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GROUPS WHICH SATISFY A WEAK FORM OF POINCARE
DUALITY

by J. E. ROBERTS

(Received 29th March 1990)

Our main result is that a "restricted Poincare duality" property with respect to finite dimensional coefficient
modules over a field holds for a certain class of groups which includes all soluble groups of finite Hirsch
length. This relies on a generalisation to the given class of a module construction by Stammbach; an extension
of his result on homological dimension to these groups is given. We also generalise the well-known result that
torsion-free soluble groups of finite rank are countable.

1980 Mathematics subject classification (1985 Revision): 20J99.

0. Introduction

0.1 Notation, definitions and statement of the main theorems

We adopt the conventions of [2], except that we use right coefficient modules for
cohomology, left for homology. K will be a field, and the dimension of a KG-module
will mean its dimension as a K-vector space.

We now define the property with which we are primarily concerned.

Definition. A group G has restricted Poincare duality of dimension n on a
subcategory ^M of the category TlKG of right KG-modules if there is a left
KG-module 2>G (called the dualizing module) such that:

(i) ® 6 ^ K a s a K-module, and Hn(G,%)^K as a KG-module;
(ii) 3 [<u] e Hn(G, 2C) such that the cap product

H\G,M)

is an isomorphism for all fceZ, and all objects M of I'SH^. (We call [to] the dualizing
class).

Putting i'SHKG =9WKG here gives Poincare duality of dimension n over K. n[a)\ is a
natural transformation between the functors H\G,M) and Hn_4(G,M®2G) from 1WKG

to 2RK for all keZ, by naturality of cap product. (See [2, p. 146] and [3, p. 109] for
elementary properties of this map.)
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464 J. E. ROBERTS

Define /d9WKG to be the full subcategory of 3JlKG whose objects are the finite
dimensional (f.d.) KG-modules (the K will be omitted where it is clear which field we
mean).

We now define a class of groups including all PZ)"-groups, which will later be seen to
have restricted Poincare duality on /<f2HK0.

Fix neM. A group G is locally orientable Poincare duality (LOPD") over K if each
finite subset of G is contained in a subgroup of G which is orientable PD" over K. If G
is countable LOPD" over K, there is an ascending chain of PD" subgroups

N0gAfig...ofGs.t. G=(J Nt. (1)
ieN

The !#,:#(_!| are all finite ([2, Proposition 9.22]). G is PD" if and only if G = Nk for
some k; otherwise, G is infinitely generated.

For G countable LOPD" over K, let XG be the set of primes p s.t. given any
PD"-subgroup 5 of G there is a pair of PC-subgroups Plt P2 of G satisfying
S^P1<P2, p||i*1:i*2j- For any choice of ascending chain (1), XG is easily seen to be
equal to the set of primes p such that p||Af,+ 1:N,| for infinitely many ieN.

Definition. Take 9Cr (resp. $tr) to be the class of groups G with a series

l (2)

with each G, normal in G, and each GilGi+l is LOPD"{i) (resp. countable LOPD"U)) over
K with charK not contained in the union of the #GI/GI+I> O^i^r—1. Let $":= U,ei¥#"r,
#":= {JreN&r. AH soluble groups of finite Hirsch length lie in some 3Cr.

Henceforth we fix a field K and use the notation of (2); XG, 9Cr, ?£r will always be
defined with respect to this field.

Now we state the main results.

Theorem 1. If G&9C, then G has restricted Poincare duality of dimension Yfi=on(i) on

We will first prove this where G is countable; that is, Gef . We then look at groups
in SC, obtaining the following, which enables us to prove Theorem 1 in general.

Theorem 2. Each GeXr has a locally finite characteristic subgroup N such that

Finally, we define a property used in the proof of Theorem 1. We will say that a
group G is finite dimension preserving if, for M a finite dimensional KG-module and
keN, Hk(G,M) and H\G,M) are finite dimensional.

0.2 Layout of paper

In Section 1 we give some general properties of groups which have restricted Poincare
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duality on fd10lG and some other subcategories of 9JlG. In Section 2, the countable case
of Theorem 1 is proved. Some properties of groups in HE are given in Section 3, and we
prove Theorem 2, enabling us to complete the proof of Theorem 1. In Section 4 certain
groups in 9C, including all soluble minimax groups, are shown to have restricted
Poincare duality on other subcategories of 9WC for some K. In Section 5 we consider the
action of GeS" on the dualizing module.
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1. Some properties of restricted Poincare duality groups

Here we give several properties of groups with restricted Poincare duality on /d50lG,
and some information on whether these hold over other subcategories of 2HG. We also
provide a cup product formulation of the duality for finite dimension preserving groups
with restricted Poincare duality on /dS0tG.

1.1 Uniqueness of the dualizing module

Suppose that G has restricted Poincare duality on ,2RG, with 2>G, 2>'G both satisfying (i)
and (ii) (see 0.1). Let S>G" be the unique left KG-module such that 2>'£p<2>2iG^K.
Consider %&&>'£" as a right KG-module via (n®m)g=g~ln®g~lm. If K and 2&G®2)'G"'
are objects of ^Q, then 9)G = 2)G.

