∗
�β λx1:∗.λx2:Πy:C .∗.Πx3:C.Πx4:x2x3

.x2x3 : Πx1:∗.Πx2:Πy:C .∗. ∗
�β λx1:∗.Πx2:Πy:C .∗.Πx3:C.Πx4:x2x3

.x2x3 : Πx1:∗. ∗
�β Πx1:∗.Πx2:Πy:C .∗.Πx3:C.Πx4:x2x3

.x2x3 : ∗

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 787

As can be seen, we can relate the types of the same �-term. First, a definition:

Definition 33

Let Λ ∈ {Π, �}.

• We say A1
�.
Λ A2 iff A1 ≡ Λi:1..n1

xi:Fi
.B and A2 ≡ Λi:1..n2

xi:Fi
.B, where n1, n2 � 0.

• Note that if A1
�.
Π A2 then A1

�.
� A2

• Let SN→�
(A1) and SN→�

(A2). We say A1
�
=� A2 iff nf�(A1)

�.
� nf�(A2).

Now, look at the types of the �-terms in Example 32. Note that the types of �x:∗.x

are related by
�.
�. That is, �x:∗.∗ �.� ∗. Similarly, all the types of �x:∗.�y:∗.y are related

by
�.
�. In fact, for all A,B ∈ {�x:∗.∗, ∗, �x:∗.�y:∗.∗}, we have A

�.
� B. So, it seems that

�.
�

will be the relation satisfied by all the types of the same �-term. We must however

take this relation modulo =� as is usual in the cube, due to the conversion rule

(conv�). First, we need the next lemma:

Lemma 34

1. If Γ �� A : B then � does not occur in A. 2. Γ �� Fa : �.

Proof

1. By induction on the derivation Γ �� A : B. 2. Assume Γ �� Fa : �. By

Lemma 15, Γ �� F : �x:A.B, Γ �� a : A and � =� B[x := a]. Hence,

B[x := a]→→� �. By Lemmas 16 and 15, Γ �� �x:A.B : s and Γ, x : A �� B : s′.

By Lemmas 14 and 17, Γ �� B[x := a] : s′ and Γ �� � : s′ contradicting 1. �

Now, Lemma 21 becomes:

Lemma 35 (Organised multiplicity of Types for �� and →�)

1. If Γ �� A : B1 and Γ �� A : B2, then B1
�
=� B2.

2. If Γ �� A1 : B1 and Γ �� A2 : B2 and A1 =� A2, then B1
�
=� B2.

3. If Γ �� B1 : s1, B1 =� B2 and Γ �� A : B2 then Γ �� B2 : s1.

4. Assume Γ �� A : B1 and (Γ �� A : B1)
−1 = (Γ′, A′, B′1). Then B1 =� B2 if:

(a) either Γ �� A : B2, (Γ �� A : B2)
−1 = (Γ′, A′′, B′2) and B′1 =β B′2,

(b) or Γ �� C : B2, (Γ �� C : B2)
−1 = (Γ′, C ′, B′2) and A′ =β C ′.

Proof

1. By Theorem 30, there are unique Γ′ ∈ [Γ], A1, A2 ∈ [A], B′1 ∈ [B1] and

B′2 ∈ [B2] such that Γ′ �β A1 : B′1 and Γ′ �β A2 : B′2 (by Lemma 25.3, we

take the same Γ′ in both judgements). By Lemma 24.2, nfβ(B
′
1)
�.
Π nfβ(B

′
2).

Hence, nfβ(B
′
1)
�.
� nfβ(B

′
2). Since for 1 � i � 2, B′i is �β-legal, by Lemma 19,

SN→β
(B′i) and by Lemma 23.5, SN→βΠ

(B′i) and nfβ(B
′
i) ≡ nfβΠ(B′i). Hence,

nfβΠ(B′1)
�.
� nfβΠ(B′2) and by Lemma 8.2, nf�(B

′
1)
�.
� nf�(B

′
2). So, B1

�
=� B2.

2. By Church–Rosser, there is an A3 such that A1 →→� A3 �←← A2. By subject

reduction, Γ �� A3 : B1 and Γ �� A3 : B2. Hence by 1, B1
�
=� B2.

