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Abstract. We study a quadruple sequence and express its common limit by

Lauricella’s hypergeometric function FD

`

1
4
, 1

4
, 1

4
, 1

4
, 1; z1, z2, z3

´

of three vari-

ables. We give a functional equation of FD, which is the key to get our expres-

sion of the common limit.

§1. Introduction

For two positive real numbers a0 and b0 with a0 ≥ b0, the double se-

quence {an} and {bn} given as

an+1 =
an + bn

2
, bn+1 =

√

anbn,

has a common limit, which is called the arithmetic-geometric mean

M(a0, b0) of a0 and b0. It is shown by C. F. Gauss that M(a0, b0) can

be expressed by the hypergeometric function:

a0

M(a0, b0)
=

1

M(1, x)
= F

(1

2
,
1

2
, 1; 1 − x2

)

,

where x = b0/a0.

In this paper, we study a quadruple sequence {an}, {bn}, {cn} and {dn}
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given by

(1)

(a0, b0, c0, d0) = (a, b, c, d), a ≥ b ≥ c ≥ d ≥ 0,

an+1 =
an + bn + cn + dn

4
, bn+1 =

√

(an + dn)(bn + cn)

2
,

cn+1 =

√

(an + cn)(bn + dn)

2
, dn+1 =

√

(an + bn)(cn + dn)

2
.

We can easily see that it has a common limit µ(a, b, c, d). Our main theorem

is the expression of µ(a, b, c, d) by Lauricella’s hypergeometric function FD

of three variables:

1

µ(1, x1, x2, x3)
= FD

(1

4
,
1

4
,
1

4
,
1

4
, 1; 1 − x2

1, 1 − x2
2, 1 − x2

3

)2

.

The key for our main theorem is Proposition 1, which is the functional

equation of the hypergeometric function FD corresponding to the property

a0

a1

µ
(

1,
b0

a0

,
c0

a0

,
d0

a0

)

= µ
(

1,
b1

a1

,
c1

a1

,
d1

a1

)

.

It turns out that

µ
(

1,
bn

an
,
cn

an
,
dn

an

)

FD

(1

4
,
1

4
,
1

4
,
1

4
, 1; 1 −

( bn

an

)2

, 1 −
( cn

an

)2

, 1 −
(dn

an

)2)2

is independent of n. This fact implies our main theorem. In order to

show Proposition 1, we prepare some essential facts for integrable Pfaffian

systems in Section 3 and give the integrable Pfaffian system with respect to

FD(α, β, γ; z) of three variables in Fact 4.

C. W. Borchardt considers in [B] the quadruple sequence

an+1 =
an + bn + cn + dn

4
, bn+1 =

√
anbn +

√
cndn

2
,

cn+1 =

√
ancn +

√
bndn

2
, dn+1 =

√
andn +

√
bncn

2
,

with positive initial terms a0, b0, c0, d0. Its common limit B(a0, b0, c0, d0)

is expressed in terms of period integrals of a hyperelliptic curve C of genus

2. J. F. Mestre studies the expression of fixed points under the hyperelliptic

involution on C by the initial terms and shows that B(a0, b0, c0, d0) can be

expressed by the arithmetic-geometric mean M(a0, c0) when a0 = b0 and

c0 = d0, refer to [M].
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J. M. Borwein and P. B. Borwein consider in [BB] two double sequences

an+1 =
an + 2bn

3
, bn+1 =

3

√

bn
a2

n + anbn + b2
n

3
,

and

an+1 =
an + 3bn

4
, bn+1 =

√

bn
an + bn

2
;

they express their common limits M3(a0, b0) and M4(a0, b0) by F
(

1

3
, 2

3
, 1; z

)

and F
(

1

4
, 3

4
, 1; z

)

, respectively. We remark that the expression of M4(a0, b0)

can be obtained by our main theorem as a special case b0 = c0 = d0.

As a generalization of M3(a0, b0), K. Koike and H. Shiga give a triple

sequence and express its common limit by Appell’s hypergeometric func-

tion F1

(

1

3
, 1

3
, 1

3
, 1; z1, z2

)

of two variables z1, z2, refer to [KS1]. They study

an extension of the arithmetic-geometric mean and give its expression by

Appell’s hypergeometric function F1 with different parameters in [KS2].

For other studies related to the arithmetic-geometric mean, refer to

[MM].