As left KG-modules,

via(m<g)n)<g>r—>m<g>(n(g)r).

Therefore

K s H°(G, K) ~ Hn(G, 2G)%Hn(G, {®G®@'SP)®@'G) L H°{G,

where a, /? are Poincare duality isomorphisms. Hence ®G<8>^G
ps/C, so ®GS@'G as

required.
The hypothesis clearly holds for fd9JlG, hence Q)G is unique for groups with restricted

Poincare duality on f^SRG.
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1.2 Quotients by locally finite normal subgroups

Let G be a group with restricted Poincare duality on JSRG, and T a locally finite
normal subgroup of G. Take T9WG (F$WG) to be the full subcategory of 5Dlc (respectively
,2RG) with those objects on which T acts trivially, and let F be the natural functor
T9HG->5mG/r. Now define iTlG/T to be F(f£RG). Then G/T has restricted Poincare
duality on i2HG/r, as we will now show.

K^Hn(G,giG)**^Hn{G,@Z)* (by a basic adjunction; see 1.6 for details). Hence
H"(G,@G)^K. By a spectral sequence corner argument, it follows that
H"(G/T,H°(T,@G))^K. Therefore T acts trivially on S>%, and hence on 2G.

Let M be an KG-module on which T acts trivially. The maps

H\G/T, M)-^H\G, M)

Hk(G,M)-£±+Hk(G/T,M)

induced from the natural map (f>: G-++G/T are isomorphisms (by the LHS spectral
sequence).

By naturality of n with respect to change of group, the following diagram commutes.

H\G/T,M)-

<t>*

H\G,M) -

r\[co] is an isomorphism by hypothesis, hence n0+[«w] also is.

Observe that where iaWG = /d9WG, we have 150lG/r = fJ®lGIT. Hence G/T has restricted
Poincare duality on finite dimensional modules if G does.

1.3 Inverse restricted Poincare duality

Definition. G has inverse restricted Poincare duality of dimension n on i2WG, a
subcategory of the category 9MG of left XG-modules, if there is a left KG-module Q)G

satisfying:
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(i) S G s / ( a s a /(-module, and Hn(G,SiG)^K as a KG-module;

(ii) 3 [a>] e Hn(G, 2)G) such that the modified cap product (see [2, p. 147] for definition
and properties)

H\G, HomK (%, Hn _ k{G, M)

is an isomorphism for all keZ and all objects M of ^0lG.

Putting jSR^SHg here gives inverse Poincare duality, which is equivalent to
Poincare duality (in the sense that a group with one has the other, with the same
dualizing module), since the dualizing module is K-projective (see [2, Theorem 9.4]). As
in restricted Poincare duality, ip[(o] is a natural transformation between the functors
Hk(G,HomK{2>G,J) and tfn_k(G,J from tmG to 2R1.

ip is defined by

Hr{G,HomK(A,B))
n[a>]

Hn_XG,UomK(A,B)®A)

(ev), (3)

where ev: HomK(A,B)<g)A->B is given by

Hn-r{G,B)

and [oj]e//n(G,/l).
Where A = ^G, it is easy to see that ev is an isomorphism.

Lemma 1. (a) Suppose G has restricted Poincare duality on xSJlg, with dualizing
module 3)G. Then G has inverse restricted duality with dualizing module 2>G on any
subcategory 2SSia of Wig in which each object M satisfies HomK(©G, Af) an object of JSRG.

b) Suppose G has inverse restricted Poincare duality on i"VlG, with dualizing module @G.
Then G has restricted Poincare duality with dualizing module 3)G on any subcategory 25DlG
o/9WG in which each object M satisfies WomK(S>G

p,M) an object of i50lG.
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Proof, (a) Trivial.
(b) Substitute HomK(^°G

p,M) for B in (3). There is a natural isomorphism
HomK(^G,HomK(^,Af))-+HomK(®G(g)^,M)sM given by a basic adjunction.
Applying this, we obtain the result.

Where M is a f.d. left KG-module, HomK(^c,M) is a f.d. right KG-module, and
where M is a f.d. right KG-module, H o m ^ ^ J W ) is a f.d. left KG-module. Hence G
has inverse restricted Poincare duality on f.d. modules if and only if G has restricted
Poincare duality on f.d. modules, and, if both hold, the dualizing modules are the same.

1.4 Duality groups with restricted Poincare duality

All soluble groups s.t. cdzG = hdzG<oo are duality groups over Z and hence over Q
by [8]. We will see that these groups are also restricted Poincare duality on finite
dimensional modules. Many of them, Z[l/2]^<x2> for instance, are not Poincare
duality groups. However, there is a connection between the duality and the restricted
Poincare duality on a subcategory of 9MG for some groups with both properties.