3. By (conv�), Γ �� A : B1. By 1, nf�(B1)
�.
� nf�(B2). For 1 � p � 2, let nf�(Bp) ≡

�
i:1..np
xi:Fi

.C where np � 0. If B2 ≡ � then B1 →→� � and by subject reduction,

Γ �� � : s1, absurd by Lemma 34.1. Hence, B2 ≡ � and by correctness of

types, ∃s2 such that Γ �� B2 : s2. By subject reduction, Γ �� nf�(B1) : s1 and

Γ �� nf�(B2) : s2. By n1 (resp. n2) generations, for s′ =� s1 and s′′ =� s2,

Γ, x1 : F1, . . . , xn1
: Fn1

�� C : s′ and Γ, x1 : F1, . . . , xn2
: Fn2

�� C : s′′.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

788 F. Kamareddine

Properties β-cube �-cube

Church–Rosser yes yes

Correctness of types yes yes

Typability of subterms yes yes

Subject reduction yes yes

Unicity of types yes organised patterned multiplicity

Strong normalisation yes yes

Fig. 5. Comparing the β-cube and the �-cube.

• If n1 � n2, by thinning, Γ, x1 : F1, . . . , xn2
: Fn2

�� C : s′. By 1, s′
�.
� s′′.

• If n1 � n2, by thinning, Γ, x1 : F1, . . . , xn1
: Fn1

�� C : s′′. By 1, s′
�.
� s′′.

Hence, s′ ≡ s′′. Since s′ =� s1 and s′′ =� s2, we get s1 ≡ s2 and Γ �� B2 : s1.

4. (a) By Lemma 29 B′1 ≡ B1 ∧ B′2 ≡ B2. As B′1 =β B′2, by Lemma 6.3 B1 =� B2.

(b) Γ′ is unique by Lemma 25.3. By Lemma 29 Γ′ �β A′ : B′1 ∧ Γ′ �β C ′ : B′2∧
B′1 ≡ B1 ∧ B′2 ≡ B2. By Lemmas 21 and 6.3, B′1 =β B′2 and B1 =� B2. �

This lemma means that the �-cube works as expected. We do not want that a �-term

which represents a λ-term gets the same type as a �-term which represents a Π-term.

The type of λx:A.B must have more abstractions than the type of Πx:A.B. In fact,

the type of a term decides if this term is λ- or a Π-term. Take Example 32.1, by

Theorem 30, �� �x:∗.x : �x:∗.∗ can only be written in one way using λ and Π instead

of �. The � in �x:∗.∗ must be Π (By Lemma 23, � λx:∗.∗ : s). Also, the � in �x:∗.x

must be λ (otherwise by generation, Πx:∗.∗ =β s absurd by Church–Rosser). In the

�-cube, we keep all the possibilities of a term open, but we have a relationship

between all the types of a term. As soon as a particular type is chosen, the term and

its type can be uniquely unpacked with λs and Π.

Figure 5 states that the �-cube has all the properties of the β-cube except unicity

of types which is replaced by an organised patterned multiplicity of types.

It is useful for the rest of the paper to classify terms according to degrees.

Definition 36

We follow (Barendregt, 1992) and define the degree of terms A denoted �(A) by:

�(�) = 3 �(∗) = 2 �(x�) = 1 �(x∗) = 0 �(�x:B.A) = �(AB) = �(A).

We say that A : B is ok if �(B) = �(A) + 1. We say that A : B is hok (hereditarily

ok) if it is ok and for every �x:C occurring in A or in B, we have x : C is ok.

The next lemma and its proof are adapted from Barendregt (Barendregt, 1992).

Lemma 37

1. If Γ �� A : � then �(A) = 2.

2. If Γ �� A : B and �(A) ∈ {0, 1} then B ≡ �.

3. If �(x) = �(a) then �(B[x := a]) = �(B).

4. If Γ �� A : B then A : B and every y : C in Γ are hok.

5. If �x:A.B is ��-legal then 1 � �(A) � 2 and �(B) � 2.

6. If A and A′ are ��-legal and A =� A′ then �(A) = �(A′).

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 789

Proof

1. is by induction on the derivation Γ �� A : �.

2. is by induction on the derivation Γ �� A : B.

3. is by induction on the structure of B.

4. is by induction on the derivation Γ �� A : B. For (appl�) use 3 both for

showing that Fa : B[x := a] is ok and that for any �y:C[x:=a] occurring in

B[x := a] we have that y : C[x := a] is ok. We only do the (conv�) case. Let

Γ �� A : B′ come from Γ �� A : B, Γ �� B′ : s and B =� B′. By Lemma 35.3,

Γ �� B : s. By IH, �(A) + 1 = �(B).

