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An AF Algebra Associated with the Farey
Tessellation

Florin P. Boca

Abstract. We associate with the Farey tessellation of the upper half-plane an AF algebra A encoding

the “cutting sequences” that define vertical geodesics. The Effros–Shen AF algebras arise as quotients

of A. Using the path algebra model for AF algebras we construct, for each τ ∈
`

0, 1
4

˜

, projections

(En) in A such that EnEn±1En ≤ τEn.

Introduction

The semigroup S generated by the matrices A =
[

1 0
1 1

]
and B =

[
1 1
0 1

]
is isomorphic

to F+
2 , the free semigroup on two generators. This fact, intimately connected to the

continued fraction algorithm, can be visualized by means of the Farey tessellation
{gG : g ∈ S} of H depicted in Figure 1, where G =

{
0 ≤ ℜz ≤ 1 : |z − 1

2
| ≥ 1

2

}

[25].

G
BB−1

A

0
1

1
1

1
2

1
3

A2 AB

AB2A3
A2B ABA

2
3

1
4

3
4

2
5

3
5

Figure 1: The Farey tessellation.

The strip 0 ≤ ℜz ≤ 1 is tessellated precisely by the images of G under matrices

from the set

S∗ = {I} ∪
{(

a b
c d

)
∈ SL2(Z) : 0 ≤ a ≤ c, 0 ≤ b ≤ d

}
.
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976 F. P. Boca

By suspending the cusps in this tessellation (which correspond to rational numbers in
[0, 1]) with appropriate (infinite) multiplicities, one gets the diagram G from Figure 2

(see [19]). This diagram reflects both the elementary mediant construction, which
produces from a pair (p/q, p ′/q ′) of rational numbers with p ′q − pq ′

= 1 the new

pairs ( p
q
, p+p ′

q+q ′
) and ( p+p ′

q+q ′
, p ′

q ′
) with the same property, and the “geometry” of the

continued fraction algorithm. As in the case of the Pascal triangle, in G one writes

the sum of the denominators of two neighbors from the same floor into the next floor
of the diagram. One keeps, however, a copy of each denominator at the next floor.
For this reason, such a diagram was called the Pascal triangle with memory in [18].

There is a remarkable one-to-one correspondence between the integer solutions of
the equation ad − bc = 1 with 0 ≤ a ≤ c, 0 ≤ b ≤ d and the rational labels of
two neighbors at the same floor in G acquired by the mediant construction and by
keeping each label at the next floor in the diagram.

The thrust of this paper is the remark that, by regarding G as a Bratteli diagram,
one gets an AF algebra A = lim−→An with interesting properties. This algebra is closely
related with the Effros–Shen AF algebras [11,21], which we show arising as primitive
quotients of A. The primitive ideal space Prim A is identified with the disjoint union

of the irrational numbers in [0, 1] and three copies of the rational ones, except for
the endpoints 0 and 1, which are represented by only two copies.

In [3] it was shown that any separable abelian C∗-algebra Z is the center Z(A)

of an AF algebra A. The AF algebra A can actually be retrieved from that abstract
construction by embedding Z = C[0, 1] into the norm closure in L∞[0, 1] of the
linear space of the characteristic functions of open sets ( k

2n ,
k+1
2n ) and singleton sets

{ ℓ
2n }, n ≥ 0, 0 ≤ k < 2n, 0 ≤ ℓ ≤ 2n. In particular this shows that Z(A) = C[0, 1].

The connecting maps K0(An) →֒ K0(An+1) correspond to the polynomial rela-

tions pn+1(t) = (1 + t + t2)pn(t2). These polynomials are closely related to the Stern–
Brocot sequence [6]. The origins of this remarkable sequence, which has attracted
considerable interest over time, can be traced back to Eisenstein (see [5, 27], or the
contemporary reference [26] for a thorough bibliography on this subject). In our

framework the Stern–Brocot sequence q(n, k), n ≥ 0, 0 ≤ k < 2n, simply appears as

the sizes of the summands An
∼=

⊕2n−1

k=0 Mq(n,k)
⊕C, where Mr denotes the C∗-algebra

of r × r matrices with complex entries.

The Bratteli diagram G has some apparent symmetries. In the last section we
employ the AF path algebra model to express them, constructing sequences of pro-

jections in A that satisfy certain braiding relations reminiscent of the Temperley–
Lieb–Jones relations. In particular, for every τ ∈ (0, 1

4
], we construct projections En

in A, n ≥ 0, such that EnEn±1En ≤ τEn and [En, Em] = 0 if |n − m| ≥ 2. This
suggests a possible connection with a class of statistical mechanics models with par-

tition functions closely related to Riemann’s zeta function, called Farey spin chains,
which have been studied in recent years by Knauf, Kleban, and their collaborators
(see [16–19, 22] and references therein).

1 The Pascal Triangle with Memory as a Bratteli Diagram

The Pascal triangle with memory is a graph G = (V,E) defined as follows:
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• The vertex set V is the disjoint union
⊎

n≥0 Vn of the sets Vn = {(n, k) : 0 ≤ k ≤
2n} of vertices at floor n;

• The set of edges is defined as E =
⊎

n≥0 En, where En is the set of edges connecting
vertices at floor n with those at floor n + 1 under the rule that (n, k) is connected
with (n + 1, ℓ) precisely when |2k− ℓ| ≤ 1. There are no edges connecting vertices
from Vi and V j when |i − j| ≥ 2.

To each vertex (n, k) we attach the label r(n, k) =
p(n,k)
q(n,k)

, with non-negative integers

p(n, k), q(n, k) defined recursively for n ≥ 0 by

q(n, 0) = q(n, 2n) = 1, p(n, 0) = 0, p(n, 2n) = 1;

q(n + 1, 2k) = q(n, k), p(n + 1, 2k) = p(n, k), 0 ≤ k ≤ 2n;

q(n + 1, 2k + 1) = q(n, k) + q(n, k + 1),

p(n + 1, 2k + 1) = p(n, k) + p(n, k + 1),
0 ≤ k < 2n.

Note that r(n, 0) = 0 < r(n, 1) =
1

n+1
< · · · < r(n, 2n) = 1 gives a partition of

[0, 1], and

p(n, k + 1)q(n, k)− p(n, k)q(n, k + 1) = 1, n ≥ 0, 0 ≤ k < 2n,

showing in particular that p(n, k) and q(n, k) are relatively prime.

0

1

1

2

1

1

0

1

1

1

0

1

1

3

1

2
2

3
1

1

0

1

0

1

1

4

1

3

2

5

1

2

3

5

2

3

3

4

1

1

• •

• • •

• • • • •

• • • • • • • • •

0

1

1

5

1

4

2

7

1

3

3

8

2

5

3

7

1

2

1

1

4

5

3

4

5

7

2

3

5

8

3

5

4

7
• • • • • • • • • ••••••••

0

1

1

6

1

5

2

9

1

4

3

11

2

7

3

10

1

3

4

11

3

8

5

13

2

5

5

12

3

7

4

9

1

2

1

1

5

6

4

5

7

9

3

4

8

11

5

7

7

10

2

3

7

11

5

8

8

13

3

5

7

12

4

7

5

9

• • • • • • • • • • • • • • • • • ••••••••••••••••

Figure 2: The Pascal triangle with memory, G.

