ARTICLE

Making $K_{r+1}-$ free graphs r-partite

József Balogh ${ }^{1, \dagger}$, Felix Christian Clemen ${ }^{2}$, Mikhail Lavrov ${ }^{2}$, Bernard Lidick $y^{\prime 3, *,}$ and Florian Pfender ${ }^{4, \delta}$
${ }^{1}$ Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, and Moscow Institute of Physics and Technology, Russian Federation, ${ }^{2}$ Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, ${ }^{3}$ Department of Mathematics, Iowa State University, Ames, IA 50011, USA and ${ }^{4}$ Department of Mathematical and Statistical Sciences, University of Colorado Denver, CO 80217-3364, USA
*Corresponding author. Email: lidicky@iastate.edu

(Received 13 December 2019; revised 26 September 2020; accepted 10 September 2020; first published online 10 November 2020)

Abstract

The Erdős-Simonovits stability theorem states that for all $\varepsilon>0$ there exists $\alpha>0$ such that if G is a K_{r+1} free graph on n vertices with $e(G)>\operatorname{ex}\left(n, K_{r+1}\right)-\alpha n^{2}$, then one can remove εn^{2} edges from G to obtain an r-partite graph. Füredi gave a short proof that one can choose $\alpha=\varepsilon$. We give a bound for the relationship of α and ε which is asymptotically sharp as $\varepsilon \rightarrow 0$.

2020 MSC Codes: 05C35

1. Introduction

Erdős asked how many edges need to be removed in a triangle-free graph on n vertices in order to make it bipartite. He conjectured that the balanced blow-up of C_{5} with class sizes $n / 5$ is the worst case, and hence $n^{2} / 25$ edges would always be sufficient. Together with Faudree, Pach and Spencer [6], he proved that one can remove at most $n^{2} / 18$ edges to make a triangle-free graph bipartite.

Further, Erdős, Győri and Simonovits [7] proved that for graphs with at least $n^{2} / 5$ edges, an unbalanced C_{5} blow-up is the worst case. For $r \in \mathbb{N}$, let $D_{r}(G)$ denote the minimum number of edges which need to be removed to make $G r$-partite.

Theorem 1.1 (Erdős, Győri and Simonovits [7]). Let G be a K_{3}-free graph on n vertices with at least $n^{2} / 5$ edges. There exists an unbalanced C_{5} blow-up of H with $e(H) \geqslant e(G)$ such that

$$
\begin{equation*}
D_{2}(G) \leqslant D_{2}(H) . \tag{1.1}
\end{equation*}
$$

This proved the Erdős conjecture for graphs with at least $n^{2} / 5$ edges. A simple probabilistic argument (e.g. [7]) settles the conjecture for graphs with at most $2 / 25 n^{2}$ edges.

A related question was studied by Sudakov; he determined the maximum number of edges in a K_{4}-free graph which need to be removed in order to make it bipartite [16]. This problem for K_{6}-free graphs was solved by Hu, Lidický, Martins, Norin and Volec [11].

[^0]We will study the question of how many edges in a K_{r+1}-free graph need, at most, to be removed to make it r-partite. For $n \in \mathbb{N}$ and a graph H, let ex (n, H) denote the Turán number, i.e. the maximum number of edges of an H-free graph. The Erdős-Simonovits theorem [8] for cliques states that for every $\varepsilon>0$ there exists $\alpha>0$ such that if G is a K_{r+1}-free graph on n vertices with $e(G)>\operatorname{ex}\left(n, K_{r+1}\right)-\alpha n^{2}$, then $D_{r}(G) \leqslant \varepsilon n^{2}$.

Füredi [9] gave a nice short proof of the statement that a K_{r+1}-free graph G on n vertices with at least ex $\left(n, K_{r+1}\right)-t$ edges satisfies $D_{r}(G) \leqslant t$, and thus provided a quantitative version of the Erdős-Simonovits theorem.

In [11] Füredi's result was strengthened for some values of r. Roberts and Scott [15] showed that $D_{r}(G)=O\left(t^{3 / 2} / n\right)$ when $t \leqslant \delta n^{2}$, and that this result is sharp up to a constant factor. They also proved a more general result for H-free graphs where H is an edge-critical graph. For small t, we will determine asymptotically how many edges are needed. For very small t, it is already known [4] that G has to be r-partite, as the following theorem shows.

Theorem 1.2 (Brouwer [4]). Let $r \geqslant 2$ and $n \geqslant 2 r+1$ be integers. Let G be a K_{r+1}-free graph on n vertices with $e(G) \geqslant \operatorname{ex}\left(n, K_{r+1}\right)-\lfloor n / r\rfloor+2$. Then

$$
\begin{equation*}
D_{r}(G)=0 . \tag{1.2}
\end{equation*}
$$

This phenomenon was also studied in [1], [10], [12] and [18]. We will be studying K_{r+1}-free graphs on fewer edges. For these, our main result is the following theorem.