• If s ≡ � then by 1 above, �(B) = �(B′) = 2. Hence, �(A) + 1 = �(B′).

• If s ≡ ∗ then by 2 above, �(B) ∈ {0, 1}. By IH, �(B′) = �(∗)− 1 = 1. Since

�(A) + 1 = �(B), we deduce �(B) = 1 = �(B′). Hence, �(A) + 1 = �(B′).

5. By Lemmas 16 and 15, Γ, x : A �� B : D for some D. By Lemma 12, Γ �� A : s.

By 4., x : A, A : s and �x:A.B : C are ok. Hence, 1 � �(A) � 2 and �(B) � 2.

6. First, show that if A is ��-legal and A→→� A′ then �(A) = �(A′). Two cases:

• If Γ �� A : B, by Lemma 17, Γ �� A′ : B and by 4., �(A) = �(B)−1 = �(A′).

• If Γ �� B : A, by Lemma 18, Γ �� B : A′ and by 4., �(A) = �(B)+1 = �(A′).

If A =� A′ then by Church–Rosser A →→� C �←← A′. So, �(A) = �(C) =

�(A′). �

5 Type Checking/inference in the �-cube

Given Γ, A and B, type checking deals with the question “does Γ � A : B hold?”.

Given Γ and A, type inference deals with the question “is there a B where Γ � A : B

holds?” and infers such a B. The rules of Figure 4 give a type checking algorithm

for the �-cube. In this section we deal with type inference and with the connection

between type checking/inference in the β-cube and the �-cube. The next definition

gives a type inference class algorithm in the �-cube.

Definition 38

[Type Inference classes in the �-cube] We define tnf(Γ, A) ⊆ T� as follows:

tnf(Γ,�) = ∅
tnf(Γ, ∗) = {� | Γ �� ∗ : �}
tnf(Γ, xs) = {nf�(A) | xs : A ∈ Γ ∧ Γ �� A : s}
tnf(Γ, �x:A.B) = {�

x:nf�(A)
.C | C ∈ tnf(Γ, x : A,B) ∧ Γ �� �x:A.C : s′′}∪

{s′ ∈ tnf(Γ, x : A,B) | ∃s ∈ tnf(Γ, A) where (s, s′) ∈ R}
tnf(Γ, Fa) = {nf�(B[x := a]) | �x:A.B ∈ tnf(Γ, F) ∧ A ∈ tnf(Γ, a)}

Lemma 39

1. If B ∈ tnf(Γ, A) then B is in �-normal form and Γ �� A : B.

2. If Γ �� A : B then nf�(B) ∈ tnf(Γ, A).

3. tnf(Γ, A) = ∅ if and only if for every B, Γ �� A : B.

Proof

1. By induction on the structure of A.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

790 F. Kamareddine

2. By induction on the derivation Γ �� A : B where in (weak) we need:

“if Γ ⊆ Γ′, A is Γ ��-legal and Γ′ is ��-legal then tnf(Γ, A) = tnf(Γ′, A)”

which can be shown by induction on the structure of A (for this note that if

C ∈ tnf(Γ, x : D,E) then by 1., Γ, x : D �� E : C and hence Γ �� �x:D.C : s′′ ⇔
Γ′ �� �x:D.C : s′′).

3. follows from 1 and 2. �

This means that A is typable in context Γ if and only if tnf(Γ, A) = ∅. Moreover,

the normal form of any possible Γ-type of A is in tnf(Γ, A). Finally, all the infered

types are related by
�.
� and, when we type (�x:A.B)a, although we have many types

for �x:A.B, we only have one applicable type for a and hence, the number of types

of (�x:A.B)a will not grow beyond the number of types of �x:A.B:

Lemma 40

1. If B,C ∈ tnf(Γ, A) then B
�.
� C .

2. Let Fa be Γ ��-legal. There is a unique A ∈ tnf(Γ, a) where �x:A.B ∈ tnf(Γ, F).

3. If s, �
x:nf�(A)

.C ∈ tnf(Γ, �x:A.B) then C ≡ �i:1..nxi:Ai
.s where n � 0.

4. Let |S | stand for the size of set S . We have: |tnf(Γ, ∗)| � 1, |tnf(Γ, x)| � 1,

|tnf(Γ, Fa)| � |tnf(Γ, F)| and |tnf(Γ, �x:A.B)| � |tnf(Γ, x : A,B)|+ 1.