Conversely, for every pair p/q < p ′/q ′ of rational numbers with p ′q − pq ′
= 1,

0 ≤ p ≤ q and 0 ≤ p ′ ≤ q ′, there exists a unique pair of integers (n, k) with n ≥ 0,
0 ≤ k < 2n, such that r(n, k) = p/q and r(n, k + 1) = p ′/q ′. This correspondence
establishes a bijection between the vertices from V \ {(n, 2n) : n ≥ 0} and the set

Γ
+ :=

{(
p ′ p

q ′ q

)
∈ SL2(Z) : 0 ≤ p ≤ q, 0 ≤ p ′ ≤ q ′

}
⊂ SL2(Z).
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Remark 1. The mapping r(n, k) 7→ k/2n, 0 ≤ k ≤ 2n, n ≥ 0, extends by continuity to

Minkowski’s question mark map ? : [0, 1]→ [0, 1] defined on (reduced) continued

fractions as

?([a1, a2, . . . ]) =

∑

k≥1

(−1)k−1

2(a1+···+ak)−1
.

The map ? is strictly increasing and singular, and establishes remarkable one-to-one

correspondences between rational and dyadic numbers, and respectively between
quadratic algebraic numbers and rational numbers in [0, 1] (see [7, 20, 24]).

In this paper we shall consider the AF algebra A associated with the Bratteli dia-
gram D(A) = G from Figure 2. For the connection between Bratteli diagrams, AF al-
gebras, and their ideals, we refer to the classical reference [1]. We write (n, k)↓(n, ′ k ′)

when n ′
= n + 1 and there is at least one edge between the vertices (n, k) and (n ′, k ′)

in the Bratteli diagram, and write (n, k) ⇓ (n ′, k ′) when n < n ′ and there are vertices
(n, k0 = k), (n + 1, k1), . . . , (n ′, kn ′−n = k ′) such that (n + r, kr) ↓ (n + r + 1, kr+1),
r = 0, . . . , n ′ − n− 1. In algebraic terms this is equivalent to e(n,k)e(n ′,k ′) 6= 0, where

e(n,k) denotes the central projection in An that corresponds to the vertex (n, k) of the
diagram. The AF algebra A is the inductive limit lim−→An, where

An =
⊕

0≤k≤2n

Mq(n,k)

and each embedding An →֒ An+1 is given by the Bratteli diagram from Figure 2.

Remark 2. Consider the set V∗ of vertices of G of form (n, k) with 0 ≤ k ≤ 2n and k
odd, and the map Φ : V∗ → N, Φ(n, k) = q(n, k). The inverse image Φ

−1(q) of q con-
tains exactly ϕ(q) elements, where ϕ denotes Euler’s totient function; in particular q

is prime if and only if #Φ
−1(q) = q − 1. This remark shows [17] that the partition

function associated with the corresponding Farey spin chain is
∑∞

n=1 ϕ(n)n−s, which
is equal to ζ(s− 1)/ζ(s) when ℜs > 2.

Remark 3. (i) The integers q(n, k) satisfy the equality
∑

0≤k≤2n q(n, k) = 3n + 1.

(ii) Consider the Bratteli diagram obtained by deleting in G all vertices (n, 0) and
denote the corresponding AF algebra by B = lim−→Bn. It is clear that B is an ideal in
A and A/B ∼= C. Moreover,

Bn =
⊕

1≤k≤2n

Mp(n,k),

thus the ranks of the central summands of the building blocks of B give the complete
list of numerators p(n, k). We also have

∑

0≤k≤2n

p(n, k) =
3n + 1

2
.

https://doi.org/10.4153/CJM-2008-043-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-043-1


An AF Algebra Associated with the Farey Tessellation 979

2 The Primitive Ideal Space of the AF Algebra A

We denote I = {θ ∈ (0, 1) : θ /∈ Q} and Q(0,1) = Q ∩ (0, 1).
The C∗-algebra A is not simple and has a rich (and potentially interesting) struc-

ture of ideals. We first relate A with the AF algebra Fθ associated by Effros and Shen

[11] to the continued fraction decomposition θ = [a1, a2, . . . ] of θ ∈ I. The Bratteli
diagram D(Fθ) of the simple C∗-algebra Fθ is given in Figure 3.

• •

•

• • •

• • •

a1 a2 a3 a4

. . .

. . .

Figure 3: The Bratteli diagram D(Fθ).

The C∗-algebra of unitized compact operators K̃ = CI + K is an AF algebra and
we have a short exact sequence 0 → K → K̃ → C → 0, made explicit by the
Bratteli diagram in Figure 4, where the shaded subdiagram corresponds to the ideal
K. Replacing C⊕C by Mq⊕Mq ′ one gets an AF algebra A(q,q ′) which is an extension

of K by Mq.

•

• •

•

• • •

• • •C

C

Figure 4: The Bratteli diagram of the C∗-algebra of unitized compact operators.

We first show that Effros–Shen algebras arise naturally as quotients of our AF al-

gebra A and that the corresponding ideals belong to the primitive ideal space Prim A.
The Farey map F : [0, 1]→ [0, 1] defined by

F(x) =





x

1− x
if x ∈ [0, 1

2
],

1− x

x
if x ∈ ( 1

2
, 1]

(see [14]), acts on infinite (reduced) continued fractions as

F([a1, a2, a3, . . . ]) = [a1 − 1, a2, a3, . . . ].
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For each y ∈ [0, 1] the equation F(x) = y has exactly two solutions x ∈ [0, 1] given
by

(2.1) x = F1(y) =
y

1 + y
and x = F2(y) =

1

1 + y
= 1− F1(y).

One has F1([a1, a2, . . . ]) = [a1 + 1, a2, . . . ] and F2([a1, a2, . . . ]) = [1, a1, a2, . . . ].
Rational numbers are generated by the backwards orbit of F as follows:

{F−n({0}) : n = 0, 1, 2, . . .} = Q ∩ [0, 1].

More precisely, for each n ∈ N one has

F−n({0}) = {r(n− 1, k) : 0 ≤ k ≤ 2n−1}

=
{

Fα1

i1
· · · Fαk

ik
(0) : i j ∈ {1, 2}, i1 6= · · · 6= ik, α1 + · · · + αk = n

}

=
{

[a1, . . . , ar] : a1 + · · · + ar ≤ n
}
.

In the next statement, given relatively prime integers 0 < p < q, p will denote the
multiplicative inverse of p modulo q, i.e., the unique integer p ∈ {1, . . . , q− 1} with
pp = 1 (mod q).

Proposition 4 (i) For each θ ∈ I, there is Iθ ∈ Prim A such that A/Iθ ∼= Fθ.

(ii) Given
p
q
∈ Q(0,1) in lowest terms, there are I p

q
, I+

p
q

, I−p
q

∈ Prim A such that A/I p
q

∼=
Mq, A/I−p

q

∼= A(q,p), and A/I+
p
q

∼= A(q,q−p).

(iii) There are I0, I
+
0 , I1, I

−
1 ∈ Prim A such that A/I0

∼= A/I1
∼= C and A/I+

0
∼=

A/I−1
∼= K̃.

Proof (i) Let θ ∈ I with continued fraction [a1, a2, . . . ] and let rℓ = rℓ(θ) =

pℓ/qℓ = [a1, . . . , aℓ] be its ℓ-th convergent, where pℓ = pℓ(θ) and qℓ = qℓ(θ) can be

recursively defined by

p−1 = 1, q−1 = 0, p0 = 0, q0 = 1;
(

pℓ qℓ
pℓ−1 qℓ−1

)
=

(
aℓ 1
1 0

) (
pℓ−1 qℓ−1

pℓ−2 qℓ−2

)
, ℓ ≥ 1.

