ON COUNTABLY PARACOMPACT SPACES

C. H. DOWKER

LET X be a topological space, that is, a space with open sets such that the
union of any collection of open sets is open and the intersection of any finite
number of open sets is open. A covering of X is a collection of open sets whose
union is X. The covering is called countable if it consists of a countable col-
lection of open sets or finite if it consists of a finite collection of open sets; it is
called locally finite if every point of X is contained in some open set which
meets only a finite number of sets of the covering. A covering B is called a
refinement of a covering U if every open set of 8 is contained in some open set
of U. The space X is called countably paracompact if every countable covering
has a locally finite refinement.

The purpose of this paper is to study the properties of countably para-
compact spaces. The justification of the new concept is contained in Theorem 4
below, where it is shown that, for normal spaces, countable paracompactness
is equivalent to two other properties of known topological importance.

1. A space X is called compact if every covering has a finite refinement,
paracompact if every covering has a locally finite refinement, and countably
compact if every countable covering has a finite refinement. It is clear that
every compact, paracompact or countably compact space is countably para-
compact. Just as one shows! that every closed subset of a compact [para-
compact, countably compact] space is compact [paracompact, countably com-
pact], so one can show that every closed subset of a countably paracompact
space is countably paracompact. It is known that the topological product of
two compact spaces is compact and the topological product of a compact space
and a paracompact space is paracompact [2, Theorem 5]. The following is an
analogous theorem.

THEOREM 1. The topological product X X Y of a countably paracompact
space X and a compact space Y is countably paracompact.

Proof. Let {Ui} (i =1,2,...) bea countable covering of X X V. Let V;
be the set of all points x of X such that x X ¥ C U,<;U;. If x€ V; every point
(x, ¥) of x X Y has a neighbourhood N X M, (N open in X, M open in Y),
which is contained in the open set UK;U,-. A finite number of these open sets
M cover Y; let N, be the intersection of the corresponding finite number of
sets N. Then x€N,, N, is open and N, X YC U,-QU,'; and hence N,C V..
Therefore V; is open. Also, for any x € X, since x X Y is compact, x X Y is
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contained in some finite number of sets of the covering { Ui} ; hence x is in
some V;. Therefore { V;} is a covering of X.

Since { V} is countable and X is countably paracompact, { Vi} has a locally
finite refinement W. For each open set W of W let g(W) be the first V; con-
taining W and let G; be the union of all W for which g(W)= V.. Then G; is
open, G;C V; and {Gi} is a locally finite covering of X.

If j < 4, let Gij= (G;X Y)N\ Uj; then Gyjis an open set in X X Y. If (x, y)
is any point of (X, Y) then, for some 7, x € G; and hence (x, y) € G;X Y. Also,
sincex € GiC Vi, (x,y) € x X YV C Ungj, and hence, for some j < 4, (x, ¥)
€ U,. Hence (x, ) € Gi;. Therefore {Gi;{ is a covering of X X Y. Since
G;C Uy, {Gij} is a refinement of { Ui}. Also, if (x,y) € X X ¥, xisin an open
set H(x) which meets only a finite number of the sets of {Gi}. Then Hx) X YV
is an open set containing (x, ¥) which can meet G;; only if H(x) meets G;. But
for each < there is only a finite number of sets G;;. Hence H(x) X Y meets only
a finite number of sets of {Gy;} ; hence {G;} is locally finite. Therefore X X Y
is countably paracompact. This completes the proof.

It can similarly be shown that the topological product of a compact space
and a countably compact space is countably compact.

2. A topological space X is called normal if for every pair of disjoint closed
sets A and B of X there is a pair of disjoint open sets U and Vwith A C U
and B C V (or, equivalently, there is an openset Uwith4 C U, U C X — B).

TaEOREM 2. The following properties of a normal space X are equivalent:
(@) The space X is countably paracompact.

(b) Every countable covering of X has a point-finite® refinement.
(c) Every countable covering {Ui} has a refinement { V;} with V,C Us.

(d) Given a decreasing sequence { F;} of closed sets with vacuous intersection,
there is a sequence {G;} of open sets with vacuous intersection such that FiC Gi.