Proof

1. By Lemma 39.1, B,C are in �-normal form, Γ �� A : B and Γ �� A : C . By

Lemma 35.1, B
�
=� C . Hence, B

�.
� C .

2. As Fa is Γ ��-legal, Γ �� Fa : C or Γ �� C : Fa. By Lemma 16 we

assume Γ �� Fa : C . By lemma 39.2, tnf(Γ, Fa) = ∅. Hence, ∃A ∈ tnf(Γ, a)

where �x:A.B ∈ tnf(Γ, F). If D ∈ tnf(Γ, a) where �x:D.E ∈ tnf(Γ, F), by 1.,

�x:A.B
�.
� �x:D.E and so A ≡ D.

3. By 1 above, �
x:nf�(A)

.C
�.
� s. Hence, C ≡ �i:1..nxi:Ai

.s where n � 0.

4. For Fa use 2. For �x:A.B note that if s, s′ ∈ tnf(Γ, �x:A.B), by 1., s ≡ s′. �

Using Theorem 30 and Lemma 24 we can establish the following:

Lemma 41

If Γ �� A : B then nf�(A) ≡ �i:1..mxi:Fi
.C and nf�(B) ≡ �i:1..nxi:Fi

.D where 0 � n � m, and:

C ≡ ∗ or C ≡ xL1 · · ·Lk where k � 0 and Γ, x1 : F1, · · · xm : Fm �� C : D.

Proof

By Theorem 30, (Γ �� A : B)−1 = (Γ′, A′, B′) where Γ′ ≡ Γ, A′ ≡ A, B′ ≡ B and

Γ′ �β A′ : B′. By Lemma 24, nfβ(A
′) ≡ λi:1..nxi:F

′
i
.Πi:n+1..m

xi:F
′
i

.C ′ and nfβ(B
′) ≡ Πi:1..n

xi:F
′
i
.D′ where

0 � n � m,C ′ ≡ ∗ orC ′ ≡ xL′1 · · ·L′k where k � 0 and Γ′, x1 : F ′1, · · · xm : F ′m �β C ′ : D′.

Since A′, B′ are �β-legal, by Lemma 23.5 nfβ(A
′) ≡ nfβΠ(A′) and nfβ(B

′) ≡ nfβΠ(B′).

Let C ′ ≡ C , D′ ≡ D, for 0 � i � k Li ≡ Li, and for 0 � i � m F ′i ≡ Fi. By Lemma 8.2

and Theorem 30, nf�(A) ≡ �i:1..mxi:Fi
.C and nf�(B) ≡ �i:1..nxi:Fi

.D where 0 � n � m, C ≡ ∗ or

C ≡ xL1 · · ·Lk where k � 0 and Γ, x1 : F1, · · · xm : Fm �� C : D. �

Looking at Lemmas 40.3 and 41, one may wonder whether it is the case that:

if Γ �� �x:A.B : �i:1..nxi:Ai
.D where n � 1 then for all k, if 0 � k � n we have:

Γ �� �x:A.B : �i:1..kxi:Ai
.D. This however does not hold. Here is an example:

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 791

Example 42

1. y : ∗ �� �x:y.x : �x:y.y but y : ∗ �� �x:y.x : y.

2. If (�,�) ∈ R and (�, ∗) ∈ R then �� �x:∗.x : �x:∗.∗ but �� �x:∗.x : ∗.

Next, we show that type checking/inference in the �-cube is equivalent to type

checking/inference in the β-cube.

Lemma 43

Let r ∈ {β, �}. Let Πcr resp. Πir stand for type checking resp. type inference in the

r-cube. Πcβ is equivalent to Πc� and Πiβ is equivalent to Πi�.

Proof

Theorem 30 and Lemmas 29 and 39 help us prove the next equivalences:

1. Γ �� A : B if and only if {(Γ′, A′, B′) ∈ [Γ]× [A]× [B] | Γ′ �β A′ : B′} = ∅.
2. ∃B where Γ �� A : B if and only if

{(Γ′, A′) ∈ [Γ]× [A] | ∃B′ where Γ′ �β A′ : B′} = ∅.
3. Γ �β A : B if and only if Γ �� A : B and (Γ �� A : B)−1 = (Γ, A, B).

4. ∃B where Γ �β A : B if and only if

{C ∈ tnf(Γ, A) | (Γ �� A : C)−1 = (Γ, A, D)} = ∅.