The relation pℓqℓ−1 − pℓ−1qℓ = (−1)ℓ−1 shows in particular that gcd(pℓ, qℓ) = 1.
For each a ∈ N = {1, 2, . . .} consider the diagrams La and Ra from Figure 5. Also

set L0 = R0 = ∅. Clearly La+b coincides with the concatenation La ◦Lb of La followed
by Lb, and we also have Ra+b = Ra ◦ Rb. Using the obvious identifications between
La ◦ Rb, Ra ◦ Lb, and Ca ◦ Cb (see Figure 6) and (2.1), we see that the AF algebras
defined by the Bratteli diagrams La1

◦Ra2
◦La3
◦Ra4

◦ . . . and Ra1
◦La2
◦Ra3

◦La4
◦ . . .

are isomorphic to F[a1+1,a2,a3,...]
∼= FF1(θ)

∼= FF2(θ)
∼= F[1,a1,a2,...] (note that the AF

algebra defined by Ca1
◦Ca2

◦Ca3
◦ · · · is isomorphic to F[a1+1,a2,a3,...]).

The Bratteli subdiagram Gθ of G containing the vertices (0, 0) and (0, 1) and de-
fined by La1−1 ◦ Ra2

◦ La3
◦ Ra4

◦ · · · generates a copy of Fθ.
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La = a spaces

•

•

•

•

•

•

•

•

Ra =

•

•

•

•

•

•

•

•

a spaces

Figure 5: The diagrams La and Ra.

La ◦ Rb ←→

•

⊛

••

•

◦

a

b

←→

•

◦⊛

•

• •

a

b

= Ca ◦Cb

Ra ◦ Lb ←→

•

⊛

••

•

◦

a

b

←→

•

◦⊛

•

• •

a

b

= Ca ◦Cb

Figure 6: The identification between La ◦ Rb, Ra ◦ Lb, and Ca ◦Cb.

The complement G \ Gθ is a directed and hereditary Bratteli diagram as in

[1, Lemma 3.2] (see also Figure 7). Thus there is an ideal Iθ in A such that D(Iθ) =

G \ Gθ , D(A/Iθ) = Gθ, and A/Iθ ∼= Fθ. Moreover Iθ is a primitive ideal [1, Theorem
3.8].

If jn = jn(θ) is the unique index for which r(n, jn) < θ < r(n, jn + 1) (see

Figure 7), then
Iθ ∩ An =

⊕
0≤k≤2n

k6= jn, jn+1

Mq(n,k).

The vertices of D(A/Iθ) are explicitly related to the continued fraction decomposition
of θ. For each r ∈ Q(0,1), denote ht(r) = min{n : ∃k, r(n, k) = r}. Let pn/qn be the
continued fraction approximations of θ, and hn = ht(pn/qn). With this notation, the

labels of the two vertices at floor m in Gθ are

pn

qn
and

pn−1 + (m− hn)pn

qn−1 + (m− hn)qn

whenever hn ≤ m < hn+1.
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Figure 7: The diagrams D(Iθ) = G \ Gθ (darker) and D(A/Iθ) = Gθ (lighter) when θ =

[1, 2, 2, 1, 1, . . .].

(ii) For each θ = p/q ∈ Q(0,1) in lowest terms, consider the Bratteli subdiagram Gθ
of G defined by all vertices (n, j) with r(n, j) = θ and (m, i) with (m, i) ⇓ (n, j). The

AF algebra associated with Gθ is clearly isomorphic to Mq. Again, the complement
G \ Gθ is seen to be a directed and hereditary Bratteli diagram. Therefore there is a
primitive ideal Iθ in A such that D(Iθ) = G \ Gθ and A/Iθ ≃Mq.

Let n0 − 1 = n0(θ) − 1 be the largest n ∈ N for which there exists j = jn(θ)

such that r(n, j) < θ < r(n, j + 1). For n < n0 define jn as above. By the choice
of n0 and the properties of the Pascal triangle with memory, for every n ≥ n0 there
is jn = jn(θ) with r(n, jn) = θ. The ideal Ip/q is generated by the direct summands
Mq(n0, jn0

−1), Mq(n0, jn0
+1) and Mq(n,cn), n < n0, that is,

I p
q
∩ An =





⊕
0≤k≤2n

k6= jn, jn+1

Mq(n,k) if n < n0,

⊕
0≤k≤2n

k6= jn

Mq(n,k) if n ≥ n0.

The ideals I±p
q

defined by (see also Figures 9 and 10)

I+
p
q
∩ An =

⊕
0≤k≤2n

k6= jn, jn+1

Mq(n,k),
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Figure 8: The diagrams D(I 1
3
) (darker) and D(A/I 1

3
) (lighter).

and respectively by

I−p
q

∩ An =





⊕
0≤k≤2n

k6= jn, jn+1

Mq(n,k) if n < n0,

⊕
0≤k≤2n

k6= jn−1, jn

Mq(n,k) if n ≥ n0,

are primitive, and we clearly have A/I−p
q

∼= A(q,p) and A/I+
p
q

∼= A(q,q−p). (iii) is now

obvious.

Remark 5. A joint (and important) feature of all cases above is that

(n, j) /∈ D(Iθ) = G \ Gθ =⇒ r(n, j − 1) < θ < r(n, j + 1).

Remark 6. In GL2(Z) consider the matrices

A

(
1 0
1 1

)
, B =

(
1 1
0 1

)
, J =

(
0 1
1 0

)
, M(a) =

(
a 1
1 0

)
.

The identification between La◦Rb and Ca◦Cb reflects the matrix equality

BaAb
= M(a)M(b),

whereas the identification between Ra◦Rb and Ca◦Cb reflects the matrix equality

AaBb
= JM(a)M(b) J.
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Figure 9: The diagrams D(I+
1
3
) (darker) and D(A/I+

1
3
) (lighter).

A combinatorial analysis based on Bratteli’s correspondence between primitive
ideals and subdiagrams of G shows that these are actually the only primitive ideals
of A.

Proposition 7 Prim A = {Iθ : θ ∈ I} ∪ {Iθ, I±θ : θ ∈ Q(0,1)} ∪ {I0, I
+
0 , I1, I

−
1 }.

Proof Let I ∈ Prim A. Consider the Bratteli diagrams D = D(I) and D̃ = D(A/I) =

G \D. If there is n0 such that (n0, k) ∈ D for all 0 ≤ k ≤ 2n0 , then I = A. So for each
n, the set Ln = {k : (n, k) ∈ D̃} is nonempty. Denote also Lc

n = {0, 1, . . . , 2n} \ Ln.

We first notice that Ln must be a set of the form {an} or {an, an + 1}. If not, there
are k, k ′ ∈ Ln such that k ′ − k ≥ 2. Since I is a primitive ideal, a vertex (p, r) in G

should exist such that (n, k) ⇓ (p, r) and (n, k ′) ⇓ (p, r). Since k ′ − k > 2, this is not
possible due to the definition of G.

To finish the proof it suffices to show that

(2.2) Ln+1 =





{2an} if Ln = {an},
{2an, 2an + 1}, {2an + 1, 2an + 2},

or {2an + 1} if Ln = {an, an + 1},

that is, all links (n, j) ↓ (n + 1, j ′) in D̃ are exactly as indicated in Figure 11.

Indeed, if Ln = {an}, then (n, an − 1), (n, an + 1) are vertices in the hereditary
diagram D; thus we also have (n + 1, 2an − 1), (n + 1, 2an + 1) ∈ D. Because D is
directed, (n + 1, 2an) ∈ D would imply (n, an) ∈ D, which contradicts an ∈ Ln.