Acknowledgment. The authors express their gratitude to Professor

K. Ohara for informing of the correct Pfaffian system with respect to the

hypergeometric function FD obtained by the system [O].

§2. The quadruple sequence

Lemma 1. The quadruple sequence {an}, {bn}, {cn} and {dn} given

as (1) satisfies

a ≥ an−1 ≥ an ≥ bn ≥ cn ≥ dn ≥ dn−1 ≥ d

for any n ∈ N. It has a common limit, which is denoted by µ(a, b, c, d).

Proof. We assume an ≥ bn ≥ cn ≥ dn ≥ 0 for n ∈ N. Then we have

(4an+1)
2 − (4bn+1)

2 = (an − bn − cn + dn)2 ≥ 0,

(2bn+1)
2 − (2cn+1)

2 = (an − bn)(cn − dn) ≥ 0,

(2cn+1)
2 − (2dn+1)

2 = (an − dn)(bn − cn) ≥ 0,

an+1 =
an + bn + cn + dn

4
≤ an + an + an + an

4
= an,

dn+1 =

√

(an + bn)(cn + dn)

2
≥
√

(dn + dn)(dn + dn)

2
= dn,
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which imply an ≥ an+1 ≥ bn+1 ≥ cn+1 ≥ dn+1 ≥ dn ≥ 0. Since the se-

quences {an} and {dn} are monotonous and bounded, they converge. Since

an+1 − dn+1 =
1

4
(
√

an + bn −
√

cn + dn)2 ≤ 1

4
(
√

2an −
√

2dn)2

=
1

2
(an + dn − 2

√

andn) ≤ an − dn

2
≤ a − d

2n+1
,

we have limn→∞(an − dn) = 0. Thus the quadruple sequence (1) has a

common limit.

Remark 1. 1. We have

(4an+1)
2 − (4bn+1)

2 = (an − bn − cn + dn)2,

(4an+1)
2 − (4cn+1)

2 = (an − bn + cn − dn)2,

(4an+1)
2 − (4dn+1)

2 = (an + bn − cn − dn)2.

2. The quadruple sequence (1) quadratically converges, since

an+1 − dn+1 ≤ 1

4
(
√

2an −
√

2dn)2 =
1

2

(an − dn)2

(
√

an +
√

dn)2
.

It is easy to see that

µ(a, b, c, d) = aµ
(

1,
b

a
,
c

a
,
d

a

)

,

µ(a, b, c, d)

= µ

(

a+b+c+d

4
,

√

(a+d)(b+c)

2
,

√

(a+c)(b+d)

2
,

√

(a+b)(c+d)

2

)

.

By putting x1 = b/a, x2 = c/a, x3 = d/a for these equalities, we have the

following lemma.

Lemma 2. Let (y1, y2, y3) be the image of (x1, x2, x3) by the map ϕ

ϕ(x1, x2, x3)

=

(

2
√

(1+x3)(x1+x2)

1+x1+x2+x3

,
2
√

(1+x2)(x1+x3)

1+x1+x2+x3

,
2
√

(1+x1)(x2+x3)

1+x1+x2+x3

)

.

Then µ satisfies the relation

(2)
4

1+x1+x2+x3

µ(1, x1, x2, x3) = µ(1, y1, y2, y3)

for 0 < x3 ≤ x2 ≤ x1 ≤ 1.
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§3. Integrable Pfaffian systems

In this section, we prepare some facts of integrable Pfaffian systems.

We consider a system of first-order partial differential equations with r un-

knowns f1, . . . , fr and n variables x1, . . . , xn in the following form

(3) df(x) = Ω(x)f(x),

where x = (x1, . . . , xn) is in an open set U , f(x) = t(f1(x), . . . , fr(x)) and

Ω(x) is an r × r matrix whose entries are 1-forms on U . The system (3) is

called a Pfaffian system on U and Ω(x) is called the connection matrix of

(3). If Ω(x) satisfies the integrability condition

dΩ(x) = Ω(x) ∧ Ω(x),

then the system (3) is integrable.

Fact 1. 1. The system (3) has exactly r linearly independent vector

valued solutions if and only if it is integrable.

2. If the system (3) is integrable, then there exists a unique solution f

around u ∈ U such that f(u) = p for a given initial vector p ∈ C
r.