By 1., Πc� reduces to Πcβ . By 2., Πi� reduces to Πiβ . By 3., Πcβ reduces to Πc�. By

4., Πiβ reduces to Πi�. �

6 Comparing with Coquand’s unification of binders

6.1 Coquand’s calculus of constructions with unified binders

Coquand (Coquand, 1985) first gave the calculus of constructions C∗ with unified

binders. He used de Bruijn’s notation [x : A]B for abstraction, but for uniformity,

we write his calculus with the �-binder. Note that Coquand’s calculus as presented

in this section may look quite different from the usual notation for the systems of

the cube. In Section 6.3, we present Coquand’s calculus in modern notation.

Coquand gave terms and contexts as follows:

T0/1/2 ::= T0 | T1 | T2

T0/1 ::= T0 | T1

T1/2 ::= T1 | T2

T0 ::= V∗ | �V:T1/2 .T0 | T0T0 | T0T1

T1 ::= V� | �V:T1/2 .T1 | T1T0 | T1T1

T2 ::= ∗ | �V:T1/2 .T2

Γ ::= 〈〉 | Γ,V :T1/2

We use the same convention for metavariables as in Notation 2. We may decorate

terms with superscripts to reflect the set they belong to (e.g., A0 ∈ T0 and

A1/2 ∈ T1/2). We write A2 � B2 if and only if “A2 ≡ �
x1:A

1/2
1

. . . �
xl :A

1/2
l

.∗, B2 ≡
�
x1:B

1/2
1

. . . �
xn:B

1/2
n
.∗ where l � n and A

1/2
i =� B

1/2
i for 1 � i � l”.

Coquand gave the typing rules of C∗ (cf. Figure 6) and proved Lemma 44 as

well as the strong normalisation theorem for C∗. We use �C∗ for type derivation in

Coquand’s C∗ according to the rules of Figure 6.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

792 F. Kamareddine

(axiomc) 〈〉 � ∗

(varc)
Γ1, x : A1/2,Γ2 � ∗

Γ1, x : A1/2,Γ2 � x : A1/2

(contc)
Γ � B1 : ∗ x∗ ∈ dom (Γ)

Γ, x∗:B1 � ∗
Γ � B2 x� ∈ dom (Γ)

Γ, x�:B2 � ∗

(Πc)
Γ, x : A1/2 � B1 : ∗
Γ � �x:A1/2 .B

1 : ∗
Γ, x : A1/2 � B2

Γ � �x:A1/2 .B
2

(λc)
Γ, x : A1/2 � b : B

Γ � �x:A1/2 .b : �x:A1/2 .B

(convc)
Γ � A : B1 Γ � C1 : ∗ B1 =b C

1

Γ � A : C1

Γ � A1 : B2 Γ � C2 B2 =b C
2

Γ � A1 : C2

(applc)
Γ � F : �x:A1/2 .B Γ � a : A1/2

Γ � Fa : B[x := a]

Fig. 6. Coquand’s typing rules for C∗.

Lemma 44

Let Φ range over A2, B1 : A2 and C0 : B1. The following holds:

1. If Γ1,Γ2 �C∗ Φ then Γ1 �C∗ ∗.
2. (a) If Γ �C∗ A0 : B1 and Γ �C∗ A0 : C1 then B1 =� C1.

(b) If Γ �C∗ A1 : B2 and Γ �C∗ A1 : C2 then either B2 � C2 or C2 � B2.

3. Assume every occurrence of x : D1/2 in Γ occurs also in Γ′ where Γ �C∗ ∗ and

Γ′ �C∗ ∗. If Γ �C∗ Φ then Γ′ �C∗ Φ.

4. If Γ �C∗ a : D1/2 and Γ, x : D1/2,Γ′ �C∗ Φ then Γ,Γ′[x := a] �C∗ Φ[x := a].

5. (a) If Γ �C∗ A0 : B1 then Γ �C∗ B1 : ∗.
(b) If Γ �C∗ A1 : B2 then Γ �C∗ B2.

6. (a) If Γ, x : D1,Γ′ �C∗ Φ and Γ �C∗ E1 : ∗ and D1 =� E1 then

Γ, x : E1,Γ′ �C∗ Φ.

(b) If Γ, x : D2,Γ′ �C∗ Φ and Γ �C∗ E2 and D2 =� E2 then

Γ, x : E2,Γ′ �C∗ Φ.

7. If Γ �C∗ B : A1/2 and B →→� B′ then Γ �C∗ B′ : A1/2.

Lemma 44.2 is related to Lemma 35.1. Below, we compare C∗ to �C further.

