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Abstract
The Erdős–Simonovits stability theorem states that for all ε > 0 there exists α > 0 such that if G is a Kr+1-
free graph on n vertices with e(G)> ex(n,Kr+1)− αn2, then one can remove εn2 edges from G to obtain an
r-partite graph. Füredi gave a short proof that one can choose α = ε. We give a bound for the relationship
of α and ε which is asymptotically sharp as ε → 0.

2020 MSC Codes: 05C35

1. Introduction
Erdős asked howmany edges need to be removed in a triangle-free graph on n vertices in order to
make it bipartite. He conjectured that the balanced blow-up of C5 with class sizes n/5 is the worst
case, and hence n2/25 edges would always be sufficient. Together with Faudree, Pach and Spencer
[6], he proved that one can remove at most n2/18 edges to make a triangle-free graph bipartite.

Further, Erdős, Győri and Simonovits [7] proved that for graphs with at least n2/5 edges, an
unbalanced C5 blow-up is the worst case. For r ∈N, let Dr(G) denote the minimum number of
edges which need to be removed to make G r-partite.

Theorem 1.1 (Erdős, Győri and Simonovits [7]). Let G be a K3-free graph on n vertices with at
least n2/5 edges. There exists an unbalanced C5 blow-up of H with e(H)� e(G) such that

D2(G)�D2(H). (1.1)

This proved the Erdős conjecture for graphs with at least n2/5 edges. A simple probabilistic
argument (e.g. [7]) settles the conjecture for graphs with at most 2/25n2 edges.

A related question was studied by Sudakov; he determined the maximum number of edges in
a K4-free graph which need to be removed in order to make it bipartite [16]. This problem for
K6-free graphs was solved by Hu, Lidický, Martins, Norin and Volec [11].
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We will study the question of how many edges in a Kr+1-free graph need, at most, to be
removed to make it r-partite. For n ∈N and a graph H, let ex(n,H) denote the Turán number, i.e.
the maximum number of edges of anH-free graph. The Erdős–Simonovits theorem [8] for cliques
states that for every ε > 0 there exists α > 0 such that if G is a Kr+1-free graph on n vertices with
e(G)> ex(n,Kr+1)− αn2, then Dr(G)� εn2.

Füredi [9] gave a nice short proof of the statement that a Kr+1-free graph G on n vertices with
at least ex(n,Kr+1)− t edges satisfies Dr(G)� t, and thus provided a quantitative version of the
Erdős–Simonovits theorem.

In [11] Füredi’s result was strengthened for some values of r. Roberts and Scott [15] showed
that Dr(G)=O(t3/2/n) when t� δn2, and that this result is sharp up to a constant factor. They
also proved a more general result forH-free graphs whereH is an edge-critical graph. For small t,
we will determine asymptotically howmany edges are needed. For very small t, it is already known
[4] that G has to be r-partite, as the following theorem shows.

Theorem 1.2 (Brouwer [4]). Let r� 2 and n� 2r + 1 be integers. Let G be a Kr+1-free graph on n
vertices with e(G)� ex(n,Kr+1)− �n/r� + 2. Then

Dr(G)= 0. (1.2)

This phenomenon was also studied in [1], [10], [12] and [18]. We will be studying Kr+1-free
graphs on fewer edges. For these, our main result is the following theorem.

Theorem 1.3. Let r� 2 be an integer. Then, for all n� 3r2 and for all 0� α � 10−7r−12, the
following holds. Let G be a Kr+1-free graph on n vertices with

e(G)� ex(n,Kr+1)− αn2. (1.3)

Then

Dr(G)�
(

2r
3
√
3

+ oα(1)
)

α3/2n2, (1.4)

where oα(1) is a term converging to 0 for α tending to 0.

Note that we did not try to optimize our bounds on n and α in the theorem.
The blow-up of a graph G is obtained by replacing every vertex v ∈V(G) with finitely many

copies so that the copies of two vertices are adjacent if and only if the originals are.
For two graphs G and H, we define G⊗H to be the graph on the vertex set V(G)∪V(H)

with gg′ ∈ E(G⊗H) if and only if gg′ ∈ E(G), hh′ ∈ E(G⊗H) if and only if hh′ ∈ E(H), and
gh ∈ E(G⊗H) for all g ∈V(G), h ∈V(H).

We will prove that Theorem 1.3 is asymptotically sharp by describing an unbalanced blow-up
of Kr−2 ⊗ C5 that needs at least that many edges to be removed to make it r-partite. Our extremal
example appeared first (with different class sizes) in a paper by Andrásfai, Erdős and Sós [2].