Theorem 1.3. Let $r \geqslant 2$ be an integer. Then, for all $n \geqslant 3 r^{2}$ and for all $0 \leqslant \alpha \leqslant 10^{-7} r^{-12}$, the following holds. Let G be a K_{r+1}-free graph on n vertices with

$$
\begin{equation*}
e(G) \geqslant \operatorname{ex}\left(n, K_{r+1}\right)-\alpha n^{2} . \tag{1.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
D_{r}(G) \leqslant\left(\frac{2 r}{3 \sqrt{3}}+o_{\alpha}(1)\right) \alpha^{3 / 2} n^{2} \tag{1.4}
\end{equation*}
$$

where $o_{\alpha}(1)$ is a term converging to 0 for α tending to 0 .
Note that we did not try to optimize our bounds on n and α in the theorem.
The blow-up of a graph G is obtained by replacing every vertex $v \in V(G)$ with finitely many copies so that the copies of two vertices are adjacent if and only if the originals are.

For two graphs G and H, we define $G \otimes H$ to be the graph on the vertex set $V(G) \cup V(H)$ with $g g^{\prime} \in E(G \otimes H)$ if and only if $g g^{\prime} \in E(G), h h^{\prime} \in E(G \otimes H)$ if and only if $h h^{\prime} \in E(H)$, and $g h \in E(G \otimes H)$ for all $g \in V(G), h \in V(H)$.

We will prove that Theorem 1.3 is asymptotically sharp by describing an unbalanced blow-up of $K_{r-2} \otimes C_{5}$ that needs at least that many edges to be removed to make it r-partite. Our extremal example appeared first (with different class sizes) in a paper by Andrásfai, Erdős and Sós [2].

Theorem 1.4. Let $r, n \in \mathbb{N}$ and $0<\alpha<1 /\left(4 r^{4}\right)$. Then there exists a K_{r+1}-free graph G on n vertices with

$$
e(G) \geqslant \operatorname{ex}\left(n, K_{r+1}\right)-\alpha n^{2}+\frac{4 r}{3 \sqrt{3}} \alpha^{3 / 2} n^{2}-\frac{2 r(r-3)}{9} \alpha^{2} n^{2}
$$

and

$$
D_{r}(G) \geqslant \frac{2 r}{3 \sqrt{3}} \alpha^{3 / 2} n^{2}
$$

In Kang and Pikhurko's proof [12] of Theorem 1.2, the case $e(G)=\operatorname{ex}\left(n, K_{r+1}\right)-\lfloor n / r\rfloor+1$ is studied. In this case they constructed a family of K_{r+1}-free non- r-partite graphs, which includes our extremal graph, for that number of edges.

We conjecture that our extremal example needs the most edges removed to make it r-partite among all K_{r+1}-free graphs with many edges.

Conjecture 1.5. Let $r \geqslant 2$ be an integer and let n be sufficiently large. Then there exists $\alpha_{0}>0$ such that for all $0 \leqslant \alpha \leqslant \alpha_{0}$ the following holds. For every K_{r+1}-free graph G on n vertices there exists an unbalanced $K_{r-2} \otimes C_{5}$ blow-up H on n vertices with $e(H) \geqslant e(G)$ such that

$$
\begin{equation*}
D_{r}(G) \leqslant D_{r}(H) \tag{1.5}
\end{equation*}
$$

This conjecture can be seen as a generalization of Theorem 1.1. Note that Conjecture 1.5 was recently proved by Korándi, Roberts and Scott [13]. We recommend the interested reader to read the excellent survey [14] by Nikiforov. He gives a good overview on further related stability results, for example on guaranteeing large induced r-partite subgraphs of K_{r+1}-free graphs.

We organize the paper as follows. In Section 2 we prove Theorem 1.3 and in Section 3 we give the sharpness example, i.e. we prove Theorem 1.4.

2. Proof of Theorem $\mathbf{1 . 3}$

In this section we prove the following version of Theorem 1.3, which gives better control over the error term.

Theorem 2.1. Let $r \geqslant 2$ be an integer. Then, for all $n \geqslant 3 r^{2}$ and for all $0 \leqslant \alpha \leqslant 10^{-7} r^{-12}$, the following holds. Let G be a K_{r+1}-free graph on n vertices with

$$
\begin{equation*}
e(G) \geqslant \operatorname{ex}\left(n, K_{r+1}\right)-\alpha n^{2} . \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
D_{r}(G) \leqslant\left(\frac{2 r}{3 \sqrt{3}}+30 r^{3} \alpha^{1 / 6}\right) \alpha^{3 / 2} n^{2} \tag{2.2}
\end{equation*}
$$

Let G be an n-vertex K_{r+1}-free graph with $e(G) \geqslant \operatorname{ex}\left(n, K_{r+1}\right)-t$, where $t=\alpha n^{2}$. We will assume that n is sufficiently large. Furthermore, by Theorem 1.2 we can assume that

$$
\begin{equation*}
\alpha \geqslant \frac{\lfloor n / r\rfloor-2}{n^{2}} \geqslant \frac{1}{2 r n} \tag{2.3}
\end{equation*}
$$

This also implies that $t \geqslant r$ because $n \geqslant 3 r^{2}$. During our proof we will make use of Turán's theorem and a version of Turán's theorem for r-partite graphs on multiple occasions. Turán's theorem [17] determines the maximum number of edges in a K_{r+1}-free graph.

