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ABSOLUTELY FREE ALGEBRAS IN A TOPOS 
CONTAINING AN INFINITE OBJECT 

BY 

D. SCHUMACHER 

0. Introduction. This note confirms that the existence proof for absolutely 
free algebras originated by Dedekind in [2] and completely developed for 
instance in [4] can still be carried out in a topos containing an infinite object 
i.e. an object N for which N — N+l if the type of the algebras considered is 
finite, pointed and internally projective i.e. is a finite sequence of objects, 
(Ij)i<j<k for which the functors ( )Ij preserve epimorphisms and each of which 
has a global section. 

However restrictive these requirements in the case of non-finitary operations 
might be, the omission of miliary operations is not serious: if m of the I7 are 
zero the absolutely free algebra over an object X can be obtained as an algebra 
with no nullary operations which is absolutely free over the coproduct of X 
with the m-fold coproduct of the terminal object 1 of the given topos. 

Henceforth all types are understood to be finite, pointed and internally 
projective. 

The present paper represents a vast improvement over [7] which came out at 
roughly the same time B. Lesaffre [5] had obtained the very same result. The 
existence proof for free finitary algebras in a topos containing a natural number 
object in [5] is an adaption of the existence proof for free finitary algebras over 
sets as it may be found in [1]. 

As in the classical case, we draw from, the existence of absolutely free 
algebras will be established in two steps: 

PROPOSITION 1. For every type and every object X of the given topos E there is 
an algebra A of this type in E containing X the operations of which are 
monomorphic, mutually disjoint and disjoint from X. 

PROPOSITION 2. For every subobject X of (the underlying object of) an algebra 
A there can be defined a subalgebra [X] of A containing X in such a way that 
two homomorphisms from [X] coinciding over X are equal and moreover any 
morphism from X into an algebra B has a unique extension to a homomorphism 
from [X] into B if A and X are as in Proposition 1. 

1. The proof of Proposition 1. This proof requires only that E contains an 
infinite object N and is a finitely complete and cocomplete cartesian closed 
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category whose initial objects are strict initial and whose coproducts are 
disjoint, i.e. have monomorphic and mutually disjoint injections. 

Given a type (Ij)i<;<k it is sufficient to show that for any object X there is an 
object A such that for all 1 < / < k AIj' == A and X and A + A are retracts of A. 
For then 

k 

X >A-^->LI A >A 

Ah^A 

is an algebra of type {Ij)\^^k containing X the operations of which are 
monomorphic, mutually disjoint and disjoint from X 

Now, A = XJ x 2NxJ with J = i f x • • • x / £ has the required properties: 
J has a global section, say 1—y->J. Hence X 7X ! j = X with \j the unique 

morphism from J into 1 and therefore X is a retract of XJ. But XJ in turn is a 
retract of X J x 2 N x J since 2 N x J has a global section and there is hence a 
morphism / from XJ to 2

N x J : X J - ^ ^ X J x 2 " X J . 
A + A - A x 2 - X J x 2 ( N x J ) + 1 . Since J has a global section, ( N x J ) + l is a 

retract of ( N x J ) + J « ( N + l ) x j r ~ N x j . Therefore 2 ( N x J H 1 is a retract of 
2 N x J which finally gives that A + A is a retract of A. 

For every l < / < s k J x l , - i f x • • • x l f + 1 x • • . x l £ « J and hence A 1 ' -

(X7)1' x (2NxJ)J< - XJXI< x 2NXJxl< - A. 