Lemma 2. Let G be a duality group with dualizing module Q>Q. The following are
equivalent:

(i) G has restricted Poincare duality of dimension n on X^OIQ with dualizing module 3)G

such that 2>0(f is an object of ,9WG.
K

(ii) There is a KG-module 0G S K s.t. 9°^ is an object of jSKe, and a KG-module
homomorphism <j>:DG-*-*@G which induces isomorphisms 4>it:Hr{G,M®DG)-*
Hr(G,M®g>G) for allreW and all objects M of ^Q.

Proof. (ii)=>(i): Follows easily from naturality of cap product with respect to
coefficient homomorphisms.

(i)=>(ii): Define p: G-+K by p(g)=g.l in 2)G. Let J be the two-sided ideal of KG
generated by the p(g)—g,geG. Then

DG = H\G, KG)^> Hn(G, KG/J)

where [<u] is the dualizing class of Hn{G,@G) (see 0.1).

a is onto since cdKG = n. KG/J regarded as a right module is Q)0^, so the vertical map
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is an isomorphism. So we have <p: DG -*-*%. By naturality of n , the following diagram
commutes.

IT{G,M)®Hn(G,DG)- >H\G,M)®Hn(G,2>G)

r\

Hn-r(G,M®DG)-

n

Where M is an object of i$DiG, the n maps are both isomorphisms, so it suffices to
prove that cf>^.Hn(G,DG)^>Hn(G,®G) is an isomorphism. By [2, Lemma 9.1] the
following diagram commutes and the vertical maps are isomorphisms.

Hn(G,DG)-

HomKG(DG,DG)-

The bottom <j)m is nonzero, hence the top 4>m is an isomorphism. •

Note that an analogous result holds for restricted inverse Poincare duality, where G is
an inverse duality group.

Observe that not all duality groups have restricted Poincare duality on fd3JlG, the free
group on two generators is a duality group, but does not have restricted Poincare
duality on this category.

13 The cap product formulation

Corollary. Suppose G has restricted Poincare duality on fJ!OlG and G is finite
dimension preserving. Then for all finite dimensional KG-modules M, the map

H\G, M)®Hn~\G, Horn*(M,®G)) (ev)* ° U» H"(G,®G)

is an exact pairing, where ev is the map
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given by m®<f>-nn(l>.

Proof. Take L any group, V any KL-module. Let

. . . - ^ - P ^ - . - . - ^ — K

be a projective resolution for K over KL.

Applying HomKL(_,HomK(V,K)) to this gives a cochain complex whose cohomology
is H*(L, V*). Using Homx(_®KLV, K) instead gives a cochain complex with cohomology
Hm(L, V)*. The basic adjunction

gives an isomorphism between the cochain complexes which induces the isomorphism

H*(L, J,L, V)*.

Now suppose G satisfies restricted Poincare duality on /(f3JlG and is finite dimension
preserving. Let M be a finite dimensional module. Consider the diagram

H'(G,M)®Hn(G,@G)

1®**

H'(G,M)®Hn(G,%)*

l®a*

n

Hn_r(G,M®@G)*

(basic adj.)^

As all the other maps are isomorphisms, <f> may be defined by this diagram; it too is
clearly an isomorphism. Let 9 be defined by
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basic adj.

Define /?: Hr(G,M)®Hn-'(G,HomK(M,2>G))**^Hn(G,®%)** by

Taking bases of the K-vector spaces involved, then performing a routine calculation,
it can be seen that the following diagram commutes.

(ev)* o n
(® \G@*)

Hr{G,

The result follows.

'(G, HomK (M,

n
2. Proof of the countable case of Theorem 1

We prove by induction on r that if GeX, then G is finite dimension preserving and
has restricted Poincare duality on finite dimensional modules.

2.1 Proof for r = l

A PD" group (over K) plainly has restricted Poincare duality on fdWG, and is finite
dimension preserving because it is of type (FP). Throughout this section, M will be a f.d.
KG-module.

Suppose

i = 0

with the Nt all orientable PD". There is a short exact sequence of KG-modules
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l(N,., M) -»H\G, M) -> ^-Hk(Nh M)

(see [4]) where < , < (1) have been taken over

—H'(N t , M)—fl '(JVf.! , M ) — • • *^H°(N0, M)\ (4)

for s = fc, s = fc — 1 respectively.
There is also an isomorphism

where > is taken over the system

„ ,,, ... Co r r . , . . ... Cor Cor Cor . .
Hk(N0,M) >Hk(NuM) >••• >Hk(NhM) >••• . (5)

As automorphisms of Hn(Nh M) or Hn(Nh M), it is well known that

x|Arj:Ar,_1| (6)

charK$XG, so xliViiNj.jl is an isomorphism, for sufficiently large i. Hn(NitK) = K for
all ieN, since the Nf are orientable PD". The Cor maps in (5) are onto by (6), hence

KG

The duality isomorphism in the orientable PD" groups is given by a cap product,
which may be regarded [2] as a map