Theorem 2.2 (Turán [17]). Let $r \geqslant 2$ and $n \in \mathbb{N}$. Then

$$
\frac{n^{2}}{2}\left(1-\frac{1}{r}\right)-\frac{r}{2} \leqslant \operatorname{ex}\left(n, K_{r+1}\right) \leqslant \frac{n^{2}}{2}\left(1-\frac{1}{r}\right) .
$$

Let $K\left(n_{1}, \ldots, n_{r}\right)$ denote the complete r-partite graph whose r colour classes have sizes n_{1}, \ldots, n_{r}, respectively. Turán's theorem for r-partite graphs states the following.

Theorem 2.3 (folklore). Let $r \geqslant 2$ and $n_{1}, \ldots, n_{r} \in \mathbb{N}$ satisfying $n_{1} \leqslant \cdots \leqslant n_{r}$. For a K_{r}-free subgraph H of $K\left(n_{1}, \ldots, n_{r}\right)$, we have

$$
e(H) \leqslant e\left(K\left(n_{1}, \ldots, n_{r}\right)\right)-n_{1} n_{2} .
$$

For a proof of this folklore result see [3, Lemma 3.3], for example.
We denote the maximum degree of G by $\Delta(G)$. For two disjoint subsets U, W of $V(G)$, write $e(U, W)$ for the number of edges in G with one endpoint in U and the other endpoint in W. We write $e^{c}(U, W)$ for the number of non-edges between U and W, i.e. $e^{c}(U, W)=|U||W|-e(U, W)$.

Füredi [9] used Erdős's degree majorization algorithm [5] to find a vertex partition with some useful properties. We include the proof for completeness.

Lemma 2.1 (Füredi [9]). Let $t, r, n \in \mathbb{N}$ and G be an n-vertex K_{r+1}-free graph with $e(G) \geqslant$ $\operatorname{ex}\left(n, K_{r+1}\right)-t$. Then there exists a vertex partition $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that

$$
\begin{equation*}
\sum_{i=1}^{r} e\left(G\left[V_{i}\right]\right) \leqslant t, \quad \Delta(G)=\sum_{i=2}^{r}\left|V_{i}\right| \quad \text { and } \quad \sum_{1 \leqslant i<j \leqslant r} e^{c}\left(V_{i}, V_{j}\right) \leqslant 2 t \tag{2.4}
\end{equation*}
$$

Proof. Let $x_{1} \in V(G)$ be a vertex of maximum degree. Define $V_{1}:=V(G) \backslash N\left(x_{1}\right)$ and $V_{1}^{+}=$ $N\left(x_{1}\right)$. Iteratively, let x_{i} be a vertex of maximum degree in $G\left[V_{i-1}^{+}\right]$. Let $V_{i}:=V_{i-1}^{+} \backslash N\left(x_{i}\right)$ and $V_{i}^{+}=V_{i-1}^{+} \cap N\left(x_{i}\right)$. Since G is K_{r+1}-free this process stops at $i \leqslant r$ and thus gives a vertex partition $V(G)=V_{1} \cup \cdots \cup V_{r}$. Summing up the degrees of vertices in V_{1}, we have

$$
2 e\left(G\left[V_{1}\right]\right)+e\left(V_{1}, V_{1}^{+}\right)=\sum_{x \in V_{1}} \operatorname{deg}(x) \leqslant\left|V_{1}\right|\left|V_{1}^{+}\right|,
$$

and similarly for the other classes

$$
2 e\left(G\left[V_{i}\right]\right)+e\left(V_{i}, V_{i}^{+}\right)=\sum_{x \in V_{1}} \operatorname{deg}_{G\left[V_{i-1}^{+}\right]}(x) \leqslant\left|V_{i}\right|\left|V_{i}^{+}\right| .
$$

Adding up these inequalities we get

$$
\operatorname{ex}\left(n, K_{r+1}\right)-t+\sum_{i=1}^{r} e\left(G\left[V_{i}\right]\right)=e(G)+\sum_{i=1}^{r} e\left(G\left[V_{i}\right]\right) \leqslant \sum_{i=1}^{r-1}\left|V_{i}\right|\left|V_{i}^{+}\right| \leqslant \operatorname{ex}\left(n, K_{r+1}\right)
$$

implying

$$
\sum_{i=1}^{r} e\left(G\left[V_{i}\right]\right) \leqslant t
$$

By construction,

$$
\sum_{i=2}^{r}\left|V_{i}\right|=\left|V_{1}^{+}\right|=\left|N\left(x_{1}\right)\right|=\Delta(G)
$$