2. The proof of Proposition 2. The following proof is based on the theorem 
of Mikkelsen's [6] that for every endomap <ï> of the class Sub(A) of all 
subobjects of an object A, which is "induced" by an order preserving en-
domorphism (/> of fîA, there is a monomorphism m into A which is smallest 
among all /meSub(A) with <I>(JLL) < JJL. Calling a monomorphism m into a 
product B x Y and a morphism Y —^-» flB transpose of each other iff g is the 
exponential adjoint of the characteristic function of m, (/> induces O means that 
for all s e Sub(A) <I>(s) is a transpose of <j>T where 1 — ^ flA is the transpose of 
s. The order onAlîA, which <f> preserves, is the canonical one i.e. the equalizer 
of ( n x f l ) A - ^ n A and ( ( l x f i ) A X f t A Note that for morphisms 
y _ L ^ n A and Y - ^ f l A (h, g) factors through the order on ftA iff the 
transpose of g factors through the transpose of h. From this it follows easily 
that an endomorphism c/> of flA is order preserving if and only if for all 
morphisms g and h the transpose of (/>g factors through the transpose of 4>h if 
the transpose of g factors through the transpose of h. 

With the help of his theorem and Freyd's Proposition 2.21 (unique existentia-
tion) [3] Mikkelsen had succeeded in translating into a topos Dedekind's 
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proof of the existence of natural numbers from the existence of infinite sets. 
Since the passage from infinite objects to natural number objects is a special 
case of passing from an algebra in Proposition 1 to the corresponding abso
lutely free algebra, it is rather obvious that a slight generalization of Mik-
kelsen's proof should provide a proof for Proposition 2. 

For every morphism A > B let 3 / be the transpose of an image of 
( /xf t A )e A , where eA is a subobject of the evaluation A x ( l A - ^ f t . This 
assignment is functorial i.e. we have a functor 3 ( > usually called the direct 
image functor. 

For any objects A and I of the topos we define the morphism IIi:ftA —> ftA1 

(called "raising to the I-th power") as follows: the map (€AY into (A x ( î A ) J is 
a monomorphism, which we regard as having codomain A I x(f l A ) 1 , thus 
obtaining as its transpose a morphism (ftA)J-> ùf"\ Composing this morphism 
with the evident morphism (llA) ! l:ftA -» ( O A ) J yields Ilj. 

Now, let X ——> A be a monomorphism into the underlying object of an 
algebra A = (A, (/j)i<j<k). Then the morphism 

A <B?!,3f n r , . . . , 3 f n . > /, ^-.x A 3 ~ 

<£ : ^ A h h'—I_L^ ft(k+1)"A — ^ ft 

induces an endomap $ of Sub(A) which sends any monomorphism /LL into A to 
a union of a and the monomorphisms / i t ju/ 1 ] , . . . , MM-1"] , where /[t] denotes 
the image of ft. For (i) the transpose of the composition Y > ÙB — ^ ùc is 
the image of (gxY)r) with 17 transpose of h; (ii) the transpose of the 
"pointwise union" Y <hl' ' " ' K\ (lnC -^-> flc of a family ( Y - X n c ) i ^ / S n is a 
union of transposes of the morphisms fy; and (iii) the transpose of 
Y - ^ f t A - ^ n A I is the pullback of 71 along A1 xY[:A*xY-> (AxY)1 

with y transpose of g, which gives in particular that for any monomorphism /x 
into A the transpose of IIJ/LZ is JU1. 

<t> is order preserving since (i), (ii) and (iii) imply that for all morphisms 
Y—^-»nA and Y >flA the transpose of <f>g factors through the transpose 
of cf>h if the transpose of g factors through the transpose of h. 

Thus for every algebra A = (A, (/y)i^y<k) and every monomorphism 
X ——» A there is a monomorphism B — -̂» A which is smallest among all 
subobjects JUL of A, through which a and all //[/m1*] factor. For the morphisms b 
and gj ( l < / < f c ) for which the diagrams 

B^-^B 

X 

A1'—-*A* 
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commute, B = (B, (g/)i</<k) is an algebra of the same type as A, m is a 
homomorphism from B into A and finally b generates B i.e. every 
monomorphism m! into B through which b and all gj[mfl>] factor, is an 
isomorphism. B is reasonably called the subalgebra of A generated by a. In 
particular, the image of X + B J l + - • + BIk —^——> JB is isomorphic and thus 
[b, g i , . . . , gk] epimorphic. If the /j are monomorphic, mutually disjoint and 
disjoint from a then also the g, are monomorphic, mutually disjoint and 
disjoint from b and hence [b7 g i , . . . , gk] is an isomorphism. 