(e) Given a decreasing sequence {Fi} of closed sets with vacuous intersection,
there is a sequence {A;} of closed Gs-sets® with vacuous intersection such that
F,‘C Ai.

Proof. (a) — (b). A locally finite covering is a fortior: point-finite.

(b) — (c). Let { U,v} be any countable covering of X. Then, by (b), { U,-}
has a point-finite refinement . For each open set W of W let g(W) be the first
U; containing W, and let G; be the union of all W such that g(W)= U,. Then
{Gi} is a point-finite covering of X and G;C U;. It is known {3, p. 26, (33-4);
2, Theorem 6] that every point-finite covering {G,'} (whether countable or
not) of a normal space X has a refinement { V;} with the closure of each V;
contained in the corresponding G;. Then V;C G;C Us, hence V;C U..

2A covering of X is called point-finite if each point of X is in only a finite number of sets of
the covering.
3A set A is called a Gs-set if it is the intersection of some countable collection of open sets.
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(c) = (d). Let {F,-} be a sequence of closed sets with F; 1 CF; and ().;F;=
0. Then,if U;= X — F,, { U. ;} is a covering of X. Then, by ¢, there is a covering
{ V:} with ViC Ui Let G; be the open set X — V;. Then, since V,C U;,
F;C G; and, since U7;= X, NG:= 0.

(d) — (e). Let {F,-} be a sequence of closed sets with F;wC F;and } F;=
0. Then, by d, there is a sequence {Gi} of open sets with F;C G;and ) G;=0.
Then, by Urysohn’s lemma, there is a continuous function ¢;, 0 < ¢:i(x) < 1,
such that, if x€ F;, ¢;(¥) = 0 and, if x non € G;, ¢i(x) = 1. Let Gi;= {x| ¢i(x) <
l/j} , and let 4;= N;Gij= {x]| ¢:i(x) = 0}. Then G;; is open, 4; is a closed
Gy-set, F;C A:C G;and N4:C NG:= 0.

(e) — (a). Let { Ui} be a countable covering of X and let F;= X —
UK;U;,. Then F; is closed, Fiy C F;and, since UU;= X, NF;= 0. Then, by
(e), there is a sequence {A;} of closed Gs-sets with F;C 4; and N4,= 0.
Then X — A;is an F,-set;let X — A;= U;B;; where each Bj; is closed. Since
X is normal we may assume that Bj; is contained in the interior of Bj, ;y1.
Let Hj; be the interior of Bj;; then H;;C B;;C Hj, ;1 and X — A;= UH;..
And B;;C X — A;C X — Fi= Uig;Us.

Let V= U;— Uj(iBji; then V; is open. If] < 1, BjiCUk<jUkCUk<iUk;
hence U; <iB;;iC Uk «:Us. Hence V;D U;—Uy ;U Thus, since each point x
of X is in a first U, it is in the corresponding V. Therefore { V} is a covering
of X. Clearly {V.} is a refinement of {U;} .

For each x of X there is some 4; such that x non e 4;; hence, for some £,
x € Hj. Then, if ¢ > jand ¢ > k, H;;C Bj; and hence H;xM\ V;= 0. Thus the
open set Hj; contains x and meets only a finite number of the sets V,. Hence
{ V,-} is locally finite. Therefore X is countably paracompact.

COROLLARY. Euvery perfectly normal space is countably paracompact.

Proof. A perfectly normal space is a normal space in which every closed set
is a Gs-set. Hence condition (e) is trivally satisfied with 4;= F;.

Not every normal space is countably paracompact as the following example
shows. Let X be a space whose points x are the real numbers. Let the open
sets of X be the null set, the whole space X and the subsets G,= {x [ x < a}
for all real a. Then X is trivially normal since there are no non-empty disjoint
closed sets. But the countable covering {G;} (t=1,2,...) where G;,= {xl
x < i}, has no locally finite refinement. Hence X is not countably para-
compact.*

3. We give here a sufficient condition for the normality of a product space.

Lemma 3. Thetopological product X X Y of a countably paracompact normal
space X and a compact metric space Y is normal.