Let H be the complete r-partite graph with vertex set $V(G)$ and all edges between V_{i} and V_{j} for $1 \leqslant i<j \leqslant r$. The graph H is r-partite and thus has at most ex $\left(n, K_{r+1}\right)$ edges. Finally, since G has at most t edges not in H and at least ex $\left(n, K_{r+1}\right)-t$ edges in total, at most $2 t$ edges of H can be missing from G, giving us

$$
\sum_{1 \leqslant i<j \leqslant r} e^{c}\left(V_{i}, V_{j}\right) \leqslant 2 t
$$

and proving the last inequality.

For this vertex partition we can get bounds on the class sizes.
Lemma 2.2. For all $i \in[r]$,

$$
\left|V_{i}\right| \in\left\{\frac{n}{r}-\frac{5}{2} \sqrt{\alpha} n, \frac{n}{r}+\frac{5}{2} \sqrt{\alpha} n\right\}
$$

and thus also

$$
\Delta(G) \leqslant \frac{r-1}{r} n+\frac{5}{2} \sqrt{\alpha} n .
$$

Proof. We know that

$$
\sum_{1 \leqslant i<j \leqslant r}\left|V_{i}\right|\left|V_{j}\right| \geqslant e(G)-\sum_{i=1}^{r} e\left(G\left[V_{i}\right]\right) \geqslant\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}-\frac{r}{2}-2 t .
$$

Also

$$
\sum_{1 \leqslant i<j \leqslant r}\left|V_{i}\right|\left|V_{j}\right|=\frac{1}{2} \sum_{i=1}^{r}\left|V_{i}\right|\left(n-\left|V_{i}\right|\right)=\frac{n^{2}}{2}-\frac{1}{2} \sum_{i=1}^{r}\left|V_{i}\right|^{2} .
$$

Thus we can conclude that

$$
\begin{equation*}
\sum_{i=1}^{r}\left|V_{i}\right|^{2} \leqslant \frac{n^{2}}{r}+r+4 t \tag{2.5}
\end{equation*}
$$

Now let $x=\left|V_{1}\right|-n / r$. Then

$$
\begin{align*}
\sum_{i=1}^{r}\left|V_{i}\right|^{2} & =\left(\frac{n}{r}+x\right)^{2}+\sum_{i=2}^{r}\left|V_{i}\right|^{2} \\
& \geqslant\left(\frac{n}{r}+x\right)^{2}+\frac{\left(\sum_{i=2}^{r}\left|V_{i}\right|\right)^{2}}{r-1} \\
& \geqslant\left(\frac{n}{r}+x\right)^{2}+\frac{(n(1-1 / r)-x)^{2}}{r-1} \\
& \geqslant \frac{n^{2}}{r}+x^{2} . \tag{2.6}
\end{align*}
$$

Combining this with (2.5), we get

$$
|x| \leqslant \sqrt{r+4 t} \leqslant \frac{5}{2} \sqrt{t}=\frac{5}{2} \sqrt{\alpha} n
$$

and thus

$$
\frac{n}{r}-\frac{5}{2} \sqrt{\alpha} n \leqslant\left|V_{1}\right| \leqslant \frac{n}{r}+\frac{5}{2} \sqrt{\alpha} n .
$$

In a similar way we get the bounds on the sizes of the other classes.
Lemma 2.3. The graph G contains r vertices $x_{1} \in V_{1}, \ldots, x_{r} \in V_{r}$ which form a K_{r}, and for every i

$$
\operatorname{deg}\left(x_{i}\right) \geqslant n-\left|V_{i}\right|-5 r \alpha n .
$$

Proof. Let $V_{i}^{c}:=V(G) \backslash V_{i}$. We call a vertex $v_{i} \in V_{i}$ small if $\left|N\left(v_{i}\right) \cap V_{i}^{c}\right|<\left|V_{i}^{c}\right|-5 r \alpha n$ and big otherwise. For $1 \leqslant i \leqslant r$, let B_{i} denote the set of big vertices inside class V_{i}. There are at most

$$
\frac{4 t}{5 r \alpha n}=\frac{4}{5 r} n
$$

small vertices in total as otherwise (2.4) is violated. Thus in each class there are at least $n / 10 r$ big vertices, i.e. $\left|B_{i}\right| \geqslant n / 10 r$. The number of missing edges between the sets B_{1}, \ldots, B_{r} is at most $2 t<\frac{1}{100 r^{2}} n^{2}$. Thus, using Theorem 2.3, we can find a K_{r} with one vertex from each B_{i}.