Hn{Nh K) ̂  Horn™, (Hk(Nh M), Hn_k(Nh M))

which is natural with respect to changes of group and module. Choose an element [«]
of Hn(G,K) and let [co(] be its image under restriction to H£NhK). The following
commutes, since n is natural in the group.
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Cor
Hn_k(Ni+uM) Cor

(7)

Cor

By (6), the Res maps are (1 — 1) and the Cor maps are onto. The N, are finite
dimension preserving, so all the modules in (7) are finite dimensional. Hence ] n o e N
such that

Res: Hk(Nt+1,M)-^Hk{Nl, M) and Cor: Hn-k(Nh M)

-> Hn _ k(N,+i, M) are isomorphisms for / > n0. (8)

The vertical maps therefore induce an isomorphism

t.l*±-H\Nb M) -—H.-JLN,, M)

which is the unique such KG-module isomorphism satisfying iA|w, =

*^-ll)Hk~i(Ni,M)=0 by the Mittag-Leffler condition (see [1]), satisfied since all the
H^^JV.-.M) are finite dimensional. It follows that a is an isomorphism, and \ji is the
unique isomorphism Hk(G,M)-*Hn^k(G,M) such that |̂JV, = <"*[<*>!]• ^ u t n[a)]|wl

 =

n[a)i~], hence î  = n[cj]. Therefore n[a>] is an isomorphism, so G has restricted
Poincare duality on finite dimensional modules, with dualizing module K.

By (8), dimK(^-Hk(NhM)) = dimK(Hk(N,,M)) and
dimK(H*(N,, M)). Hence G is finite dimension preserving.

2.2 The induction step

Throughout this part, GeXr, the notation of (2) is used, and N: = Gi. Assume result
true for G e ^ r _ ! (hence for N).

2.2.1 G is finite dimension preserving
For the extension N ->-» G-»-• G/N, there is a Lyndon-Hochschild-Serre spectral

sequence

Hk-'(G/N,Hl{N,M))~Hk(G,M). (see [5],[9].)
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So Hk(G,M) = Sk^Sk_ j ^ • • • ^ S o = 1 where S,/S,--1 is a section of Hk-'(G/N,H\N,M)).
The Hk~'(G/N,Hl(N,M)) are finite dimensional, since N and G/Af are finite dimension

preserving by the induction hypothesis. Therefore Hk(G,M) is finitely generated. A
similar argument may be used on homology.

2.2.2 Construction of the dualizing module in the general case
Let Lt: = HMi){Gi/Gi+i,K). G acts on Lt via conjugation on Gt/Gi+1. Set 3>G: =

L°o
p®--<g>L°'Ll. From (1.1) we know that 9>G = K. as a /C-module. By the method of [2,

Lemma 7.13], it can be shown that Hn(G,@G)^K as a KG-module.

2.2.3 The induction argument

Lemma 3.

Hk(N, M ) - ^ M H ( . » ( 7 V , M ®DG)

is a KG-module isomorphism, where [co]eHi(N,DG).

Proof. Res^(^G) = ^v, so the given map is a KN-module isomorphism by the
induction hypothesis. It now suffices to show that it is also a KG-modu\e homomor-
phism. Since n is natural with respect to group homomorphisms, the diagram below
commutes,

Hk(N,M) > Ht_k(

Hk(N, M)

where vg are the natural maps in homology given by the action of geG.

KN

K^Hn(G,9G)^Hn-iGIN,HiN,2>G))^HiN,@G)GiN (by result for r=l ) . Hence G acts
trivially on H^N,2iG) so [<o]va = [co]. Therefore n[cu] is a KG-module isomorphism as
required.
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Lef-^Pj-^-HUp^Po

be a projective resolution for K over KG, and let

•03

be a projective resolution for X over KG/N.
Using these, we form two double cochain complexes of the form given below. In (I),

X,.J.=HomG/N(Q1.,HomJV(PJ,M)) and the differentials are 3'= 5$, 3" = (-l)'3f*. In (II),
Xij=Qn-i-i®GiNPi-j®N(M®@G) and the differentials are d' = d2., d" = (-l)'dla. It is
well known that I and II give the Lyndon-Hochschild-Serre spectral sequences for
cohomology and homology respectively. (See [5,9] for details.)

3" 13"
3'

0 ,2

3"

3"

l 0 , 0

3'

3'

3"

3"

3'

3'

3"

3"

L 0 ,2

3'

Let co be a representative cycle of a nonzero element of Hn(G, @G) and take <xco to be a
representative cycle of the corresponding element of Hn-,(G/N,H,(N,@G)) under the
spectral sequence corner isomorphism.

On the chain level, n is natural with respect to module homomorphisms; by this and
Lemma 3 we may define a map from double complex (I) to double complex (II) by
n* o n(aca).