6.2 The isomorphism between Coquand’s calculus and �C

We simplify the presentation of C∗ by using a new calculus C� whose syntax is that

of C∗ together with the set T3 ::= � and whose typing rules are those of Figure 7.

As before, we use s to range over {∗,�} and from the superscript on s we can work

out what s stands for: s2 is ∗ and s3 is �. We use �C� to denote type derivation in

C�.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 793

(axiomc�) 〈〉 � ∗ : �

(varc�)
Γ1, x : A1/2,Γ2 � ∗ : �

Γ1, x : A1/2,Γ2 � x : A1/2

(contc�)
Γ � Bi : si+1 i ∈ {1, 2} xs ∈ dom (Γ)

Γ, xs:Bi � ∗ : �

(Π�
c)

Γ, x : A1/2 � Bi : si+1 i ∈ {1, 2}
Γ � �x:A1/2 .B

i : si+1

(λ�
c)

Γ, x : A1/2 � b : B B ≡ �

Γ � �x:A1/2 .b : �x:A1/2 .B

(convc�)
Γ � A : Bi Γ � Ci : si+1 Bi =� C

i i ∈ {1, 2}
Γ � A : Ci

(applc)
Γ � F : �x:A1/2 .B Γ � a : A1/2

Γ � Fa : B[x := a]

Fig. 7. The typing rules of C�.

We show that C�, C∗ and �C are isomorphic. First, we need to define translations

|.| and 〈.〉 between statements of C∗ and C� as follows:

|A2| = A2 : � |B : C| = B : C 〈B : C〉 =
{

B if C ≡ �
B : C otherwise

Note that |〈B : C〉| = B : C .

Lemma 45 (C∗ isomorphic to C�)

1. If Γ �C� A : B then Γ �C∗ 〈A : B〉.
2. Let Φ range over A2 : � and B : C . If Γ �C∗ Φ then Γ �C� |Φ|.

Proof

1. By induction on Γ �C� A : B. 2. By induction on Γ �C∗ Φ. �

The next lemma (used in Lemma 47) shows that the Tis classify terms of C�

according to their degrees and that ��-legal terms A ∈ T� belong to T�(A) of C�.

Lemma 46

1. For 0 � i � 3, Ti ⊆ T�.

2. For 0 � i � 3, �(Ai) = i.

3. If A is ��-legal then A ∈ T�(A).

4. If Γ �� A : s and �(A) = i then A ∈ Ti, s ∈ Ti+1 and i ∈ {1, 2}.

Proof

1. Obviously T3 ⊆ T�. Then, prove by induction on the structure of A that if

A ∈ T0/1/2 then A ∈ T�.

2. By induction on the structure of Ai ∈ Ti.

3. By induction on the structure of A. We only treat �x:B.C and Fa. Since A ≡ �
is ��-legal then Γ �� A : D for some Γ, D (use Lemma 16 if needed).

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

794 F. Kamareddine

• If A ≡ �x:B.C then by Lemma 37.5, 1 � �(B) � 2 and �(C) � 2. By IH,

B ∈ T�(B) ⊆ T1/2 and C ∈ T�(C) ⊆ T0/1/2. Hence, �x:B.C ∈ T�(C) =

T�(�x:B .C).
• If A ≡ Fa, by generation, Γ �� F : �x:B.C and Γ �� a : B. By Lemma 37.5,

�(B), �(C) � 2. By Lemma 37.4, �(a) = �(B)−1 � 1, and �(F) = �(C)−1 � 1.

By IH, F ∈ T�(F) ⊆ T0/1 and a ∈ T�(a) ⊆ T0/1. Hence, Fa ∈ T�(F) =

T�(Fa).
4. By Lemma 37.4, i = �(A) = �(s)− 1 ∈ {1, 2}. By 3, s ∈ Ti+1 and A ∈ Ti. �

Lemma 47 (C� isomorphic to �C)

Γ ��C A : B if and only if Γ �C� A : B.

Proof

“If” is by induction on the derivation Γ �C� A : B. Note by Lemma 46.1, for

0 � i � 3, Ti ⊆ T�. Also, in �C , for any s, s′, (s, s′) ∈ R. We only treat:

• (varc�). If Γ1, x : A1/2,Γ2 �C� x : A1/2 comes from Γ1, x : A1/2,Γ2 �C� ∗ : �,

by IH, Γ1, x : A1/2,Γ2 ��C ∗ : �. By Lemma 12, Γ1, x : A1/2,Γ2 ��C x : A1/2.