If Ln = {an, an + 1}, then (n, an − 1), (n, an + 2) ∈ D. Moreover, because D is

hereditary the vertices (n + 1, 2an − 1) and (n + 1, 2an + 3) also belong to D. We
now look at the consecutive vertices (n + 1, 2an), (n + 1, 2an + 1), (n + 1, 2an + 2).
From the first part, they cannot all belong to D̃. If (n + 1, 2an + 1) ∈ D and
(n + 1, 2an), (n + 1, 2an + 2) ∈ D̃, then Ln+1 has a gap, thus contradicting the first
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Figure 10: The diagrams D(I−2
5

) (darker) and D(A/I−2
5

) (lighter).

part. If (n + 1, 2an), (n + 1, 2an + 2) ∈ D, it follows as a result of the fact that
(n + 1, 2an − 1) ∈ D and that D is directed that (n + 1, 2an + 1) ∈ D̃. In a simi-

lar way one cannot have (n + 1, 2an + 1), (n + 1, 2an + 2) ∈ D. It remains that only
the following cases can occur (see also Figure 11):

(i) (n + 1, 2an), (n + 1, 2an + 1) ∈ D̃ and (n + 1, 2an + 2) ∈ D, thus Ln+1 =

{2an, 2an + 1}.
(ii) (n + 1, 2an) ∈ D and (n + 1, 2an + 1), (n + 1, 2an + 2) ∈ D̃, thus Ln+1 =

{2an + 1, 2an + 2}.
(iii) (n +1, 2an +1) ∈ D̃ and (n +1, 2an), (n +1, 2an +2) ∈ D, thus Ln+1 = {2an +1},
which concludes the proof of (2.2).

⊛
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•
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•
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Figure 11: The possible links between two consecutive floors in D(A/I).
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3 The Jacobson Topology on Prim A

We first recall some basic things about the primitive ideal space of a C∗-algebra A

following [8, 23]. For each set S ⊆ Prim A, consider the ideal k(S) :=
⋂

J∈S J in A,
called the kernel of S. For each ideal I consider its hull, h(I) := {P ∈ Prim A : I ⊆ P}.
The closure of a set S ⊆ Prim A is defined as S := {P ∈ Prim A : k(S) ⊆ P}. There is
a unique topology on Prim A, called the Jacobson (or hull-kernel) topology such that
its closed sets are exactly those with S = S. The open sets in Prim A are then precisely
those of the form OI := {P ∈ Prim A : I * P} for some ideal I in A. The Jacobson

topology is always T0, i.e., for any two distinct points in Prim A, one of them has a
neighborhood which does not contain the other.

Moreover, the correspondence S 7→ k(S) establishes a one-to-one correspondence
between the closed subsets S of Prim A and the lattice of ideals in A, with inverse

given by I 7→ h(I). For any ideal I in A, let pI denote the quotient map A → A/I.
The mapping P 7→ P∩I is a homeomorphism of the open set OI onto Prim I, whereas
Q 7→ p−1

I (Q) is a homeomorphism of Prim A/I onto the closed set h(I) of Prim A.
A general study of the primitive ideal space of AF algebras was pursued in [2, 4, 9].

We collect some immediate properties of the primitive ideal space of A in the

following.

Remark 8. (i) For each θ ∈ I, {Iθ} = {Iθ}.
(ii) For each θ ∈ Q(0,1), Iθ * I+

θ , Iθ * I−θ , and Iθ = I+
θ ∩ I−θ . We also have

I0 * I+
0 and I1 * I−1 . Therefore {Iθ} = {Iθ, I+

θ , I
−
θ } whenever θ ∈ Q(0,1),

{I0} = {I0, I
+
0 } and {I1} = {I1, I

−
1 }, showing in particular that the Jacobson

topology on Prim A is not Hausdorff. In spite of this we shall see that after
removing the “singular points” I±θ from Prim A we retrieve the usual topology
on [0, 1].

For each set E ⊆ [0, 1], consider the ideal

(3.1) I(E) :=
⋂
θ∈E

Iθ,

and denote by E the usual closure of E in [0, 1].

Lemma 9 I(E) = I(E) for every set E ⊆ [0, 1].

Proof The inclusion I(E) ⊆ I(E) is obvious by (3.1). We prove I(E) ⊆ Ix for
all x ∈ E. Suppose ad absurdum there is x ∈ E for which I(E) * Ix, i.e., there is

(n, j) ∈ V with (n, j) ∈ D(I(E)) and (n, j) /∈ D(Ix). The latter and Remark 5 yield

(3.2) r(n, j − 1) < x < r(n, j + 1).

On the other hand, because D(I(E)) contains (n, j), every diagram D(Iθ), θ ∈ E,
must contain the whole “pyramid” starting at (n, j), see Figure 12. Thus

∀θ ∈ E, ∀k ≥ 1, θ ∈ [0, r(n + k, 2k j − 2k + 1), 1] ∪ [r(n + k, 2k j + 2k − 1), 1].
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But

r(n + k, 2k j + 2k − 1) =
kp(n, j + 1) + p(n, j)

kq(n, j + 1) + q(n, j)

k−→ p(n, j + 1)

q(n, j + 1)
= r(n, j + 1),

r(n + k, 2k j − 2k + 1) =
kp(n, j − 1) + p(n, j)

kq(n, j − 1) + q(n, j)

k−→ p(n, j − 1)

q(n, j − 1)
= r(n, j − 1),

hence

E ⊆ [0, r(n, j − 1)] ∪ [r(n, j + 1), 1],

which is in contradiction with (3.2).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(n, j)(n, j − 1) (n, j + 1)

(n + 1, 2 j + 1)(n + 1, 2 j − 1)

(n + 1, 4 j + 3)

(n + 1, 4 j − 3)

(n + 1, 2 j + 2)

(n + 1, 4 j + 4)

(n + 1, 2 j − 2)

(n + 1, 4 j − 4)

Figure 12: The ideal generated by (n, j).

Remark 10. We have q(n, 2 j) = q(n − 1, j) < min{q(n, 2 j − 1), q(n, 2 j + 1)}, so if

r(n, 2 j) = p/q, then

r(n, 2 j + 1)− r(n, 2 j − 1) =
1

q(n, 2 j − 1)q(n, 2 j)
+

1

q(n, 2 j)q(n, 2 j + 1)
<

2

q2
.

One can give a better estimate as follows. Let θ = p/q ∈ (0, 1) be a rational number

in lowest terms and let p̄ ∈ {1, . . . , q − 1} denote the multiplicative inverse of p
modulo q. Let n0 = n0(θ) be the smallest n such that θ = r(n, j0) for some j0.
Then j0 is odd and the labels r ′ = p ′/q ′ and respectively r ′ ′ = p ′′/q ′′ of the “left
parent” (n0 − 1, j0−1

2
) and respectively of the “right parent” (n0 − 1, j0+1

2
) of the

vertex (n0, j0), are given by (q ′, p ′) = (p̄, pp̄−1
q

), and respectively by (q ′ ′, p ′′) =(
q− p̄, p − pp̄−1

q

)
= (q, p)− (q ′, p ′). Furthermore, we have

r(n0 + k, 2k j0 − 1) =
p + kp ′

q + kq ′
, r(n0 + k, 2k j0 + 1) =

p + kp ′ ′

q + kq ′ ′
,
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and

max
{

r(n0 + k, 2k j0 + 1)− p/q, p/q− r(n0 + k, 2k j0 − 1)
}
<

1

kq2
.

Lemma 11 For some x ∈ [0, 1] and S ⊆ [0, 1] suppose I(S) ⊆ Ix. Then x ∈ S.

Proof Obviously two cases may occur.