Fact 2. For an integrable Pfaffian system (3) and an invertible r × r

functional matrix P (x) on U , the vector valued function g(x) = P (x)f(x)

satisfies the Pfaffian system

dg(x) = [P (x)Ω(x)P (x)−1 + dP (x)P (x)−1]g(x).

Let f0 be a function of n-variables (y1, . . . , yn) on an open set V . We

assume that the vector valued function

f(y) = t

(

f0(y),
∂f0

∂y1

(y), . . . ,
∂f0

∂yn
(y)

)

satisfies an integrable Pfaffian system

df(y) = Ω(y)f(y)

on V . Let η be a map from an open set U to V given as

η : U ∋ x = (x1, . . . , xn) 7−→ y = (η1(x), . . . , ηn(x)) ∈ V,
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and let J be the Jacobi matrix of η:

J =

(

∂ηi

∂xj

)

ij

=







∂η1

∂x1
. . . ∂η1

∂xn

... · · · ...
∂ηn

∂x1
. . . ∂ηn

∂xn






.

Fact 3. If det(J) 6= 0 on U then the function h0(x) = f0(η(x)) satis-

fies

dh(x) = [J̃Ω(x)J̃−1 + dJ̃J̃−1]h(x),

where

h(x) = t

(

h0(x),
∂h0

∂x1

(x), . . . ,
∂h0

∂xn
(x)

)

, J̃ =

(

1
tJ

)

,

and Ω(x) is the pull-back of Ω(y) under the map η.

§4. Lauricella’s hypergeometric function FD

Lauricella’s hypergeometric function FD of m-variables z1, . . . , zm with

parameters α, β1, . . . , βm, γ is defined as

FD(α, β, γ; z) =

∞
∑

n1,...,nm≥0

(α,
∑m

j=1
nj)
∏m

j=1
(βj , nj)

(γ,
∑m

j=1
nj)
∏m

j=1
(1, nj)

m
∏

j=1

z
nj

j ,

where z = (z1, . . . , zm) satisfies |zj | < 1 (j = 1, . . . ,m), β = (β1, . . . , βm),

γ 6= 0,−1,−2, . . . and (α, n) = α(α + 1) · · · (α + n − 1) = Γ (α + n)/Γ (α).

This function admits the integral representation:

FD(α, β, γ; z) =
Γ (γ)

Γ (α)Γ (γ − α)

∫

1

0

tα(1 − t)γ−α
m
∏

j=1

(1 − zjt)
−βj

dt

t(1 − t)
.

When m = 1, FD(α, β, γ; z) coincides with the Gauss hypergeometric func-

tion F (α, β, γ; z). We consider FD(α, β1, β2, β3, γ; z1, z2, z3) of three vari-

ables.

Fact 4. The function FD(α, β, γ; z) of three variables satisfies the in-

tegrable Pfaffian system given as

df =
∑

1≤i<j≤5

Aijd log(zi − zj)f,
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where f = t(f0, f1, f2, f3), f0 = FD(α, β, γ; z), fi = zi
∂f0

∂zi
(i = 1, 2, 3),

z4 = 0, z5 = 1 and

A12 =









0 0 0 0
0 −β2 β1 0
0 β2 −β1 0
0 0 0 0









, A14 =









0 1 0 0
0 1 + β2 + β3 − γ 0 0
0 −β2 0 0
0 −β3 0 0









,

A13 =









0 0 0 0
0 −β3 0 β1

0 0 0 0
0 β3 0 −β1









, A24 =









0 0 1 0
0 0 −β1 0
0 0 1 + β1 + β3 − γ 0
0 0 −β3 0









,

A23 =









0 0 0 0
0 0 0 0
0 0 −β3 β2

0 0 β3 −β2









, A34 =









0 0 0 1
0 0 0 −β1

0 0 0 −β2

0 0 0 1 + β1 + β2 − γ









,

A15 =









0 0 0 0
−αβ1 γ − α − β1 − 1 −β1 −β1

0 0 0 0
0 0 0 0









,

A25 =









0 0 0 0
0 0 0 0

−αβ2 −β2 γ − α − β2 − 1 −β2

0 0 0 0









,

A35 =









0 0 0 0
0 0 0 0
0 0 0 0

−αβ3 −β3 −β3 γ − α − β3 − 1









.