Theorem 1.4. Let r, n ∈N and 0< α < 1/(4r4). Then there exists a Kr+1-free graph G on n vertices
with

e(G)� ex(n,Kr+1)− αn2 + 4r
3
√
3
α3/2n2 − 2r(r − 3)

9
α2n2

and

Dr(G)�
2r
3
√
3
α3/2n2.
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In Kang and Pikhurko’s proof [12] of Theorem 1.2, the case e(G)= ex(n,Kr+1)− �n/r� + 1 is
studied. In this case they constructed a family of Kr+1-free non-r-partite graphs, which includes
our extremal graph, for that number of edges.

We conjecture that our extremal example needs the most edges removed to make it r-partite
among all Kr+1-free graphs with many edges.

Conjecture 1.5. Let r� 2 be an integer and let n be sufficiently large. Then there exists α0 > 0 such
that for all 0� α � α0 the following holds. For every Kr+1-free graph G on n vertices there exists an
unbalanced Kr−2 ⊗ C5 blow-up H on n vertices with e(H)� e(G) such that

Dr(G)�Dr(H). (1.5)

This conjecture can be seen as a generalization of Theorem 1.1. Note that Conjecture 1.5 was
recently proved by Korándi, Roberts and Scott [13]. We recommend the interested reader to read
the excellent survey [14] by Nikiforov. He gives a good overview on further related stability results,
for example on guaranteeing large induced r-partite subgraphs of Kr+1-free graphs.

We organize the paper as follows. In Section 2 we prove Theorem 1.3 and in Section 3 we give
the sharpness example, i.e. we prove Theorem 1.4.

2. Proof of Theorem 1.3
In this section we prove the following version of Theorem 1.3, which gives better control over the
error term.

Theorem 2.1. Let r� 2 be an integer. Then, for all n� 3r2 and for all 0� α � 10−7r−12, the
following holds. Let G be a Kr+1-free graph on n vertices with

e(G)� ex(n,Kr+1)− αn2. (2.1)

Then

Dr(G)�
(

2r
3
√
3

+ 30r3α1/6
)

α3/2n2. (2.2)

Let G be an n-vertex Kr+1-free graph with e(G)� ex(n,Kr+1)− t, where t = αn2. We will
assume that n is sufficiently large. Furthermore, by Theorem 1.2 we can assume that

α � �n/r� − 2
n2

� 1
2rn

. (2.3)

This also implies that t� r because n� 3r2. During our proof we will make use of Turán’s theorem
and a version of Turán’s theorem for r-partite graphs on multiple occasions. Turán’s theorem [17]
determines the maximum number of edges in a Kr+1-free graph.

Theorem 2.2 (Turán [17]). Let r� 2 and n ∈N. Then

n2

2

(
1− 1

r

)
− r

2
� ex(n,Kr+1)�

n2

2

(
1− 1

r

)
.

Let K(n1, . . . , nr) denote the complete r-partite graph whose r colour classes have sizes
n1, . . . , nr , respectively. Turán’s theorem for r-partite graphs states the following.
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Theorem 2.3 (folklore). Let r� 2 and n1, . . . , nr ∈N satisfying n1 � · · ·� nr. For a Kr-free
subgraph H of K(n1, . . . , nr), we have

e(H)� e(K(n1, . . . , nr))− n1n2.

For a proof of this folklore result see [3, Lemma 3.3], for example.
We denote the maximum degree of G by �(G). For two disjoint subsets U,W of V(G), write

e(U,W) for the number of edges in G with one endpoint in U and the other endpoint in W. We
write ec(U,W) for the number of non-edges betweenU andW, i.e. ec(U,W)= |U||W| − e(U,W).

Füredi [9] used Erdős’s degree majorization algorithm [5] to find a vertex partition with some
useful properties. We include the proof for completeness.