Case 1: x /∈ Q . Let (pn/qn) denote the sequence of continued fraction approxi-

mations of x. Taking stock on the definition of the ideal Ix, we get positive integers
k1 < k2 < · · · and vertices (kn, jn) ∈ D(A) with the following properties:

(i) r(kn, jn) = pn/qn;
(ii) jn is even;
(iii) (kn, jn) /∈ D(Ix).

Actually (iii) is a plain consequence of (i) and gives in turn, cf. Remark 5,

(3.3) r(kn, jn − 1) < x < r(kn, jn + 1).

Case 2: x ∈ Q . There is n0 such that (n, jn) /∈ D(Ix) and r(n, jn) = x for all
n ≥ n0. In this case we take kn = n.

Suppose that ∃n ≥ n0, ∀θ ∈ S, (kn, jn) ∈ D(Iθ). Then (kn, jn) ∈ D(I(S))\D(Ix),
which contradicts the assumption of the lemma. Therefore we must have

∀n, ∃θn ∈ S, (kn, jn) /∈ D(Iθn
),

which according to Remark 5 gives

(3.4) r(kn, jn − 1) < θn < r(kn, jn + 1).

From (3.3), (3.4) and Remark 10 we now infer

|x − θn| < r(kn, jn + 1)− r(kn, jn − 1) <
2

q2
n

, ∀n ≥ n0,

and so dist(x, S) = 0. This concludes the proof of the lemma.

As a consequence, the Jacobson topology is Hausdorff when restricted to the sub-
set Prim0 A = {Iθ : θ ∈ [0, 1]} of Prim A. Moreover, we have the following.

Corollary 12 Let (θn) be a sequence in [0, 1]. The following are equivalent:

(i) θn → θ in [0, 1].
(ii) Iθn

→ Iθ in Prim A.

Proof (i) Suppose θn → θ in [0, 1] but Iθn
9 Iθ in Prim A. Then there is I ideal in A

such that I * Iθ and there is a subsequence (nk) such that Iθnk
/∈ OI , so that I ⊆ Iθnk

.
By Lemma 9 this also yields I ⊆ Iθ, which is a contradiction.

(ii) Suppose Iθn
→ Iθ in Prim A but θn 9 θ in [0, 1]. Then there is a subsequence

(nk) such that θ /∈ {θnk
}k. By Lemma 11 we have I :=

⋂
k Iθnk

* Iθ, and so Iθ ∈
OI . But on the other hand I ⊆ Iθnk

, i.e., Iθnk
/∈ OI for all k, thus contradicting

Iθnk
→ Iθ.
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4 A Description of the Dimension Group

By a classical result of Elliott ([12], see also [10]), AF algebras are classified up to
isomorphism by their dimension groups. In this section we give a description of the
dimension group K0(C) of the codimension one ideal C = I1 of A obtained by eras-

ing all vertices (n, 2n) from the Bratteli diagram. This is inspired by the generating
function identity [6] ∑

n≥0

θnXn
=

∏

k≥0

(1 + X2k

+ X2k+1

),

where (θn)∞n=0 is the Stern–Brocot sequence q(0, 0), q(1, 0), q(1, 1), q(2, 0), q(2, 1),
q(2, 2), q(2, 3), . . . , q(n, 0), . . . , q(n, 2n − 1), q(n + 1, 0), . . . .

For each integer n ≥ 0, set

p(n,k)(X) :=

{
1 if k = 0,

Xk + X−k if 1 ≤ k < 2n,

and consider the abelian additive group

Pn :=
{ ∑

0≤k<2n

ck p(n,k) : ck ∈ Z

}
.

Set

̺(X) = X−1 + 1 + X, ̺n(X) =

∏

0≤k<n

̺(X2k

),

and define the injective group morphisms

βm : Pm → Pm+1, (βm(p))(X) = ̺(X)p(X2),

βm,n : Pm → Pn, (βm,n(p))(X) = (βn−1 · · ·βm(p))(X) = ̺m−n(X)p(X2n−m

), m < n.

Note that

(βn(p(n,k)))(X) = ̺(X)p(n,k)(X2)

=

{
p(n+1,0)(X) + p(n+1,1)(X) if k = 0,

p(n+1,2k−1)(X) + p(n+1,2k)(X) + p(n+1,2k+1)(X) if 1 ≤ k < 2n.

(4.1)

The group K0(Cn) identifies with the free abelian group Z2n

, generated by the
Murray–von Neumann equivalence classes [e(n,k)] of minimal projections e(n,k) in the
central summand C(n,k), 0 ≤ k < 2n. We have K0(C) = lim−→(K0(Cn), αn), the injective

morphisms αn : K0(Cn)→ K0(Cn+1) being given by

αn([e(n,k)]) =

{
[e(n+1,0)] + [e(n+1,1)] if k = 0,

[e(n+1,2k−1)] + [e(n+1,2k)] + [e(n+1,2k+1)] if 1 ≤ k < 2n.
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The positive cone K0(Cn)+ consists of elements of form
∑2n−1

k=0 ck[e(n,k)], ck ∈ Z+. The
groups K0(Cn) and Pn are identified by the group isomorphism φn mapping [e(n,k)]

onto p(n,k). Equalities (4.1) are reflected into the commutativity of the diagram

(4.2) K0(Cn)
φn

//

αn

��

Pn

βn

��

K0(Cn+1)
φn+1

// Pn+1

As a result, K0(C) is isomorphic with the abelian group P = lim−→(Pn, βn) and can,

therefore, be described as (∪nPn)/∼ = Z[X + X−1]/∼, where ∼ is the equivalence
relation given by equality on each Pn × Pn, and for p ∈ Pm, q ∈ Pn, m < n, by

p ∼ q ⇐⇒ q(X) = (βm,n(p))(X) = p(X2n−m

)
∏

0≤k<n−m

(X−2k

+ 1 + X2k

).

Let [p] denote the equivalence class of p ∈ ⋃
n Pn. The addition on P is given by

[p] + [q] = [βm,n(p) + q], p ∈ Pm, q ∈ Pn, m ≤ n,

and does not depend on the choice of m or n. For example

[X−1 + X] + [X−3 + X3] = [(X−1 + 1 + X)(X−2 + X2) + X−3 + X3]

= [2(X−3 + X3) + (X−2 + X2) + (X−1 + X)].

An element [p], p ∈ Pn, belongs to the positive cone P+ of the dimension group
precisely when there is an integer N > n such that βn,N(p) has nonnegative coeffi-
cients. The equality (where cr+1 = 0)

(X−1 + 1 + X)
∑

0≤k<2n

ck(X2k + X−2k) =

∑

0≤k<2n

ck(X2k + X−2k)

+
∑

0≤k<2n

(ck + ck+1)(X2k+1 + X−2k−1)

shows that p(X) has nonnegative coefficients if and only if ̺(X)p(X2) has the same

property. Therefore [p] ∈ P+ precisely when p(X) has nonnegative coefficients.

Consider the positive integers q ′
(n,k), n ≥ 0, 0 ≤ k < 2n, describing the sizes of

central summands in

(4.3) Cn =
⊕

0≤k<2n

Mq ′

(n,k)
,
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that is

q ′
(n,0) = q ′

(n,2n−1) = 1,

q ′
(n,2k) = q ′

(n−1,k),

q ′
(n,2k+1) = q ′

(n−1,k) + q ′
(n−1,k+1), 0 ≤ k < 2n.

For instance q ′(3, k), 0 ≤ k ≤ 7, are given by 1, 3, 2, 3, 1, 2, 1, 1, and q ′(4, k), 0 ≤
k ≤ 15, by 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1. From (4.3) we have

∑

0≤k<2n

q ′(n, k)[e(n,k)] = [1] in K0(C).