Consider the filtration

,F'((Tot*)-) =
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The spectral sequences associated with this for (I) and (II) respectively satisfy

1'Ef •• = H"(G/N, H«(N, M))

The map between these induced from n*on(aw) is n*on[aco] , which is an
isomorphism where M is finite dimensional, by the induction hypothesis. By the
mapping theorem for spectral sequences, this induces an isomorphism between the
graded objects associated with the H"(Jo\.X) suitably filtered for the two spectral
sequences.

Now consider the filtration

2F"((TotX)m) = r,s-

mEp.,
2 1

° for
Hm{G,M) for p = 0.

<»>££1 \Hm(GJ for p=n-l.

The E^-page is clearly the £2-page, in both cases. Hence n*0n(aco) induces an
isomorphism

It remains only to check that 6=n[_(o]. As both maps are natural maps from a
universal cohomology theory for G to a cohomology theory for G, we need only ensure
that they coincide for p = 0 ; that is, that the following diagram commutes.

MG®Hn(G,®G)- n

(MN)GIN®Hn^(G/N, Hn _ , H,(N, M® 2>G))

where the vertical maps are spectral sequence corner isomorphisms.

It is easily seen that
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MG®Hn(G, 3>G) - Hn(G, M®2>G)

is given by mns = fm(s), (seHn(G,3>G)) where fm:Hn{G,2G)^Hn(G,M®2)G) is induced
from the module homomorphism vm:@iG-*M®@iG given by

e-*m®e.

Similarly, (MN)GIN®Hn-l(GIN,Hl{N,@G))^^>Hn-l{GIN,Hl(N,M®®G)) is given by
m(n*on)s = /m(s) where

fm: H.-AG/N, HJLN, <2>G)) - Hn.,(G/N,

is induced from vm.
It now only remains to check that the following diagram commutes.

L
HH(G,9e) • Hn(G,M®%)

Hn_,{G/N, H,{N, @e)) • Hn-,(G/N, H,(N,

where the vertical maps are spectral sequence corner isomorphisms. But these commute
with module homomorphisms, and the result follows.

3. Some properties of groups in 3C, and the end of the proof of Theorem 1

3.1 Proof of Theorem 2

Definition. We will say that a group G is LPD" if each finite subset of G is contained
in a PD"-subgroup of G.

Some observations on the PD" subgroups of an LOPW group G
Write 0> for the set of all PD" subgroups of G. Where Pe&, P is generated by a finite

subset X of G. If Y is another finite subset of G, X u Y lies in some Ple&> containing
P. It follows from the remark after (1), that

(i) Given geG 3 keN s . t . / e P .

(ii) NG(P)/P is locally finite.

V X, Y are finite generating sets for Pu P2e^, iPuP2} is generated by Xu Y, so lies
in some P3e0>. Hence |<Pi,P2>:'\|> |<^i>^2>:p2| are finite, giving | P 1 : P 1 n P 2 | finite.
By [2, Theorem 9.9], P, n P2 is PD". Hence
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(iii) PuP2,...,
CG(P)/(CG(P)nP)^CG(P)P/P^NG(P)/P and CG(P)nP^i;{CG(P)) hence

CG(P)/C(CG{P)) is locally finite. By Schur's Theorem,

(iv) {CG{P))' is locally finite.

Lemma 4. S: = ( J P e # C G (P) is a characteristic subgroup of G, L: = \JPe^(CG(P))' is a
locally finite characteristic subgroup of G and S' = L.

Proof of lemma. Where Pl,P2,...,Pn are PD" subgroups of G,
<CG(P1),...,CG(Pn)>^CG(P1n-nPJ, hence S<G. Plainly S is characteristic in G.
<(CG(P1))',...,(CG(PB))'>c<(CG(P1),...,CG(Pn)>'£(C?(P1n-nPn))' hence KG;
clearly L is characteristic in G. Any subset of L lies in some (CG(P))', hence L is locally
finite. From (C^Px), CG(P2)>£(<;<;(?! nP2))', it follows that S' = L.

Proof of Theorem 2 for r=l . S/L is abelian. The torsion elements of S/L therefore
generate a locally finite subgroup W/L. W is a locally finite subgroup of S, and S/W is
torsion free abelian.

We will now show that G/W is countable. G/W will then be in X\ by 1.2.
Choose a PD" subgroup N of G. Given geG, let Ng: = NnN9n...nN9k'\ where

gfeN. Ng is PD" by (iv), hence finitely generated. N is countable, therefore so is
{Ng;geG}. As geNG(Ng), G = [jgeGNG(Ng), a countable union. It now suffices to show
that, for Pe0>, NG(P)/(NG(P) n W) is countable. NG(P)/CG(P) is isomorphic to a subgroup
of Aut P, so is countable. So it only remains to prove that CG{P)/(CG(P) n W) is
countable. Suppose this is not true. Write V for CG(P) n W Plainly CG(P)/V is abelian.
For JieC(P), keN, let P*,,,: = {gKeCG(P)/F:g*K = fiF}. As C(P) is countable, there are
only countably many Pkh, so by the Dirichlet pigeonhole principle, some Pkh is
uncountable. Hence 3 distinct gYV, g2VeCG{P)/Vs.t. g\V=g\V. Since CG(P)/V is abelian,
(gi1g2)

ke V- By definition of V, gllg2£ V, hence giV=g2V, so we have a contradiction.
Induction step. We use the notation of (1). Suppose the theorem holds for smaller r.