Lemma 2.4. There exists a vertex partition $V(G)=X_{1} \cup \cdots \cup X_{r} \cup X$ such that the X_{i} are independent sets, $|X| \leqslant 5 r^{2} \alpha n$ and

$$
\frac{n}{r}-3 \sqrt{\alpha} n \leqslant\left|X_{i}\right| \leqslant \frac{n}{r}+3 r \sqrt{\alpha} n
$$

for all $1 \leqslant i \leqslant r$.
Proof. By Lemma 2.3 we can find vertices x_{1}, \ldots, x_{r} forming a K_{r} and having $\operatorname{deg}\left(x_{i}\right) \geqslant$ $n-\left|V_{i}\right|-5 r \alpha n$. Define X_{i} to be the common neighbourhood of $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{r}$ and $X=V(G) \backslash\left(X_{1} \cup \cdots \cup X_{r}\right)$. Since G is K_{r+1}-free, the X_{i} are independent sets. Now we bound the size of X_{i} using the bounds on the sets V_{i}. Since every x_{j} has at most $\left|V_{j}\right|+5 r \alpha n$ non-neighbours, we get

$$
\begin{equation*}
\left|X_{i}\right| \geqslant n-\sum_{\substack{1 \leqslant j \leqslant r \\ j \neq i}}\left(\left|V_{j}\right|+5 r \alpha n\right) \geqslant\left|V_{i}\right|-5 r^{2} \alpha n \geqslant \frac{n}{r}-3 \sqrt{\alpha} n \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{r} \operatorname{deg}\left(x_{i}\right) \geqslant n(r-1)-5 r^{2} \alpha n \tag{2.8}
\end{equation*}
$$

A vertex $v \in V(G)$ cannot be incident to all of the vertices x_{1}, \ldots, x_{r}, because G is K_{r+1}-free. Further, every vertex from X is not incident to at least two of the vertices x_{1}, \ldots, x_{r}. Thus

$$
\begin{equation*}
\sum_{i=1}^{r} \operatorname{deg}\left(x_{i}\right) \leqslant n(r-1)-|X| . \tag{2.9}
\end{equation*}
$$

Combining (2.8) with (2.9), we conclude that

$$
|X| \leqslant 5 r^{2} \alpha n .
$$

For the upper bound on the sizes of the sets X_{i} we get

$$
\begin{equation*}
\left|X_{i}\right| \leqslant n-\sum_{\substack{1 \leqslant j \leqslant r \\ j \neq i}}\left|X_{j}\right| \leqslant n-\frac{r-1}{r} n+3 r \sqrt{\alpha} n=\frac{n}{r}+3 r \sqrt{\alpha} n . \tag{2.10}
\end{equation*}
$$

We now bound the number of non-edges between X_{1}, \ldots, X_{r}.
Lemma 2.5. We have

$$
\sum_{1 \leqslant i<j \leqslant r} e^{c}\left(X_{i}, X_{j}\right) \leqslant t+e\left(X, X^{c}\right)+|X|^{2}-\left(1-\frac{1}{r}\right) n|X|+r .
$$

Proof.

$$
\begin{align*}
\frac{n^{2}}{2}\left(1-\frac{1}{r}\right)-\frac{r}{2}-t & \leqslant e(G) \\
& =e\left(X, X^{c}\right)+e(X)+\sum_{1 \leqslant i<j \leqslant r} e\left(X_{i}, X_{j}\right) \\
& \leqslant e\left(X, X^{c}\right)+\frac{|X|^{2}}{2}+\left(1-\frac{1}{r}\right)\left(\frac{(n-|X|)^{2}}{2}\right)-\sum_{1 \leqslant i<j \leqslant r} e^{c}\left(X_{i}, X_{j}\right) . \tag{2.11}
\end{align*}
$$

This gives the statement of the lemma.
Let

$$
\bar{X}=\left\{v \in X \left\lvert\, \operatorname{deg}_{X_{1} \cup \ldots \cup X_{r}}(v) \geqslant \frac{r-2}{r} n+3 \alpha^{1 / 3} n\right.\right\} \quad \text { and } \quad \hat{X}:=X \backslash \bar{X} .
$$

Let $d \in[0,1]$ such that $|\bar{X}|=d|X|$. Further, let $k \in\left[0,5 r^{2}\right]$ such that $|X|=k \alpha n$. Now we shall further develop the upper bound from Lemma 2.5.