Remark 2. The Aij and Ai,n+1 in the proof of Proposition 9.1.4 in

[IKSY] are wrong. Professor K. Ohara informed us of the correct Pfaffian

system given by the system [O].

§5. Main theorem

Theorem 1. For any numbers x1, x2, x3 satisfying 0 < x3 ≤ x2 ≤
x1 ≤ 1, we have

1

µ(1, x1, x2, x3)
= FD

(1

4
,
1

4
,
1

4
,
1

4
, 1; 1 − x2

1, 1 − x2
2, 1 − x2

3

)2

,
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where µ(1, x1, x2, x3) is the common limit of the quadruple sequence (1) with

initial (1, x1, x2, x3) and FD is Lauricella’s hypergeometric function.

We put

F (z1, z2, z3) = FD

(1

4
,
1

4
,
1

4
,
1

4
, 1; z1, z2, z3

)

.

Proposition 1. The function F satisfies

1+x1+x2+x3

4
F (1 − x2

1, 1 − x2
2, 1 − x2

3)
2 = F (1 − y2

1, 1 − y2
2 , 1 − y2

3)
2

= F

(

(

1−x1−x2+x3

1+x1+x2+x3

)2

,

(

1−x1+x2−x3

1+x1+x2+x3

)2

,

(

1+x1−x2−x3

1+x1+x2+x3

)2
)2

,

where (y1, y2, y3) = ϕ(x1, x2, x3) is defined in Lemma 2.

Proof. Put

(ξ1, ξ2, ξ3) =

(

1−x1−x2+x3

1+x1+x2+x3

,
1−x1+x2−x3

1+x1+x2+x3

,
1+x1−x2−x3

1+x1+x2+x3

)

.

Then we have

(x1, x2, x3) =

(

1−ξ1−ξ2+ξ3

1+ξ1+ξ2+ξ3

,
1−ξ1+ξ2−ξ3

1+ξ1+ξ2+ξ3

,
1+ξ1−ξ2−ξ3

1+ξ1+ξ2+ξ3

)

,

1+x1+x2+x3

4
=

1

1+ξ1+ξ2+ξ3

,

(1 − x2
1, 1 − x2

2, 1 − x2
3)

=

(

4(1+ξ3)(ξ1+ξ2)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ2)(ξ1+ξ3)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ1)(ξ2+ξ3)

(1+ξ1+ξ2+ξ3)2

)

.

Thus the equality in Proposition 1 is equivalent to
√

1+ξ1+ξ2+ξ3F (ξ2
1 , ξ

2
2 , ξ2

3)

= F

(

4(1+ξ3)(ξ1+ξ2)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ2)(ξ1+ξ3)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ1)(ξ2+ξ3)

(1+ξ1+ξ2+ξ3)2

)

for 0 ≤ ξ1 ≤ ξ2 ≤ ξ3 < 1. We show that the Pfaffian systems obtained by

the functions in the both sides of the above equality coincide.

Let Ω(x) be the connection 1-form in Fact 4 for α = β1 = β2 = β3 = 1/4

and γ = 1. Fact 2 implies that the vector valued function

g(x) = t

(

F,
∂F

∂x1

,
∂F

∂x2

,
∂F

∂x3

)
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satisfies the Pfaffian system dg = Ω1(x)g, where

Ω1(x) = PΩ(x)P−1 + dPP−1,

P = diag
(

1,
1

x1

,
1

x2

,
1

x3

)

=









1
1

x1
1

x2
1

x3









.

The vector valued function

h(ξ) = t

(

h0,
∂h0

∂ξ1

,
∂h0

∂ξ2

,
∂h0

∂ξ3

)

for

h0(ξ1, ξ2, ξ3) =
√

1 + ξ1 + ξ2 + ξ3F (ξ2
1 , ξ2

2 , ξ
2
3)

satisfies h(0, 0, 0) = t(1, 1/2, 1/2, 1/2) and the Pfaffian system dh = Ω2(ξ)h,

where

Ω2(ξ) = Q[J1Ω1(ξ)J
−1

1
+ dJ1J

−1

1
]Q−1 + dQQ−1, J1 = diag(1, 2ξ1, 2ξ2, 2ξ3),

Q =











ζ
1

2ζ
ζ

1

2ζ
ζ

1

2ζ
ζ











, ζ =
√

1 + ξ1 + ξ2 + ξ3,

and Ω1(ξ) is the pull-back of Ω1(x) under the map

(ξ1, ξ2, ξ3) 7−→ (x1, x2, x3) = (ξ2
1 , ξ

2
2 , ξ2

3).