Let H/Gt be trie maximal locally finite subgroup of the union of the centralizers of the
PD subgroups of G0/Gv G 0 /Hef t by result for r = l. We will prove that H/G2 is
(locally finite)-by-(countable LOPD")-by-(countable locally finite), so J e X , . b where
J/G2 is the given locally finite normal subgroup.

It follows from the inductive hypothesis that J has a characteristic locally finite
subgroup S such that J/S is countable.

with the J, all normal in G and the JJJi+l all LOPD, since JeYr_,.

_ = _ 2 > _ L _ . . • > r-l^ _ i
S~ S = S = S
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is a series in which each J,S is normal in G and each

Ji+lS

is LOPD". If follows that G/SeYr as required.
Now it suffices to prove the following.

Lemma 5. H/G2 is {locally finite)-by-(countable LOPD")-by-(countable locally finite).

Proof. Here we may assume that G2 is trivial. First, observe that where {gu---,gk}
is a finite subset of H, (gi,...,gk} <~^ Gt is finitely generated. This follows from the fact
that < g i , . . , g t > n G 1 is of finite index in <gi,. . . ,gk> which is finitely generated.

Take an arbitrary finite subset {hit...,hk} of H. It follows from the argument above
that </ i l J . . . , / i t >nG 1 is finitely generated, so lies in an OPD" subgroup P of Gx. Let
xx,...,xt be generators of P. Then

P2 = {hu..., hk,xu..., x,} n Gi

is finitely generated, so lies inside an OPD" group F t in Gv However, it also contains P.
It follows from [2, Proposition 9.22] that \Pi'.P\ is finite, therefore | i>

1:P2| is finite and
P2 is an OPD" group. The second isomorphism theorem tells us that

therefore </i1,...,/ik,x1,...,x,> is a finite extension of P2 , so is OPZ)"-by-finite. Further-
more, this subgroups is PD", because the definition of the class X ensures that the order
of

is not divisible by char K. The proof of Theorem 2 for r = 1 does not use orientability,
hence H has a locally finite normal subgroup J such that H/J is countable locally
(0PDn-by-finite). H/J is the union of an ascending chain of 0PD"-by-finite groups.

If a PD" group S has a subgroup T of finite index not divisible by char K, then the
dualizing module ET of T is the restriction to T of the dualising module Es of S;
considering the corestriction map

Hm(T,ResT{Es))^Hm(S,Es).

This is onto (see 4.1), therefore Hn(T,ResT(Es)) is nonzero. The only one-dimensional
module M for which Hn(T,M) can be nonzero is ET. Hence ResT(Es) = ET.
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It now follows that every OPZ>"-by-finite PD" group has a unique maximal OPD"
subgroup. The unique maximal OPD" subgroups of the OPD"-by-finite groups in the
given ascending chain form an ascending chain; they generate an LOPD" normal
subgroup W/J of H/J. It is easy to see that H/W is countable locally finite.

Hence H is (locally finite)-by-(countable LOPD")-by-(countable locally finite), as
required.

3.2 Proof of Theorem 1 for G uncountable

By Theorem 2, it suffices to prove that if G is locally finite with char/C£#"G and M is
a finite dimensional KG-module, then H'(G,M)=0 for i>0 and

is an isomorphism for 0 # [co] 6 H0(G, K).

By a routine calculation, the above cap product is an isomorphism if and only if

M = MG©Mg (9)

(Gothic letters represent appropriate augmentation ideals).
Let N be the kernel of the action of G on M. G/N is then a locally finite subgroup of

GL,{K) where s=dimxM.
By (9), to show that the given cap product is an isomorphism, it is enough to prove

that M = ML@M\.
Choose a maximal linearly independent subset {gi,...,gr} of L. This generates a finite

group Li<L. ML'^ML, Ml^Ml
Suppose 3 geL s.t. g = X'=i^<£.- w i t n Z?=i A, = fc + 1, fe#0. Then for all meMLt,

m(g-l) = km. Thus ML"^Ml, hence M = M\. ML = 0 since mg={k + \)m^m.
Suppose there is no such g. Then for all geG, g=£j= i Ajg, with £ j = t Aj= 1. Therefore

ML = ML\ Ml = Mli. Hence the given cap product is an isomorphism.
H'(N,M)=0 for i = 0 by the Universal Coefficients Theorem. By a spectral sequence

corner argument, it now suffices to prove that H'(G/N,M) = 0 for i = 0. By a result of
Schur (see [12, Corollary 9.4]), L: = G/N is abelian-by-finite. Let A be an abelian normal
subgroup of L s.t. L/A is finite. H'(L,M)^H'(A,M)LIA. M may be expressed as a direct
sum of finitely many simple K/1-modules by [12, Corollary 1.6], hence as their direct
product. Therefore Hi(A,M) = Y\leKH\A,MJ) where the Mx are simple. Since A acts
nontrivially on Mx, H\A,Mx) = 0 for i>0 as required.