Lemma 2.1 (Füredi [9]). Let t, r, n ∈N and G be an n-vertex Kr+1-free graph with e(G)�
ex(n,Kr+1)− t. Then there exists a vertex partition V(G)=V1 ∪ · · · ∪Vr such that

r∑
i=1

e(G[Vi])� t, �(G)=
r∑

i=2
|Vi| and

∑
1�i<j�r

ec(Vi,Vj)� 2t. (2.4)

Proof. Let x1 ∈V(G) be a vertex of maximum degree. Define V1 :=V(G) \N(x1) and V+
1 =

N(x1). Iteratively, let xi be a vertex of maximum degree in G[V+
i−1]. Let Vi :=V+

i−1 \N(xi) and
V+
i =V+

i−1 ∩N(xi). SinceG isKr+1-free this process stops at i� r and thus gives a vertex partition
V(G)=V1 ∪ · · · ∪Vr . Summing up the degrees of vertices in V1, we have

2e(G[V1])+ e(V1,V+
1 )=

∑
x∈V1

deg (x)� |V1||V+
1 |,

and similarly for the other classes

2e(G[Vi])+ e(Vi,V+
i )=

∑
x∈V1

degG[V+
i−1]

(x)� |Vi||V+
i |.

Adding up these inequalities we get

ex(n,Kr+1)− t +
r∑

i=1
e(G[Vi])= e(G)+

r∑
i=1

e(G[Vi])�
r−1∑
i=1

|Vi||V+
i |� ex(n,Kr+1),

implying
r∑

i=1
e(G[Vi])� t.

By construction,
r∑

i=2
|Vi| = |V+

1 | = |N(x1)| = �(G).

Let H be the complete r-partite graph with vertex set V(G) and all edges between Vi and Vj for
1� i< j� r. The graph H is r-partite and thus has at most ex(n,Kr+1) edges. Finally, since G has
at most t edges not in H and at least ex(n,Kr+1)− t edges in total, at most 2t edges of H can be
missing from G, giving us ∑

1�i<j�r
ec(Vi,Vj)� 2t

and proving the last inequality.
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For this vertex partition we can get bounds on the class sizes.

Lemma 2.2. For all i ∈ [r],

|Vi| ∈
{
n
r

− 5
2
√

αn,
n
r

+ 5
2
√

αn
}
,

and thus also

�(G)� r − 1
r

n+ 5
2
√

αn.

Proof. We know that
∑

1�i<j�r
|Vi||Vj|� e(G)−

r∑
i=1

e(G[Vi])�
(
1− 1

r

)
n2

2
− r

2
− 2t.

Also
∑

1�i<j�r
|Vi||Vj| = 1

2

r∑
i=1

|Vi|(n− |Vi|)= n2

2
− 1

2

r∑
i=1

|Vi|2.

Thus we can conclude that
r∑

i=1
|Vi|2 � n2

r
+ r + 4t. (2.5)

Now let x= |V1| − n/r. Then
r∑

i=1
|Vi|2 =

(
n
r

+ x
)2

+
r∑

i=2
|Vi|2

�
(
n
r

+ x
)2

+ (
∑r

i=2 |Vi|)2
r − 1

�
(
n
r

+ x
)2

+ (n(1− 1/r)− x)2

r − 1

� n2

r
+ x2. (2.6)

Combining this with (2.5), we get

|x|�√
r + 4t� 5

2
√
t = 5

2
√

αn,

and thus
n
r

− 5
2
√

αn� |V1|� n
r

+ 5
2
√

αn.

In a similar way we get the bounds on the sizes of the other classes.

Lemma 2.3. The graph G contains r vertices x1 ∈V1, . . . , xr ∈Vr which form a Kr, and for every i

deg (xi)� n− |Vi| − 5rαn.
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Proof. Let Vc
i :=V(G) \Vi. We call a vertex vi ∈Vi small if |N(vi)∩Vc

i | < |Vc
i | − 5rαn and big

otherwise. For 1� i� r, let Bi denote the set of big vertices inside class Vi. There are at most
4t

5rαn
= 4

5r
n

small vertices in total as otherwise (2.4) is violated. Thus in each class there are at least n/10r
big vertices, i.e. |Bi|� n/10r. The number of missing edges between the sets B1, . . . , Br is at most
2t < 1

100r2 n
2. Thus, using Theorem 2.3, we can find a Kr with one vertex from each Bi.

Lemma 2.4. There exists a vertex partition V(G)= X1 ∪ · · · ∪ Xr ∪ X such that the Xi are
independent sets, |X|� 5r2αn and

n
r

− 3
√

αn� |Xi|� n
r

+ 3r
√

αn

for all 1� i� r.