Lemma 2.6. We have

$$
\sum_{1 \leqslant i<j \leqslant r} e^{c}\left(X_{i}, X_{j}\right) \leqslant 20 r^{2} \alpha^{4 / 3} n^{2}+\left(1-(1-d) \frac{1}{r} k\right) \alpha n^{2}
$$

Proof. By Lemma 2.5,

$$
\begin{align*}
\sum_{1 \leqslant i<j \leqslant r} e^{c}\left(X_{i}, X_{j}\right) \leqslant & t+e\left(X, X^{c}\right)+|X|^{2}-\left(1-\frac{1}{r}\right) n|X|+r \\
\leqslant & t+d|X| \Delta(G)+(1-d)|X|\left(\frac{r-2}{r} n+3 \alpha^{1 / 3} n\right)+|X|^{2}-\left(1-\frac{1}{r}\right) n|X|+r \\
\leqslant & t+d|X|\left(n \frac{r-1}{r}+\frac{5}{2} \sqrt{\alpha} n\right)+(1-d)|X|\left(\frac{r-2}{r} n+3 \alpha^{1 / 3} n\right) \\
& \quad+|X|^{2}-\left(1-\frac{1}{r}\right) n|X|+r \\
\leqslant & \frac{5}{2} d|X| \sqrt{\alpha} n+3(1-d)|X| \alpha^{1 / 3} n+|X|^{2}+t+n|X| \frac{d-1}{r}+r \\
\leqslant & \frac{5}{2} k \alpha^{3 / 2} n^{2}+3 k \alpha^{4 / 3} n^{2}+|X|^{2}+\left(1-(1-d) \frac{1}{r} k\right) \alpha n^{2}+r \\
\leqslant & \frac{25}{2} r^{2} \alpha^{3 / 2} n^{2}+15 r^{2} \alpha^{4 / 3} n^{2}+25 r^{4} \alpha^{2} n^{2}+\left(1-(1-d) \frac{1}{r} k\right) \alpha n^{2}+r \\
\leqslant & 20 r^{2} \alpha^{4 / 3} n^{2}+\left(1-(1-d) \frac{1}{r} k\right) \alpha n^{2} . \tag{2.12}
\end{align*}
$$

Let

$$
\begin{equation*}
C:=20 r^{2} \alpha^{4 / 3}+\left(1-(1-d) \frac{1}{r} k\right) \alpha \tag{2.13}
\end{equation*}
$$

For every vertex $u \in X$ there is no K_{r} in $N_{X_{1}}(u) \cup \cdots \cup N_{X_{r}}(u)$. Thus, by applying Theorem 2.3 and Lemma 2.6, we get

$$
\begin{equation*}
\min _{i \neq j}\left|N_{X_{i}}(u)\right|\left|N_{X_{j}}(u)\right| \leqslant \sum_{1 \leqslant i<j \leqslant r} e^{c}\left(X_{i}, X_{j}\right) \leqslant C n^{2} \tag{2.14}
\end{equation*}
$$

Bound (2.14) implies in particular that every vertex $u \in X$ has degree at most $\sqrt{C} n$ to one of the sets X_{1}, \ldots, X_{r}, that is,

$$
\begin{equation*}
\min _{i}\left|N_{X_{i}}(u)\right| \leqslant \sqrt{C} n . \tag{2.15}
\end{equation*}
$$

Therefore we can partition $\hat{X}=A_{1} \cup \cdots \cup A_{r}$ such that every vertex $u \in A_{i}$ has at most $\sqrt{C} n$ neighbours in X_{i}.

By the following calculation, for every vertex $u \in \bar{X}$ the second smallest neighbourhood to the sets X_{i} has size at least $\alpha^{1 / 3} n$:

$$
\begin{equation*}
\min _{i \neq j}\left|N_{X_{i}}(u)\right|+\left|N_{X_{j}}(u)\right| \geqslant \frac{r-2}{r} n+3 \alpha^{1 / 3} n-(r-2)\left(\frac{n}{r}+3 r \sqrt{\alpha} n\right) \geqslant 2 \alpha^{1 / 3} n \tag{2.16}
\end{equation*}
$$

where we used the definition of \bar{X} and Lemma 2.4. Combining the lower bound on the second smallest neighbourhood with (2.14), we can conclude that for every $u \in \bar{X}$

$$
\begin{equation*}
\min _{i}\left|N_{X_{i}}(u)\right| \leqslant \frac{C}{\alpha^{1 / 3}} n . \tag{2.17}
\end{equation*}
$$