An algebra B = (B, (g,-)i</<k) the operations of which are monomorphic, 
mutually disjoint and disjoint from a monomorphic X >B generating B is 
however in any topos an absolutely free algebra over X: Given an algebra 
S = (S, (oy)i<j<k) and a morphism x from X into S, a monomorphism 
C > B x S, which is smallest among all monomorphisms p. into B x S 
through which (b, x) and all (g7 XCT,-)[M/J'] factor, is up to an isomorphism the 
graph of a homomorphism h from B into S for which x-hb (such a 
homomorphism is apparently unique since B is generated by b). For pxA turns 
out to be both an epimorphism and a monomorphism (i.e., an isomorphism) 
and hence, if we note that À is a homomorphism from the subalgebra 
C = (C, (fyOi^k) of B x S - (B x S, (gj x o-jOi^k) generated by <b, x), it follows 
easily that (p2A)(piA)_1 is the homomorphism from B into S requested. 

Obviously b and all gy(piA)1'' factor through piA. It is in order to conclude 
from here, that besides b all the gJ[t

I/] factor through the image t of piA and 
thus i is an isomorphism (i.e., piA is an epimorphism), that we required the 
arities to be internally projective. 

The much harder problem of showing that p ^ is monomorphic can be 
surprisingly smoothly settled following Mikkelsen's advice to test for 
monomorphy by Freyd's Proposition of Unique Existentiation: 

LEMMA (compare with [1; Lemma 5.431]). Let qbe a homomorphism from an 
algebra C = (Cy(hj)i<j<k) generated by a monomorphism X- > C, into an 
algebra B = (B, (gy)i<y<k) the operations of which are monomorphic, mutually 
disjoint and disjoint from a monomorphism X > B for which b = qc. Then q is 
a monomorphism. 

The proof of the Lemma is, with Mikkelsen's suggestion in mind, straightfor
ward: If 

Q==Q 

C >B 
q 

is the pullback of unique existentiation, then in order to show that w is 
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isomorphic and hence q is monomorphic, it is sufficient to prove that c and all 
hjW1* factor through w; which in turn is true if 

X = X Q1' = Q1' 

CD b and (2) the . ,. 
0 v / hj\v i 

qhjW i 

-»B ^B 

are pullbacks. For the latter (as for Freyd's Lemma 5.431) the fact that 
[c, hi,..., hk] is epimorphic turns out to be rather essential: The pullback 
b fl q[c, h i , . . . , hn] of b and q[c, hu . . . , hn] is b n [fc, g i q J l , . . . , gkq

Ik] = 
[6 H 6, 0 , . . . , 0] = b and hence 

X-

is a pullback. But in general if 

D 

X 

\_c,hi,. . , H k ] q 

D 

E >G >F 

is a pullback and s is an epimorphism then also 

D = D 

G *F 

is a pullback because, fitting in a pullback of GF and D F 

H 

I | I 
E » G » F 

also DHGE with the'induced morphism from D into H is a pullback. Whence 
DH is epimorphic and leftinvertible and thus an isomorphism. 
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For (2) note that because 

* C is a pullback then all Q1 

Q1' 

->C'< 

m 

I, 

B 

are pullbacks and that hence the pullback qhjWIjf)q[c, h i , . . . , hk] of 
qhjW1' and q[c, hu . . . , hk] is qgy(qw)1' H [fc, giqJl,. . ., gkq

Ik] = 
[ 0 , . . . , gj(qw)1', 0 , . . . , 0] = gy(^w)Ij. This implies that the diagram 

Q1' Q1-

qhjw
I> = gjiqn)11 

X+C J l + --- + CIk 
>C >B 

is a pullback to which the general remark above on pullbacks of this form 
applies. 
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