Proof. By Lemma 2.3 we can find vertices x1, . . . , xr forming a Kr and having deg (xi)�
n− |Vi| − 5rαn. Define Xi to be the common neighbourhood of x1, . . . , xi−1 , xi+1, . . . , xr and
X =V(G) \ (X1 ∪ · · · ∪ Xr). Since G is Kr+1-free, the Xi are independent sets. Now we bound the
size of Xi using the bounds on the sets Vi. Since every xj has at most |Vj| + 5rαn non-neighbours,
we get

|Xi|� n−
∑

1�j�r
j�=i

(|Vj| + 5rαn)� |Vi| − 5r2αn� n
r

− 3
√

αn (2.7)

and
r∑

i=1
deg (xi)� n(r − 1)− 5r2αn. (2.8)

A vertex v ∈V(G) cannot be incident to all of the vertices x1, . . . , xr , because G is Kr+1-free.
Further, every vertex from X is not incident to at least two of the vertices x1, . . . , xr . Thus

r∑
i=1

deg (xi)� n(r − 1)− |X|. (2.9)

Combining (2.8) with (2.9), we conclude that

|X|� 5r2αn.
For the upper bound on the sizes of the sets Xi we get

|Xi|� n−
∑

1�j�r
j�=i

|Xj|� n− r − 1
r

n+ 3r
√

αn= n
r

+ 3r
√

αn. (2.10)

We now bound the number of non-edges between X1, . . . , Xr .

Lemma 2.5. We have∑
1�i<j�r

ec(Xi, Xj)� t + e(X, Xc)+ |X|2 −
(
1− 1

r

)
n|X| + r.
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Proof.
n2

2

(
1− 1

r

)
− r

2
− t� e(G)

= e(X, Xc)+ e(X)+
∑

1�i<j�r
e(Xi, Xj)

� e(X, Xc)+ |X|2
2

+
(
1− 1

r

)(
(n− |X|)2

2

)
−

∑
1�i<j�r

ec(Xi, Xj). (2.11)

This gives the statement of the lemma.

Let

X̄ =
{
v ∈ X | degX1∪···∪Xr (v)�

r − 2
r

n+ 3α1/3n
}

and X̂ := X \ X̄.

Let d ∈ [0, 1] such that |X̄| = d|X|. Further, let k ∈ [0, 5r2] such that |X| = kαn. Now we shall
further develop the upper bound from Lemma 2.5.

Lemma 2.6. We have ∑
1�i<j�r

ec(Xi, Xj)� 20r2α4/3n2 +
(
1− (1− d)

1
r
k
)

αn2.

Proof. By Lemma 2.5,
∑

1�i<j�r
ec(Xi, Xj)� t + e(X, Xc)+ |X|2 −

(
1− 1

r

)
n|X| + r

� t + d|X|�(G)+ (1− d)|X|
(
r − 2
r

n+ 3α1/3n
)

+ |X|2 −
(
1− 1

r

)
n|X| + r

� t + d|X|
(
n
r − 1
r

+ 5
2
√

αn
)

+ (1− d)|X|
(
r − 2
r

n+ 3α1/3n
)

+ |X|2 −
(
1− 1

r

)
n|X| + r

� 5
2
d|X|√αn+ 3(1− d)|X|α1/3n+ |X|2 + t + n|X|d − 1

r
+ r

� 5
2
kα3/2n2 + 3kα4/3n2 + |X|2 +

(
1− (1− d)

1
r
k
)

αn2 + r

� 25
2
r2α3/2n2 + 15r2α4/3n2 + 25r4α2n2 +

(
1− (1− d)

1
r
k
)

αn2 + r

� 20r2α4/3n2 +
(
1− (1− d)

1
r
k
)

αn2. (2.12)

Let

C := 20r2α4/3 +
(
1− (1− d)

1
r
k
)

α. (2.13)
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For every vertex u ∈ X there is no Kr in NX1 (u)∪ · · · ∪NXr (u). Thus, by applying Theorem 2.3
and Lemma 2.6, we get

min
i�=j

|NXi(u)||NXj(u)|�
∑

1�i<j�r
ec(Xi, Xj)� Cn2. (2.14)

Bound (2.14) implies in particular that every vertex u ∈ X has degree at most
√
Cn to one of the

sets X1, . . . , Xr , that is,
min
i

|NXi(u)|�
√
Cn. (2.15)

Therefore we can partition X̂ =A1 ∪ · · · ∪Ar such that every vertex u ∈Ai has at most
√
Cn

neighbours in Xi.
By the following calculation, for every vertex u ∈ X̄ the second smallest neighbourhood to the

sets Xi has size at least α1/3n:

min
i�=j

|NXi(u)| + |NXj(u)|�
r − 2
r

n+ 3α1/3n− (r − 2)
(
n
r

+ 3r
√

αn
)
� 2α1/3n, (2.16)

where we used the definition of X̄ and Lemma 2.4. Combining the lower bound on the second
smallest neighbourhood with (2.14), we can conclude that for every u ∈ X̄

min
i

|NXi(u)|�
C

α1/3 n. (2.17)