3.3 Homological and cohomological dimensions of groups in &

Our construction of <2)G was based on that of the module A used in Stammbach's
proof [11] that the homological dimension of a group G in the class C is equal to the
Hirsch length hG, where C is composed of the groups whose factors are locally finite or
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abelian. C £ # , and for GeC, A = S>G and nG=hG where ria^Y,^1) i n t h e notation of
(2). Hence nG = hdj£(G). This generalizes as follows.

Lemma 7. nG = hd^G) for Ge£.

Proof. Clearly nG^hdK(G). For G with r = l, hdK(G) = nG. Suppose result holds for
r - 1 , and consider Gt > -+G-++GIGY. hdx(G/G1) + hdx(G1)^hdK(G) and nGIGl + nGl =
nG. Since hdK(G/G1) = nc/Cl, hdK(G!) = nCl by the induction hypothesis, the result
follows.

By the method used in the proof of [4, Theorem A], it is easily shown that
cdJC(G/Gr_1)^cdK(G) — nGr-i- From this, cdK(G)^cdK(G/G1) + nGl, by induction on
r - 1 .

3.4 A property of infinitely generated LOPCF groups

Where P is a PD" subgroup of an infinitely generated LOPD" group G, P has Euler
characteristic x(G)=0.

To show this, assume G is countable. In the notation of (1), x(Ni) = \Ni+i:Ni\x(Ni+i)
and x(Nj)eZ.

Suppose x(N,) is nonzero for some i. Then it is nonzero for all ieM, and
\x(N0)\ > \Ni-. No\ for all i, giving a contradiction.

4. An extension of Theorem 1 for certain groups

Let GBSC over Q, Qp or any other field K such that every locally finite subgroup of
GLn(K) is finite (Q,QP have this property; see [12, Theorem 9.33]). Also let G be poly
(locally finite without subgroups of finite index, or orientable PD" over K). Note that
soluble minimax groups satisfy these conditions. Then G has restricted Poincare duality
on the following full subcategories of 3JlKG:

CfJ3JlG whose objects are the >(AfJ), {Mj)je, a direct limit system of finite dimensional
KG-modules;

//d9JJG with objects the < (M7), (Mj)jel an inverse limit system of finite dimensional
KG-modules.

We now prove this. We use the following from [7, Section 2] and [6, Prop. 4], For
(Mj)j6i a direct limit system of finite dimensional KG-modules, the natural map

J ^ * M J ) (10)

is an isomorphism.
For (Mj)jel an inverse limit system of finite dimensional KG-modules, the natural

maps
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Hn
lim lim

Hn(G,Mj)

are isomorphisms.
We will prove the result for c/,i2RG; that for ^JSJIQ is done by a similar method.
Consider the diagram on the following page, where [co] is a nonzero element of

(M,)J6/,

t]t and & are projections to direct limits, ym is induced from the isomorphism

a, P, f are the unique maps given by the universal property of direct limit s.t. (1), (2), (3)
respectively commute.

rfr Jim
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Since (1) commutes, n [o]oa is the unique map given by the universal property such
that n[<a]01x077,. = n[a>]<><£(, for all i. Since (2) and (3) commute, y*of}of is the unique
map such that y*o/}o/on^^f on\_of\ for all j . The outer square commutes for all ieJ,
since n\_co] is natural with respect to coefficient homomorphisms. Hence
y* o p o / = n [ o ] o a.

Hr(G,i

is an isomorphism for all r, i by Theorem 1, hence / is an isomorphism. /? is an
isomorphism since HS(G,_) commutes with exact colimits; a is an isomorphism by (10).
Hence

is an isomorphism as required.

5. Action of G e 3C on its dualizing module over Q

AH known PD" groups over Q have all geG acting on the dualizing module by
multiplication by +1. However, some groups in SC have different actions on 3>G. For
example, for G = Z[l/2])<0. where t acts on Z[l/2] by multiplication by 2, t acts on
2>G by multiplication by 2.

By the construction of 2>G in (2.2.2), it suffices to examine actions of Aut N on
Hn(N,Q) where N is a LOPD" group.

It is well known that

over Q j [over Z.

Over Z, the Universal Coefficients Theorem gives Hn(N,Q)^Hn(N,I)<3>zQ. Now we
examine Hn(N,Z) for N an LOPD" group. Let 0> be the set of all orientable PD"
subgroups of N. The Hn(P,Z) for Pe0> and the corestriction maps between them form a
direct limit system, with direct limit HJ^G,Z). We will now see what the Cor maps are.