Proof. Let A and B be two disjoint closed sets of X X V. Let {G;} be a

4This space is not a Hausdorff space. It would be interesting to have an example of a normal
Hausdorff space which is not countably paracompact.

https://doi.org/10.4153/CJM-1951-026-2 Published online by Carhbridge University Press


https://doi.org/10.4153/CJM-1951-026-2

222 C. H. DOWKER

countable base for the open sets of ¥ and, if y is any finite set of positive
integers, let H,= UMG,‘. For each x € X let A, be the closed set of Y defined
by x X A;=(x X V)M A4; similarly let x X B,= (x X Y)\ B. Let

Uy, = {x| 4.C H,C H,C Y — B.}.

Let xo be a point of X for which 4, C H,. Then, for each y € ¥ — H,,
(x0, ¥) non € 4 and, since 4 is closed, there is a neighbourhood N X M of (xo, ¥)
which does not meet 4. A finite number of the open sets M cover the compact
set ¥ — H,. If N, is the intersection of the corresponding finite number of
open sets N, N, X(Y — H,) does not meet A. Hence, if x € N,, A.C H,.
Thus {x I A.C H.,} is an open set. Similarly {x | HCY - Bx} is open and
U,, which is the intersection of these two open sets, is also open.

Let x € X; then for each point y of 4, there is an open set G; of the base such
that ¥y €G;and Gy B,= 0. A finite number of these sets G; cover 4., i.e., for
some finite set y of positive integers, 4,C U,—,.,G.-= H, and H,= U;,.,'G,-C
Y — B,. Hence x € U,. Thus the open sets U, cover X. Since there are only a
countable number of finite subsets v of positive integers, the covering { Uy} of
X is countable.

Since X is countably paracompact there is a locally finite covering { W, } of
X with W, C U, and, by condition ¢ of Theorem 2, { W,} has a refinement { I’
(still locally finite) such that V,C W,. Let U be the open set U, (V,XH,).
For any point (x, ¥) of 4 and for some V,,x ¢ V,C U,. Theny € 4,C H,and
hence (x,y)€ V,X H,; therefore A C U. Since { Vy} is locally finite, each point
x of X is contained in an open set G(x) which meets only a finite number of sets
V.; and hence the neighbourhood G(x) X Y of (x, ¥) meets only a finite number
of the sets V., X H,. It follows that (x, y) is in the closure of U if and only if it
is in the closure of some V,X H,, i.e., U = U(V,XH,). But Vo, X H,=V,X
H,. Hence U = U(V,x H,)C U(U,X H,). But (U,X H,)N\ B=0; hence
U N B = 0. Thus the open set U contains 4 and its closure does not meet B.
Hence X X Y is normal.

4. In Theorem 4 below we extend some results of J. Dieudonné [2]. He
showed® that paracompactness of a Hausdorff space X implies condition B
(see below) on semicontinuous functions on X and our proof that a — 8 is a
trivial modification of his proof. It also follows immediately from Dieudonné’s
results that if X is a paracompact Hausdorff space, X X I is a paracompact
Hausdorff space and hence is normal. However, in terms of countable para-
compactness we are able to give a necessary and sufficient condition for 8 and v
to hold. The equivalence of conditions 8 and v was conjectured by S. Eilenberg.

THEOREM 4. The following three properties of a topological space X are
equivalent.

(a). The space X 1is countably paracompact and normal.

5See [2], Theorem 9.
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(B). If g 1s a lower semicontinuous real function on X and h is an upper semsi-
continuous real function on X and if h(x) < g(x) for all x € X, then there exists
a continuous real function f such that h(x) < f(x) < g(x) for all x € X.

(v). The topological product X X I of X with he closed line interval I =
[0, 1] 2s normal.