This corresponds to ∑

0≤k<2n

q ′(n, k)p(n,k)(X) = ̺n(X).

One can give a representation of K0(C) where the injective maps βn in (4.2) are
replaced by inclusions ιn(p) = p. Define

φ(n,k)(X) =
p(n,k)(X1/2n

)

̺(n,k)(X1/2n
)

=





1∏n
j=1(X−1/2 j

+ 1 + X1/2 j
)

if k = 0,

Xk/2n

+ X−k/2n

∏n
j=1(X−1/2 j

+ 1 + X1/2 j
)

if 1 ≤ k < 2n,

and consider the additive abelian group

Rn :=
{ ∑

0≤k<2n

ckφ(n,k) : ck ∈ Z

}
.

The equalities (4.1) become

φ(n+1,0) + φ(n+1,1) = φ(n,0),

φ(n+1,2k−1) + φ(n+1,2k) + φ(n+1,2k+1) = φ(n,k), 1 ≤ k < 2n,

and show that Rn ⊆ Rn+1 and that the diagram

K0(Cn)
ψn

//

αn

��

Rn
� _

ιn

��

K0(Cn+1)
ψn+1

// Rn+1
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7
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Figure 13: The diagram T.

is commuting, where ψ([e(n,k)]) = φ(n,k). Therefore K0(C) = R :=
⋃

n Rn. Taking

X = eY , we see that K0(C) can be viewed as the Z-linear span of φ̃(n,k), n ≥ 0,
0 ≤ k < 2n, where

φ̃(n,k)(Y ) =





1∏n
j=1(1 + 2 cosh(Y/2 j))

if k = 0,

2 cosh(kY/2n)∏n
j=1(1 + 2 cosh(Y/2 j))

if 1 ≤ k < 2n.

One can certainly replace Y by iY and use cos instead of cosh.

5 Traces on A

We augment the diagram G = D(A) into G̃, by adding a (−1)-st floor with only one
vertex ⋆ = (−1, 0) connected to both (0, 0) and (0, 1). Traces τ on A are in one-

to-one correspondence [13, Section 3.6] with families ατ = (ατ(n,k)) of numbers in
[0, 1], n ≥ −1, 0 ≤ k ≤ 2n, such that

ατ⋆ = 1,

ατ(n,0) = ατ(n+1,0) + ατ(n+1,1) if n ≥ −1,

ατ(n,2n) = ατ(n+1,2n+1) + ατ(n+1,2n+1−1) if n ≥ 0,

ατ(n,k) = ατ(n+1,2k−1) + ατ(n+1,2k) + ατ(n+1,2k+1) if n ≥ 1, 0 < k < 2n.

An inspection of G̃ shows that such a family ατ is uniquely determined by the
numbers ατ(n,k) with odd k. Let T denote the diagram obtained by removing the
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memory in G̃. Its set of vertices V (T) consists of ⋆ and (n, k) with n ≥ 0 and odd k.
For v = (n, k) define Lv = (n+1, 2k−1) if n ≥ 0, 0 < k ≤ 2n, and Rv = (n+1, 2k+1)

if n ≥ −1, 0 ≤ k < 2n.

Given ατv , v = (n, k) ∈ V (T), define recursively for r ≥ 1,

ατ(n+r,0) = ατ(n+r−1,0) − ατ(n+r,1) if n ≥ −1,

ατ(n+r,2n+r) = ατ(n+r−1,2n+r−1) − ατ(n+r,2n+r−1) if n ≥ 0,

ατ(n+r,2rk) = ατ(n+r−1,2r−1k) − ατ(n+r,2rk−1) − ατ(n+r,2rk+1) if n ≥ 1,

or equivalently

(5.1)

ατ(n,0) = ατ⋆ −
n∑

j=0

ατ( j,1) = ατ⋆ −
n∑

j=0

ατL j R⋆ if n ≥ 0,

ατ(n,2n) = ατ(0,1) −
n∑

j=1

ατ( j,2 j−1) = ατ(0,1) −
n∑

j=1

ατR j−1L(0,1) if n ≥ 1,

ατ(n+r,2rk) = ατ(n,k) −
r∑

j=1

(ατ(n+ j,2 j k−1) + ατ(n+ j,2 j k+1))

= ατ(n,k) −
r∑

j=1

(
ατR j−1L(n,k) + ατL j−1R(n,k)

)
if n ≥ 2.

There is an obvious order relation on V (T) defined by (n, kn) � (n ′, k ′
n) if n ≤ n ′

and there is a chain of vertices (n, kn), . . . , (n ′, k ′
n) such that (n + i, kn+i) is connected

to (n + i + 1, kn+i+1), i.e., kn+i+1 − 2kn+i = ±1. A function f : V (T) → R is mono-
tonically decreasing if f (v1) ≥ f (v2) whenever v1 � v2 in V (T). For each vertex

v = (n, k) ∈ V (T), let

(5.2) Cv =





{L jR⋆ : j ≥ 0} if v = ⋆,

{R j−1L(0, 1) : j ≥ 1} if v = (0, 1),

{R j−1Lv : j ≥ 1} ∪ {L j−1Rv : j ≥ 1} if v ∈ V (T) \ {⋆, (0, 1)},

denote the set of vertices in V (T) neighboring the vertical infinite segment originat-

ing at v. As a result of (5.1) and of non-negativity of ατ we have the following.

Proposition 13 There is a one-to-one correspondence between traces on A and func-

tions φ : V (T)→ [0, 1] such that φ(⋆) = 1 and

(5.3) φ(v) ≥
∑

w∈Cv

φ(w), ∀v ∈ V (T).

Note that a function satisfying (5.3) is necessarily monotonically decreasing.
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[6] [4,2]

[5]

[3,1,2] [3,3]

[3,2]

[4]

[2,1,3] [2,1,1,2]

[2,1,2]

[2,2,2] [2,4]

[2,3]

[2,2]

[1,1,4] [1,1,2,2]

[1,1,3]

[1,1,1,1,2] [1,1,1,3]

[1,1,1,2]

[1,1,2]

[1,2,3] [1,2,1,2]

[1,2,2]

[1,3,2] [1,5]

[1,4]

[1,3]

[3] [1,2]

[2]

[1]

0

Figure 14: The diagram T in the continued fraction representation.

One can give a description of the set Cv using the one-to-one correspondence
v 7→ r(v) between the sets V (T) and Q ∩ [0, 1] (see Figure 14). Any number in

Q ∩ (0, 1) can be uniquely represented as a (reduced) continued fraction [a1, . . . , at ]
with at ≥ 2. It is not hard to notice and prove that for any v ∈ V (T) with r(v) =

[a1, . . . , at ], at ≥ 2, we have

r(Lv) =

{
[a1, . . . , at−1, at − 1, 2] if t even,

[a1, . . . , at−1, at + 1] if t odd,

r(Rv) =

{
[a1, . . . , at−1, at + 1] if t even,

[a1, . . . , at−1, at − 1, 2] if t odd.

(5.4)

As a result of (5.2) and (5.4) we have

{r(w) : w ∈ Cv}
= {[a1, . . . , at−1, at − 1, 1, k] : k ≥ 1} ∪ {[a1, . . . , at−1, at , k] : k ≥ 1},

which shows in conjunction with Proposition 13 that there is a one-to-one corre-
spondence between traces on A and maps φ : Q ∩ [0, 1]→ [0, 1] which satisfy

1 = φ(0) ≥
∞∑

k=1

φ
( 1

k

)
, φ(1) ≥

∞∑

k=1

φ
( k

k + 1

)
,

φ([a1, . . . , at ]) ≥
∞∑

k=1

(
φ([a1, . . . , at−1, at − 1, 1, k])

+ φ([a1, . . . , at−1, at , k]
)
, at ≥ 2.