Lemma 8. Let Ph P^S> with P(<Pj. Let Hn(PhZ) = <a>, Hn{Pi,Z) = ibs). Then Cor:
Hn(Ph Z) -• HJLPj, Z) is given by
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Proof. First we will show that the following diagram commutes for all keN and any
j module M, where Sh is the map in Shapiro's Lemma, and <f> is the map

Indft (M)-~M given by

Hk{PhM)-

r®KPlm-+rm.

Cor
Hk(PhM)

Sh (ii)

Hk(Pj,lndp
Pi(M)Y

Both 0oSh and Cor are natural maps from the homology theory Hm(Pj,_) for PS to
the universal homology theory H^(Pj,_) for P}, so it suffices to show that (11)
commutes for fc = 0. This is easily checked, so (11) commutes.

Now consider

Cor

n[eo]

Hn(PJtIndpt(Z))

where n[coi] is the Poincare duality isomorphism. By naturality of n, the square
commutes; the triangle commutes by (11).

Take a transversal 1, gi,g2,---,ga
 t o Pi m Pj- A general element of (Ind£f(Z))p> is of

the form l®/+gi®/+•••+gn(g)/ where leZ. Hence I m ^ = {|Pj:P,|ft}, and the result
follows.

By this lemma, Hn(N, Z) sZ[ l /p 0 ) . . . , l/pn,...] where XN = {p,},.N.
Hn(N,I) is preserved setwise by the outer automorphisms of (̂ J. Any outer automor-

phism of N must therefore act on H£N,Q) by multiplication by s/t, where s,t are
products of elements of XN.

Now we examine & more closely, to see which actions of this form may occur. We
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may label the Pe2P by elements of Q as follows. Choose an arbitrary P e ^ , and label it
as 1. Label P{e0> by

\<P,Pi>:P\
\<P,Pl>:Pl[

Where $ is an outer automorphism of G, it is easy to see that the action of (p on
Hn{G, I) is multiplication by plus or minus the label of (j>(P); furthermore, this
multiplication must preserve the labels.

This tells us that no locally finite group N has an outer automorphism which acts on
3)G by multiplication by r # + l, for a finite subgroup of lowest order (not necessarily
unique) has a label smaller than all the others. By Section 3.1, if N is an uncountable
LOPD" group such that geAutN acts by multiplication by r # ± 1 on Hn(N,Q), there is
a countable quotient N/S s.t. g acts by multiplication by r # l on Hn(N/S,Q).

We may also deduce that no PD" subgroup Pt of an infinitely generated LOPD"
group N admitting an outer automorphism which induces multiplication by r # l on
Hn(G,Z) may be a hyperbolic manifold group. Take P2: = Pln(p~1(Pl),
P3: = #(P2)£P1, where <p is a n outer automorphism inducing multiplication by r ^ + l
on Hn(G,I). P2 and P3 will be hyperbolic manifold groups with different labels, hence
distinct hyperbolic volumes. By rigidity (see [10]), these cannot be isomorphic, so we
have a contradiction.

Lemma 9. For G an arbitrary group, let X be a one-dimensional KG-module on which
geG acts by multiplication by pgeK. Let a be a field automorphism of K. Then

H^G, X) = Hr(G, aX) where aX is the one-dimensional KG-module on which g acts by
multiplication by a~1(pg).

Proof. Let a: {KG)l-*(KG)2, (KG)i and {KG)2 both copies of KG, be given by
kg -> <j(k)g. It is well known (see [2, p. 2]) that a induces an isomorphism

Tor»c»'('X,K)sToi^e>'(A-,(JCG)2®UG)lX) (12)

where "X is X viewed as a (KG)t module via a in the usual way.
We now examine {KG)2®iKGhK and "X.
The action of leK on (KG)2<g>(KGhK is given by '<8>(KC),'c->'®(KC),fc=l®(KG),ff~1(0fc-

We now write a(k), for l®lKG)lk. ks+l,=(k + I),, and the induced K-action on k, is
fc^(lfc),. Hence (KG)2(g)(KC)lKsK.

Take an isomorphism of K-modules 0: K -»X. The action of g on X is given by
g<t>(k)=Pg<l>(k) = (l){pgk). leK acts on 'X by l'(t>(k)='<f>(ail)k), and geG acts by
g"(p{k)="4>(pgk). Now write k, for <x^a(k)). k,+l,={k + l)t, the induced action of leK
is l-k,=(lk)t, and the action ofg is k,-*(a~\pg)k)t. Hence "X = aX, and the result
follows from (12).

Corollary. Let G be a group with restricted Poincare duality of dimension n on /d3JlKG.
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Then the action ofgeG on the dualizing module <2)G is multiplication by an element of the
subfield of K which is fixed by all field automorphisms of K.

Proof. There is a unique one-dimensional KG-module 3>G such that Hn(G,3>G) = K.
Hence, for all field automorphisms a, a-,3>G^3>G as KG-modules, hence a~i(pg) = pg as
required.
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