• (Π�
c). If Γ �C� �x:A1/2 .Bi : si+1 comes from Γ, x:A1/2 �C� Bi : si+1 where

i ∈ {1, 2}, by IH, Γ, x:A1/2 ��C Bi : si+1. By Lemma 12, Γ ��C A1/2 : s′. By (�1),

Γ ��C �x:A1/2 .Bi : si+1.

• (λ�
c). If Γ �C� �x:A1/2 .b : �x:A1/2 .B comes from Γ, x:A1/2 �C� b : B where

B ≡ �, by IH, Γ, x:A1/2 ��C b : B. By Lemmas 12 and 16, Γ ��C A1/2 : s1
and Γ, x:A1/2 ��C B : s2. By (�1), Γ ��C �x:A1/2 .B : s2. Hence, by (�2),

Γ ��C �x:A1/2 .b : �x:A1/2 .B.

The “only if” case is by induction on the derivation Γ ��C A : B. We only treat:

• (weak). If Γ, xs:C ��C A : B comes from Γ ��C A : B, Γ ��C C : s and

xs ∈ dom (Γ), by IH, Γ �C� A : B and Γ �C� C : s. By Lemma 46.4, C ≡ Ci

and s ≡ si+1 where i ∈ {1, 2}. By (contc�), Γ, xs:C �C� ∗ : �. By Lemma 45.1,

Γ �C∗ 〈A : B〉 and Γ, xs:C �C∗ ∗. By Lemma 44.(1 resp. 3) Γ �C∗ ∗ and

Γ, xs:C �C∗ 〈A : B〉. By Lemma 45.2, Γ, xs:C �C� |〈A : B〉| = A : B.

• (�1). If Γ ��C �x:A.B : s2 comes from Γ ��C A : s1 and Γ, x : A ��C B : s2,

by IH, Γ �C� A : s1 and Γ, x : A �C� B : s2. By Lemmas 37.5 and 46.3,

1 � �(A) � 2 and A ≡ A1/2. By Lemma 46.4, B ≡ Bi and s ≡ si+1 where

i ∈ {1, 2}. Hence, by (Π�
c), Γ �C� �x:A.B : s2.

• (conv�). If Γ ��C A : C comes from Γ ��C A : B, Γ ��C C : s and B =� C

then by IH, Γ �C� A : B, Γ �C� C : s. Let i = �(C). By Lemma 46.4, s ≡ si+1,

C ≡ Ci ∈ Ti and i ∈ {1, 2}. By Lemma 37.6, �(B) = �(C) = i. By Lemma 46.3,

B ≡ Bi ∈ Ti. Hence by (convc�), Γ �C� A : C . �

6.3 Coquand’s calculus in modern notation

We define the calculus C� whose terms are T� and whose typing rules are those of

Figure 8. We show that C� (hence C∗) and C� are isomorphic.

Lemma 48

Γ �C� A : B if and only if Γ �C�
A : B.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

Typed λ-calculi with one binder 795

(axiomc�) 〈〉 � ∗ : �

(var�)
Γ1, x : A,Γ2 � ∗ : �

Γ1, x : A,Γ2 � x : A

(cont�)
Γ � B : s xs ∈ dom (Γ)

Γ, xs:B � ∗ : �

(Π�)
Γ, x : A � B : s

Γ � �x:A.B : s

(λ�)
Γ, x : A � b : B B ≡ �

Γ � �x:A.b : �x:A.B

(conv�)
Γ � A : B Γ � C : s B =� C

Γ � A : C

(appl)
Γ � F : �x:A.B Γ � a : A

Γ � Fa : B[x := a]

Fig. 8. The typing rules of C�.

Proof

Recall by Lemma 46.1 that for 0 � i � 3, Ti ⊆ T�. Since the rules of C� are rules

of C�, we only need to show: if Γ �C�
A : B then Γ �C� A : B. This is by induction

on the derivation Γ �C�
A : B using Lemmas 12, 46 and 47. �

7 Conclusion

In this paper, we used a unique binder à la de Bruijn instead of the usual two binders

λ and Π. We studied eight of the most used type systems (those of Barendregt’s

β-cube) written in this notation and established an isomorphism between the two

versions. We showed that although � replaces both λ and Π, in any legal term, one

can easily unpack the status of a � (i.e. whether it should act as a λ or as a Π). We

also showed that all the desirable properties of type systems still hold in the �-cube

except for unicity of types. Moreover, we established a relationship
�.
� between types

where A
�.
� B if and only if A ≡ �x1:A1

. . . �xn:An
.C and B ≡ �x1:A1

. . . �xm:Am
.C where

n, m � 0. We showed that if a term has two types A and B, then nf�(A)
�.
� nf�(B).