6 Generators, Relations, and Braiding

We shall use the path algebra model for AF algebras as in [15, §2.3.11] and [13, §2.9].
Here, however, a monotone increasing path ξ will be encoded by the sequence (ξn)
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where ξn gives the “horizontal coordinate” of the vertex at floor n, instead of its edges.

To use this model we again augment the diagram G = D(A) into G̃.

Denote by Ω the (uncountable) set of monotone increasing paths starting at ⋆.
Let Ω[r denote the set of infinite monotone increasing paths starting on the r-th floor

of G̃, Ωr] the set of monotone increasing paths that connect ⋆ with a vertex on the
r-th floor, and Ω[r,s] the set of monotone increasing paths starting on the r-th floor

and ending on the s-th floor. Let ξr] ∈ Ωr], ξ[r,s] ∈ Ω[r,s], ξ[s ∈ Ω[s denote the natural
truncations of a path ξ ∈ Ω. By ξ ◦ η we denote the natural concatenation of two
paths ξ ∈ Ωr] and η ∈ Ω[r with ξr = ηr . Consider the set Rr of pairs of paths
(ξ, η) ∈ Ωr]×Ωr] with the same endpoint ξr = ηr . For each (ξ, η) ∈ Rr the mapping

Ω ∋ ω 7→ Tξ,ηω = δ(η, ωr])ξ ◦ ω[r ∈ Ω,

extends to a linear operator on the C-linear space CΩ with basis Ω, and also to a
bounded operator Tξ,η : ℓ2(Ω) → ℓ2(Ω) with ‖Tξ,η‖ = 1. We have A =

⋃
r≥1 Ar

where the linear span Ar of the operators Tξ,η , (ξ, η) ∈ Rr, forms a finite dimensional

C∗-algebra as a result of

T∗
η,ξ = Tξ,η, Tξ,ηTξ ′,η ′ = δ(η, ξ ′)Tξ,η ′ ,

∑

ξ∈Ωr]

Tξ,ξ = 1.

Furthermore the inclusion Ar
ιr→֒ Ar+1 is given by

ιr(Tξ,η) =

∑

λ∈Ω[r,r+1]

λr=ξr(=ηr)

Tξ◦λ,η◦λ.

This model is employed to give a presentation by generators and relations of the
C∗-algebra A in the spirit of the presentation of the GICAR algebra from [13, Ex-
ample 2.23]. We also construct two families of projections that satisfy commutation
relations reminiscent of the Temperley–Lieb relations.

We consider the following elements in A:

(i) the projection en in An−1,n ⊆ An onto the linear space of edges from N (north)
to SW (south-west), n ≥ 1.

(ii) the projection fn in An−1,n ⊆ An onto the linear span of edges from N to SE,
n ≥ 0.

(iii) the projection gn = 1 − en − fn in An−1,n ⊆ An onto the linear span of edges
from N to S, n ≥ 0.

(iv) the partial isometry vn ∈ An−1,n+1 ⊆ An+1 with initial support v∗n vn = ẽn =

gn fn+1 and final support vnv∗n = f̃n = fnen+1, which flips paths in the diamonds

of shape N-S-SE-NE, n ≥ 0.
(v) the partial isometry wn ∈ An−1,n+2 ⊆ An+1 with initial support w∗

n wn = ẽ ′n =

gnen+1 and final support wnw∗
n = f̃ ′

n = en fn+1, which flips paths in the diamonds
of shape N-S-SW-NW, n ≥ 1.

https://doi.org/10.4153/CJM-2008-043-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-043-1


996 F. P. Boca

0

1

1

2

1

1

0

1

1

1

0

1

1

3

1

2
2

3

1

1

0

1

1

4

1

3

2

5

1

2

3

5

2

3

3

4

1

1

⋆

v0

g0

g1 g1

g2 g2g2

f0

f1 e1

v1 w1
f2 f2 e2e2

v2 w2 w2v2

v3 w3 v3 w3 w3v3w3v3

g3 g3 g3 g3g3
f3 e3 f3 e3 e3f3e3f3

• •

• • •

• • • • •

• • • • • • • • •

0

1

1

5

1

4

2

7

1

3

3

8

2

5

3

7

1

2

1

1

4

5

3

4

5

7

2

3

5

8

3

5

4

7
• • • • • • • • • ••••••••

Figure 15: The generators of A.

(n − 1, i)

(n, 2i)(n, 2i − 1) (n, 2i + 1)

Figure 16: Support of projection en.

The AF-algebra A is generated by the set G = {en}n≥1∪{ fn}n≥0∪{vn}n≥0∪{wn}n≥1.

Straightforward commutation relations arise since elements defined by edges that
reach up to floor≤ r commute with elements defined by edges between the r-th and

the s-th floors with r < s, as a result of [Ar,A ′
r ∩ As] = 0. For instance vs commutes

with er, fr, gr if r ≤ s−1 or r ≥ s + 2, and [vs, vr] = [vs, v
∗
r ] = [vs,wr] = [vs,w

∗
r ] = 0

if |r− s| ≥ 2. Besides, the elements of G satisfy the following commutation relations:

(R1) e2
n = e∗n = en, f 2

n = f ∗n = fn, g2
n = g∗n = gn, en + fn + gn = 1.

en, fm, gk mutually commute.

(R2) (1− fn)vn = (1− en+1)vn = 0, vn(1− gn) = vn(1− fn+1) = 0.
(1− en)wn = (1− fn+1)wn = 0, wn(1− gn) = wn(1− en+1) = 0.

(R3) vngn = fnvn, vn fn+1 = en+1vn, wngn = enwn, wnen+1 = fn+1wn.
(R4) v∗n vn = gn fn+1, vnv∗n = fnen+1, w∗

n wn = gnen+1, wnw∗
n = en fn+1.
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(n − 1, i)

(n, 2i)(n, 2i − 1) (n, 2i + 1)

Figure 17: Support of projection fn.

(n − 1, i)

(n, 2i)

(n + 1, 4i + 1)

(n, 2i + 1) −→

(n − 1, i)

(n, 2i)

(n + 1, 4i + 1)

(n, 2i + 1)

Figure 18: The partial isometry vn : gn fn+1 7→ fnen+1.

As a result of (R1)–(R4) we also get

vn+1vn = v2
n = vn±1v∗n = v∗n±1vn = 0,

wn+1wn = w2
n = wn±1w∗

n = w∗
n±1wn = 0,

vnwn = vn±1wn = wnvn = wn±1vn = 0,

vnw∗
n = vn±1w∗

n = v∗n wn = v∗n wn−1 = 0.

(6.1)

The only non-zero products ab with

a ∈ {vn, v
∗
n ,wn,w

∗
n} and b ∈ {vn+1, v

∗
n+1,wn+1,w

∗
n+1}

are vnvn+1, wnwn+1, w∗
n vn+1, and v∗n wn+1.

Let Bn denote Artin’s braid group generated by σ1, . . . , σn−1 with relations σiσ j =

σ jσi if |i − j| > 1 and σiσi+1σi = σi+1σiσi+1. Relations (6.1) show in particular that

the partial isometries vi−1, respectively wi , satisfy trivially the braid relations.
Taking Rn(λ) := 1 + λvn, the equalities v2

n = 0 and vnvn±1vn = 0 yield the Yang–
Baxter type relation Rn(λ)Rn+1(λ + µ)Rn(µ) = Rn+1(µ)Rn(λ + µ)Rn+1(λ).