Hence we can partition $\bar{X}=B_{1} \cup \cdots \cup B_{r}$ such that every vertex $u \in B_{i}$ has at most $C \alpha^{-1 / 3} n$ neighbours in X_{i}. Consider the partition $A_{1} \cup B_{1} \cup X_{1}, A_{2} \cup B_{2} \cup X_{2}, \ldots, A_{r} \cup B_{r} \cup X_{r}$. By removing all edges inside the classes, we end up with an r-partite graph. We have to remove at most

$$
\begin{align*}
e(X) & +d|X| \frac{C}{\alpha^{1 / 3}} n+(1-d)|X| \sqrt{C} n \\
& \leqslant 6 r^{2} \alpha^{5 / 3} n^{2}+(1-d) k \sqrt{C} \alpha n^{2} \\
& \leqslant 6 r^{2} \alpha^{5 / 3} n^{2}+(1-d) k\left(\sqrt{20 r^{2} \alpha^{4 / 3}}+\sqrt{\left(1-(1-d) \frac{1}{r} k\right) \alpha}\right) \alpha n^{2} \\
& \leqslant 6 r^{2} \alpha^{5 / 3} n^{2}+5 r^{2} \sqrt{20 r^{2} \alpha^{4 / 3}} \alpha n^{2}+(1-d) k \sqrt{\left(1-(1-d) \frac{1}{r} k\right) \alpha \alpha n^{2}} \\
& \leqslant 6 r^{2} \alpha^{5 / 3} n^{2}+5 \sqrt{20} r^{3} \alpha^{5 / 3} n^{2}+\frac{2 r}{3 \sqrt{3}} \alpha^{3 / 2} n^{2} \\
& \leqslant\left(\frac{2 r}{3 \sqrt{3}}+30 r^{3} \alpha^{1 / 6}\right) \alpha^{3 / 2} n^{2} \tag{2.18}
\end{align*}
$$

edges. We have used (2.15), (2.17) and the fact that

$$
(1-d) k \sqrt{1-(1-d) \frac{k}{r}} \leqslant \frac{2 r}{3 \sqrt{3}},
$$

which can be seen by setting $z=(1-d) k$ and finding the maximum of $f(z):=z \sqrt{1-z / r}$, which is obtained at $z=2 r / 3$.

3. Sharpness example

In this section we will prove Theorem 1.4, i.e. that the leading term from Theorem 1.3 is best possible.

Figure 1. The graph G.

Proof of Theorem 1.4. Let G be the graph with vertex set $V(G)=A \cup X \cup B \cup C \cup D \cup X_{1} \cdots \cup$ X_{r-2}, where all classes $A, X, B, C, D, X_{1}, \ldots, X_{r-2}$ form independent sets; A, X, B, C, D form a complete blow-up of a C_{5}, where the classes are named in cyclic order; and for each $1 \leqslant i \leqslant r-2$, every vertex from X_{i} is incident to all vertices from $V(G) \backslash X_{i}$. See Figure 1 for an illustration of G.

The sizes of the classes are

$$
|X|=\frac{2 r}{3} \alpha n, \quad|A|=|B|=\sqrt{\frac{\alpha}{3}} n, \quad|C|=|D|=\frac{1-(2 r / 3) \alpha}{r} n-\sqrt{\frac{\alpha}{3}} n, \quad\left|X_{i}\right|=\frac{1-(2 r / 3) \alpha}{r} n .
$$

The smallest class is X and the second smallest are A and B. By deleting all edges between X and $A\left(|X||A|=(2 r /(3 \sqrt{3})) \alpha^{3 / 2} n^{2}\right)$, we get an r-partite graph. Since the classes A and X are the two smallest class sizes, the smallest canonical cut is of size $(2 r /(3 \sqrt{3})) \alpha^{3 / 2} n^{2}$. A result by Erdős, Győri and Simonovits [7, Theorem 7] states that there is a canonical 'edge deletion' achieving the minimum of $D_{r}(G)$. Hence

$$
D_{r}(G) \geqslant \frac{2 r}{3 \sqrt{3}} \alpha^{3 / 2} n^{2} .
$$

Let us now count the number of edges of G. The number of edges incident to X is

$$
\begin{align*}
e\left(X, X^{c}\right) & =\left(\frac{2 r}{3} \alpha\right)\left(2 \sqrt{\frac{\alpha}{3}}\right) n^{2}+\left(\frac{2 r}{3} \alpha\right)\left(\frac{1-(2 r / 3) \alpha}{r}(r-2)\right) n^{2} \\
& =\left(\frac{2}{3}(r-2) \alpha+\frac{4 r}{3 \sqrt{3}} \alpha^{3 / 2}-\frac{4 r(r-2)}{9} \alpha^{2}\right) n^{2} . \tag{3.1}
\end{align*}
$$

Using that $|A|+|C|=|B|+|D|=\left|X_{1}\right|$, we have that the number of edges inside $A \cup B \cup C \cup D \cup$ $X_{1} \cup \cdots \cup X_{r-2}$ is

$$
\begin{align*}
e\left(X^{c}\right) & =\left|X_{1}\right|^{2}\binom{r}{2}-|A||B| \\
& =\left(\frac{1-(2 r / 3) \alpha}{r} n\right)^{2}\binom{r}{2}-\frac{1}{3} \alpha n^{2} \\
& =\frac{1}{r^{2}}\binom{r}{2} n^{2}-\frac{4 r}{3} \frac{1}{r^{2}} \alpha\binom{r}{2} n^{2}+\frac{4}{9} \alpha^{2}\binom{r}{2} n^{2}-\frac{1}{3} \alpha n^{2} \\
& =\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}-\frac{2}{3}(r-1) \alpha n^{2}-\frac{1}{3} \alpha n^{2}+\frac{4}{9} \alpha^{2}\binom{r}{2} n^{2} . \tag{3.2}
\end{align*}
$$