Hence we can partition X̄ = B1 ∪ · · · ∪ Br such that every vertex u ∈ Bi has atmostCα−1/3n neigh-
bours in Xi. Consider the partition A1 ∪ B1 ∪ X1, A2 ∪ B2 ∪ X2, . . . ,Ar ∪ Br ∪ Xr . By removing all
edges inside the classes, we end up with an r-partite graph. We have to remove at most

e(X)+ d|X| C
α1/3 n+ (1− d)|X|√Cn

� 6r2α5/3n2 + (1− d)k
√
Cαn2

� 6r2α5/3n2 + (1− d)k
(√

20r2α4/3 +
√(

1− (1− d)
1
r
k
)

α

)
αn2

� 6r2α5/3n2 + 5r2
√
20r2α4/3αn2 + (1− d)k

√(
1− (1− d)

1
r
k
)

ααn2

� 6r2α5/3n2 + 5
√
20r3α5/3n2 + 2r

3
√
3
α3/2n2

�
(

2r
3
√
3

+ 30r3α1/6
)

α3/2n2 (2.18)

edges. We have used (2.15), (2.17) and the fact that

(1− d)k
√
1− (1− d)

k
r
� 2r

3
√
3
,

which can be seen by setting z = (1− d)k and finding the maximum of f (z) := z
√
1− z/r, which

is obtained at z = 2r/3.

3. Sharpness example
In this section we will prove Theorem 1.4, i.e. that the leading term from Theorem 1.3 is best
possible.
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Figure 1. The graph G.

Proof of Theorem 1.4. Let G be the graph with vertex set V(G)=A∪ X ∪ B∪ C ∪D∪ X1 · · · ∪
Xr−2, where all classes A, X, B, C,D, X1, . . . , Xr−2 form independent sets; A, X, B, C,D form a
complete blow-up of a C5, where the classes are named in cyclic order; and for each 1� i� r − 2,
every vertex from Xi is incident to all vertices from V(G) \ Xi. See Figure 1 for an illustration of G.

The sizes of the classes are

|X| = 2r
3

αn, |A| = |B| =
√

α

3
n, |C| = |D| = 1− (2r/3)α

r
n−

√
α

3
n, |Xi| = 1− (2r/3)α

r
n.

The smallest class is X and the second smallest are A and B. By deleting all edges between X
and A (|X||A| = (2r/(3

√
3))α3/2n2), we get an r-partite graph. Since the classes A and X are the

two smallest class sizes, the smallest canonical cut is of size (2r/(3
√
3))α3/2n2. A result by Erdős,

Győri and Simonovits [7, Theorem 7] states that there is a canonical ‘edge deletion’ achieving the
minimum of Dr(G). Hence

Dr(G)�
2r
3
√
3
α3/2n2.

Let us now count the number of edges of G. The number of edges incident to X is

e(X, Xc)=
(
2r
3

α

)(
2
√

α

3

)
n2 +

(
2r
3

α

)(
1− (2r/3)α

r
(r − 2)

)
n2

=
(
2
3
(r − 2)α + 4r

3
√
3
α3/2 − 4r(r − 2)

9
α2

)
n2. (3.1)

Using that |A| + |C| = |B| + |D| = |X1|, we have that the number of edges inside A∪ B∪ C ∪D∪
X1 ∪ · · · ∪ Xr−2 is

e(Xc)= |X1|2
(
r
2

)
− |A||B|

=
(
1− (2r/3)α

r
n
)2(r

2

)
− 1

3
αn2

= 1
r2

(
r
2

)
n2 − 4r

3
1
r2

α

(
r
2

)
n2 + 4

9
α2

(
r
2

)
n2 − 1

3
αn2

=
(
1− 1

r

)
n2

2
− 2

3
(r − 1)αn2 − 1

3
αn2 + 4

9
α2

(
r
2

)
n2. (3.2)
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Thus the number of edges of G is
e(G)= e(Xc)+ e(X, Xc)

=
(
1− 1

r

)
n2

2
− αn2 + 4r

3
√
3
α3/2n2 − 2r(r − 3)

9
α2n2

� ex(n,Kr+1)− αn2 + 4r
3
√
3
α3/2n2 − 2r(r − 3)

9
α2n2, (3.3)

where we applied Turán’s theorem in the last step.
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