(n − 1, i)

(n, 2i)

(n + 1, 4i + 1)

(n, 2i + 1) −→

(n − 1, i)

(n, 2i)

(n + 1, 4i + 1)

(n, 2i + 1)

Figure 19: The partial isometry wn : gnen+1 7→ en fn+1.
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•

•

•
vnvn+1 = wnwn+1 =

w∗
n vn+1 = v∗n wn+1 =

•

•

•
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•

Figure 20: The partial isometries vnvn+1 : gngn+1 fn+2 7→ fnen+1en+2, wnwn+1 : gngn+1en+2 7→
en fn+1 fn+2, w∗

n vn+1 : engn+1 fn+2 7→ gnen+1en+2, v∗n wn+1 : fngn+1en+2 7→ gn fn+1 fn+2.

By analogy with the construction of Temperley–Lieb–Jones projections in the

GICAR algebra [13, 15] for each λ > 0 we put τ =
λ

(1+λ)2 ∈
(

0, 1
4

]
and consider

En =
1

1 + λ
(v∗n vn +

√
λvn +

√
λv∗n + λvnv∗n ) ∈ A, n ≥ 0,

and

Fn =
1

1 + λ
(w∗

n wn +
√
λwn +

√
λw∗

n + λwnw∗
n ) ∈ A, n ≥ 1.

Proposition 14 The elements En and Fn define (self-adjoint) projections in the AF
algebra A satisfying the braiding relations

EnFn = FnEn = 0,(6.2)

[En, Em] = [Fn, Fm] = [En, Fm] = 0 if |n−m| ≥ 2,(6.3)

EnEn+1En = τEnen+2, En+1EnEn+1 = τEn+1gn,(6.4)

FnFn+1Fn = τFn fn+2, Fn+1FnFn+1 = τFn+1gn,(6.5)

EnFn+1En = λτEn fn+2, FnEn+1Fn = λτFnen+2,(6.6)

En+1FnEn+1 = λτEn+1en, Fn+1EnFn+1 = λτFn+1 fn,(6.7)

EnEn+1Fn = EnFn+1Fn = En+1EnFn+1 = En+1FnFn+1 = 0,(6.8)

FnEn+1En = FnFn+1En = Fn+1EnEn+1 = Fn+1FnEn+1 = 0.(6.9)

Proof The initial and final projections of the partial isometry vn are orthogonal, thus
En defines a projection in An for every λ ≥ 0. A similar property holds for Fn, which
is seen to be orthogonal to En. The commutation relations (6.3) are obvious because
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vn+2 and wn+2 commute with all elements in An+1, including En and Fn. By (6.1) we
have v∗n En+1 = vnv∗n+1 = 0, leading to

(6.10) EnEn+1 =

√
λ

(1 + λ)2
(v∗n vn +

√
λ vn)(vn+1 +

√
λ vn+1v∗n+1),

and also

(6.11) En+1En = (EnEn+1)∗ =

√
λ

(1 + λ)2
(v∗n+1 +

√
λ vn+1v∗n+1)(v∗n vn +

√
λ v∗n ).

From (6.10) and vn+1En = v∗n+1vn = 0 we have

EnEn+1En =
λ

(1 + λ)3
(v∗n vn +

√
λ vn)vn+1v∗n+1(v∗n vn +

√
λ v∗n )

=
λ

(1 + λ)3
(ẽn +

√
λ vn) f̃n+1(ẽn +

√
λ v∗n ).

(6.12)

But ẽn f̃n+1ẽn = ẽn f̃n+1 = gn fn+1en+1 = ẽnen+2, vn f̃n+1ẽn = vnẽnen+1en+2 = vnen+2

(and because [en+2, vn] = 0 this also gives ẽn f̃n+2v∗n = v∗n en+2), and vn f̃n+1v∗n =

vn fn+1en+2v∗n = vn fn+1v∗n en+2 = vngn fn+1v∗n en+2 = vnv∗n en+2, which we insert in (6.12)
to get EnEn+1En = τEnen+2.

From (6.11) and v∗n En+1 = v∗n v∗n+1 = 0 we find

(6.13) En+1EnEn+1 =
λ

(1 + λ)3
(v∗n+1 +

√
λ f̃n+1)ẽn(vn+1 +

√
λ f̃n+1).

As a result of [gn, vn+1] = 0 and (1− fn+1)vn+1 = 0 we have v∗n+1ẽnvn+1 = ẽn+1gn. It is

also plain that f̃n+1ẽn f̃n+1 = f̃n+1ẽn = f̃n+1gn, f̃n+1ẽnvn+1 = f̃n+1gnvn+1 = f̃n+1vn+1gn =

vn+1gn, and v∗n+1ẽn f̃n+1 = v∗n+1 f̃n+1gn = v∗n+1gn. Together with (6.13) these equalities

yield
En+1EnEn+1 = τEn+1gn.

Equalities (6.5)–(6.8) are checked in a similar way; (6.9) follows by taking adjoints
in (6.8).
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[8] J. Dixmier, Les C∗-algèbres et leurs représentations. Cahiers Scientifiques 19, Gauthier-Villars, Paris,

1964.
[9] A. H. Dooley, The spectral theory of posets and its applications to C∗-algebras. Trans. Amer. Math.

Soc. 224(1976), 143–155.
[10] E. G. Effros, Dimensions and C∗-algebras. CBMS Regional Conference Series in Mathematics 46,

Conference Board of the Mathematical Sciences, Washington, D.C., 1981.
[11] E. G. Effros and C.-L. Shen, Approximately finite C∗-algebras and continued fractions. Indiana Univ.

Math. J. 29(1980), no. 2, 191–204.
[12] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional

algebras. J. Algebra 38(1976), no. 1, 29–44.
[13] D. E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras. Oxford University

Press, 1998.
[14] M. J. Feigenbaum, Presentation functions, fixed points and a theory of scaling function dynamics.

J. Statist. Phys. 52(1988), no. 3-4, 527–569.
[15] F. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter Graphs and Towers of Algebras.

Mathematical Sciences Research Institute Publications 14, Springer–Verlag, New York, 1989.
[16] J. Fiala and P. Kleban, Generalized number theoretic spin chain-connections to dynamical systems and

expectation values. J. Stat. Phys. 121(2005), no. 3-4, 553–577.
[17] A. Knauf, On a ferromagnetic spin chain. Comm. Math. Phys. 153(1993), no. 1, 77–115.
[18] , The number-theoretical spin chain and the Riemann zeroes. Comm. Math. Phys. 196(1998),

no. 3, 703–731.
[19] , Number theory, dynamical systems and statistical mechanics. Rev. Math. Phys. 11(1999), no.

8, 1027–1060.
[20] H. Minkowski, Gesammelte Abhandlungen. Vol. 2, B. G. Teubner, Leipzig und Berlin, 1911,

pp. 50–51.
[21] M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C∗-algebra into an AF-algebra.

J. Operator Theory 4(1980), no. 2, 201–210.
[22] T. Prellberg, J. Fiala, and P. Kleban, Cluster approximation for the Farey fraction spin chain. J. Statist.

Phys. 123(2006), no. 2, 455–471.
[23] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C∗-Algebras.

Mathematical Surveys and Monographs 60, American Mathematical Society, Providence, RI, 1998.
[24] R. Salem, On some singular monotonic functions which are strictly increasing. Trans. Amer. Math.

Soc. 53(1943), 427–439.
[25] C. Series, The modular surface and continued fractions. J. London Math. Soc. 31(1985), no. 1, 69–80.
[26] N. Sloane, Encyclopedia of Integer Sequences. http://www.research.att.com/∼njas/sequences.
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