Thus the number of edges of G is

$$
\begin{align*}
e(G) & =e\left(X^{c}\right)+e\left(X, X^{c}\right) \\
& =\left(1-\frac{1}{r}\right) \frac{n^{2}}{2}-\alpha n^{2}+\frac{4 r}{3 \sqrt{3}} \alpha^{3 / 2} n^{2}-\frac{2 r(r-3)}{9} \alpha^{2} n^{2} \\
& \geqslant \operatorname{ex}\left(n, K_{r+1}\right)-\alpha n^{2}+\frac{4 r}{3 \sqrt{3}} \alpha^{3 / 2} n^{2}-\frac{2 r(r-3)}{9} \alpha^{2} n^{2}, \tag{3.3}
\end{align*}
$$

where we applied Turán's theorem in the last step.

Acknowledgements

We would like to thank an anonymous referee for useful comments.

References

[1] Amin, K., Faudree, J., Gould, R. J. and Sidorowicz, E. (2013) On the non-($p-1$)-partite K_{p}-free graphs. Discuss. Math. Graph Theory 33 9-23.
[2] Andrásfai, B., Erdős, P. and Sós, V. T. (1974) On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Math. 8 205-218.
[3] Balogh, J., Morris, R., Samotij, W. and Warnke, L. (2016) The typical structure of sparse K_{r+1} free graphs. Trans. Amer. Math. Soc. 368 6439-6485.
[4] Brouwer, A. E. (1981) Some Lotto Numbers From an Extension of Turán's Theorem, Vol. 152 of Afdeling Zuivere Wiskunde [Department of Pure Mathematics]. Mathematisch Centrum, Amsterdam.
[5] Erdős, P. (1970) On the graph theorem of Turán. Mat. Lapok 21 249-251.
[6] Erdős, P., Faudree, R., Pach, J. and Spencer, J. (1988) How to make a graph bipartite. J. Combin. Theory Ser. B 45 86-98.
[7] Erdős, P., Győri, E. and Simonovits, M. (1992) How many edges should be deleted to make a triangle-free graph bipartite? In Sets, Graphs and Numbers (Budapest, 1991), Vol. 60 of Colloquia Mathematica Societatis János Bolyai, pp. 239-263. North-Holland.
[8] Erdős, P. and Simonovits, M. (1966) A limit theorem in graph theory. Studia Sci. Math. Hungar 151-57.
[9] Füredi, Z. (2015) A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity. J. Combin. Theory Ser. B 115 66-71.
[10] Hanson, D. and Toft, B. (1991) k-saturated graphs of chromatic number at least k. Ars Combin. 31 159-164.
[11] Hu, P., Lidický, B., Martins, T., Norin, S. and Volec, J. Large multipartite subgraphs in H-free graphs. Manuscript.
[12] Kang, M. and Pikhurko, O. (2005) Maximum K_{r+1}-free graphs which are not r-partite. Mat. Stud. 24 12-20.
[13] Korándi, D., Roberts, A. and Scott, A. (2020) Exact stability for Turán's theorem. arXiv:2004.10685
[14] Nikiforov, V. (2011) Some new results in extremal graph theory. In Surveys in Combinatorics 2011, Vol. 392 of London Mathematical Society Lecture Note Series, pp. 141-181. Cambridge University Press.
[15] Roberts, A. and Scott, A. (2018) Stability results for graphs with a critical edge. arXiv:1610.08389. https://doi.org/ 10.1016/j.ejc.2018.07.004
[16] Sudakov, B. (2007) Making a K_{4}-free graph bipartite. Combinatorica 27 509-518.
[17] Turán, P. (1941) Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 436-452.
[18] Tyomkyn, M. and Uzzell, A. J. (2015) Strong Turán stability. Electron. J. Combin. 22 P3-9.

Cite this article: Balogh J, Clemen FC, Lavrov M, Lidický B and Pfender F (2021). Making K_{r+1}-free graphs r-partite. Combinatorics, Probability and Computing 30, 609-618. https://doi.org/10.1017/S0963548320000590

[^0]: ${ }^{\dagger}$ Research is partially supported by NSF grant DMS-1764123, Arnold O. Beckman Research Award (UIUC Campus Research Board RB 18132) and the Langan Scholar Fund (UIUC).
 ${ }^{\ddagger}$ Research of this author is partially supported by NSF grant DMS-1855653.
 ${ }^{\S}$ Research of this author is partially supported by NSF grant DMS-1855622.