Proof. (a) — (B). Let X be a countably paracompact normal space and
let g and & be lower and upper semicontinuous functions respectively with
h(x) < g(x). If 7 is a rational number let G,= {x | rx)<r < g(x)}. Since g
is lower semicontinuous, {x ‘ g(x) >r} is open, and, since % is upper semicon-
tinuous, {x I h(x) < r} is open. Hence G, is open. Since, for every x, h(x) < g(x)
there is some rational number r(x) with A(x) < r(x) < g(x); hence x € G,(n.
Thus {G,} is a covering of X. And, since the rational numbers are countable,
{G,} is a countable covering. Hence, since X is countably paracompact and
normal, there is a locally finite covering { U,} of X with U,C G, and there is a
(locally finite) covering { V,} with V,C U..

There is a continuous function f, with — o < f,(x)< 7 such that f,(x) =
— o if xnon€ U, and f,(x) = rif x € V,. Let f(x) be the least upper bound of
fr(x) for all . Each point x¢ of X is contained in an open set N(x,) which meets
only a finite number of the sets U,. Hence, in N(x,), for all but a finite number
of values of 7, f.(x) = — . Thus, in each neighbourhood N(x,), f(x) is the
least upper bound of a finite number of continuous functions, hence f is con-
tinuous. In U, f,(x)S r < g(x) and, in X — U,, f,(x)= — o < g(x). Thus
fr(x)< g(x) and, for each x, f(x) is the least upper bound of a finite number of
f-(x) each less than g(x). Therefore f(x) < g(x). Each «x is in some V, and,
for this 7, f,(x) = 7; hence f(x) 2 f.(x)= r > h(x). Hence f(x) > h(x). There-
fore h(x) < f(x)< g(x).

(8) — (a). Let X be a space satisfying condition (8) and let 4 and B be two
disjoint closed sets in X. Let & be the characteristic function of 4, i.e., h(x) = 1
ifx € Aand h(x) = 0if x non € A. Let g be defined by g(x) =1ifx € B
and g(x) = 2 if x non € B. Then g is lower semicontinuous, %k is upper
semicontinuous and A(x) < g(x) for all x € X. Hence there is a continuous
function f with k(x) < f(x) < g(x). Let U = {x | f(x)> 1} and V = {x | f(x)
< 1}. Then U and V are disjoint open sets and A C U and B C V. Hence X
is normal.

Let {F;} (z = 1,2,...) beadecreasing sequence of closed sets with NF;=0.
Let g be defined by g(x)= 1/(z 4+ 1) for x € Fi— Fiy1(z = 0, 1,...), where
F, means the whole space X. Let k(x) = 0 for all x € X. Then g is lower semi-
continuous, % is upper semicontinuous and k(x) < g(x) for all x. Hence there
is a continuous function f with 0 < f(x) < g(x). Let G;= {x} f)<1/G + 1}.
Then G; is open, F;C G; and, since f(x) > 0 for all x, {} G;= 0. Thus condition
d of Theorem 2 is satisfied and therefore X is countably paracompact.

(a) = (7). This follows immediately from Lemma 3 and the fact that the
interval I is a compact metric space.
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(v) — (a). Let X be a space for which X X I is normal. Then X is homeo-
morphic to the closed subset X X 0 of the normal space X X I; therefore X
is normal.

Let {F,v} (¢=1,2,...), beadecreasing sequence of closed sets with [} F;=0.
Then, since the half open interval [0, 1/#[ isopen in I = [0, 1], W;=(X — F))
X [0, 1/4 is open in X X I. Let A be the closed set X X I — U;W;. If x € X,
then, for some 7, x € X — F;and (x,0) € W;and hence (x, 0) non€ 4. Hence,
if B=X X0, 4 and B are disjoint closed sets of the normal space X X I.
Therefore there are disjoint open sets U and V with 4 C U and B C V. Let
G;= {x l (x,1/7) € U} ; then G;is open. For each x € X, (x, 0)€ B and hence,
for sufficiently large 7, (x, 1/7)€ V and hence non€ U. Therefore ] Gi= 0.
Let x € F;. Then, if j < 4, F;C F;and x non€X — Fj, and, if 7 > 4, 1/inon e
[0, 1/4[. Hence(x, 1/3) non €U;W;; hence (x, 1/5) € A C U and hence x € G;.
Therefore F;C G;. Thus condition (d) of Theorem 2 is satisfied and therefore X
is countably paracompact. This completes the proof of the theorem.
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