This result, together with the ability to unpack the status of a � if needed, as well

as all the other properties, make it desirable to write the single � instead of the two

different binders λ and Π. The Automath experience is another factor as to why

unifying λ and Π is desirable. Just as the development of type theory meant that

in the more expressive type systems, terms and types have the same syntax and act

alike, we believe that this development should also mean that λ and Π act alike. In

fact, λ and Π already act alike, so why not use the same name for them? This paper

shows that there are no reasons why these binders should not be unified and that it

is more natural that they are unified. Moreover, this unification brings elegance to

the representation of powerful features. As an example, the type inclusion rule used

in the Automath system Aut-QE to enable two different terms which stand for the

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

796 F. Kamareddine

same definition to have at least one common type, is written in the �- resp. β-cubes

as follows (note the elegance of (Q�) compared to (Qβ)):

Γ � A : �i:1..nxi:Ai
.∗

Γ � A : �i:1..mxi:Ai
.∗

0 � m � n (Q�)

Γ � λi:1..kxi:Ai
.A : Πi:1..n

xi:Ai
.∗

Γ � λi:1..mxi:Ai
.Πi:m+1..k

xi:Ai
A : Πi:1..m

xi:Ai
.∗

0 � m � n, A ≡ λx:B.C (Qβ)

Acknowledgements

I am grateful for the comments received from Henk Barendregt and J. B. Wells. The

anonymous referees gave valuable feedback which much improved the paper.

References

Barendregt, H. P. (1984) The Lambda Calculus: its Syntax and Semantics. Studies in Logic

and the Foundations of Mathematics 103. North-Holland.

Barendregt, H. P. (1992) Lambda calculi with types. In: S. Abramsky, D. M. Gabbay and

T. S. E. Maibaum (eds.), Handbook of Logic in Computer Science, Volume 2, pp. 117–309.

Oxford University Press.

de Bruijn, N. G. (1970) The mathematical language AUTOMATH, its usage and some of

its extensions. In: M. Laudet, D. Lacombe and M. Schuetzenberger (eds.), Symposium on

Automatic Demonstration, Lecture Notes in Mathematics 125, pp. 29–61, INRIA, Versailles.

Springer-Verlag.

Church, A. (1940) A formulation of the simple theory of types. J. Symbolic Logic, 5, 56–68.

Coquand. T. (1985) Une Théorie des Constructions. PhD thesis, Université Paris 7.

Coquand, T. and Huet, G. (1988) The calculus of constructions. Information and Computation

76, pp. 95–120.

Girard, J.-Y. (1972) Interprétation fonctionelle et élimination des coupures dans l’arithmétique

d’ordre supérieur. PhD thesis, Université Paris 7.

de Groote, P. (1993) Defining lambda-typed lambda-calculi by axiomatizing the typing

relation. In: P. Enjalbert, A. Finkel and K. W. Wagner (eds.), STACS’93, Lecture Notes in

Computer Science 665, pp. 712–723.

Howard. W. A. (1980) The formulas-as-types notion of construction. In: J. P. Seldin and

J. R. Hindley (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism, pp. 479–490. Academic Press.

Kamareddine, F. (2002) On functions and types, a tutorial. In: W. I. Grosky and F. Plasil

(eds.), 29th Annual Conference on Current Trends in Theory and Practice of Informatics,

Milovy, Czech Republic. Lecture Notes in Computer Science 2540, pp. 74–93.

Kamareddine, F., Bloo, R. and Nederepelt, R. (1999) On π-conversion in the λ-cube and the

combination with abbreviations. Annals Pure Appl. Logic, 97, 27–45.

Kamareddine, F. and Nederepelt, R. (1996) Canonical typing and Π-conversion in the

Barendregt Cube. J. Funct. Program. 6(2), 245–267.

Peyton-Jones, S. and Meijer, E. (1997) Henk: a typed intermediate language. Types in

Compilation Workshp.

Reynolds, J. C. (1974) Towards a theory of type structure. Lecture Notes in Computer Science.

19, pp. 408–425. Springer-Verlag.

https://doi.org/10.1017/S095679680500554X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680500554X