On the other hand, the vector valued function

h(x) = t

(

h0,
∂h0

∂ξ1

,
∂h0

∂ξ2

,
∂h0

∂ξ3

)

for

h0(ξ1, ξ2, ξ3) = F

(

4(1+ξ3)(ξ1+ξ2)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ2)(ξ1+ξ3)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ1)(ξ2+ξ3)

(1+ξ1+ξ2+ξ3)2

)

satisfies h(0, 0, 0) = t(1, 1/2, 1/2, 1/2) and the Pfaffian system dh = Ω3(ξ)h,

where

Ω3(ξ) = J2Ω
′
1(ξ)J

−1
2

+ dJ2J
−1
2

, J2 =

(

1
tJ

)

,
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Ω ′
1(ξ) is the pull-back of Ω1(x) under the map

ϕ′ : (ξ1, ξ2, ξ3) 7→
(

4(1+ξ3)(ξ1+ξ2)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ2)(ξ1+ξ3)

(1+ξ1+ξ2+ξ3)2
,
4(1+ξ1)(ξ2+ξ3)

(1+ξ1+ξ2+ξ3)2

)

,

and J is the Jacobi matrix of the map ϕ′. By a straight forward calculation,

we can show that Ω2(ξ) = Ω3(ξ). Thus we have the required equality around

ξ = (0, 0, 0).

Proof of Theorem 1. Consider the quadruple sequence (1) with initial

(a0, b0, c0, d0) = (1, x1, x2, x3). Lemma 2 and Proposition 1 imply that

µ(1, x1, x2, x3)F (1 − x2
1, 1 − x2

2, 1 − x2
3)

2

= µ(1, y1, y2, y3)F (1 − y2
1 , 1 − y2

2, 1 − y2
3)

2.

Thus we have

µ(1, x1, x2, x3)F (1 − x2
1, 1 − x2

2, 1 − x2
3)

2

= µ
(

1,
bn

an
,
cn

an
,
dn

an

)

F
(

1 −
( bn

an

)2

, 1 −
( cn

an

)2

, 1 −
(dn

an

)2)2

for any n ∈ N. Since

lim
n→∞

bn

an
= lim

n→∞

cn

an
= lim

n→∞

dn

an
= 1,

and µ(1, 1, 1, 1) = F (0, 0, 0) = 1, we have

µ(1, x1, x2, x3)F (1 − x2
1, 1 − x2

2, 1 − x2
3)

2

= lim
n→∞

µ
(

1,
bn

an
,
cn

an
,
dn

an

)

F
(

1 −
( bn

an

)2

, 1 −
( cn

an

)2

, 1 −
(dn

an

)2)2

= µ(1, 1, 1, 1)F (0, 0, 0)2 = 1,

which is the desired equality.

Corollary 1. For 1 > x1 ≥ x2 ≥ x3 ≥ 0, we have

F (1 − x2
1, 1 − x2

2, 1 − x2
3) =

∞
∏

n=0

√

an

an+1

,

where we set the initial of the quadruple sequence (1) as (a0, b0, c0, d0) =

(1, x1, x2, x3).
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Proof. By Proposition 1, we have

F (1 − x2
1, 1 − x2

2, 1 − x2
3)

=
2√

1+x1+x2+x3

F (1 − y2
1, 1 − y2

2, 1 − y2
3)

=

√

4a0

a0+b0+c0+d0

F

(

1 − b2
1

a2
1

, 1 − c2
1

a2
1

, 1 − d2
1

a2
1

)

=

√

a0

a1

√

a1

a2

F

(

1 − b2
2

a2
2

, 1 − c2
2

a2
2

, 1 − d2
2

a2
2

)

=

(

n−1
∏

i=0

√

ai

ai+1

)

F

(

1 − b2
n

a2
n

, 1 − c2
n

a2
n

, 1 − d2
n

a2
n

)

,

which implies this corollary.

§6. A specialization

For the case b = c = d, the quadruple sequence reduces to

an+1 =
an + 3bn

4
, bn+1 = cn+1 = dn+1 =

√

bn
an + bn

2
,

which is studied in [BB]. It is shown that the reciprocal of the common limit

of the double sequences is F
(

1

4
, 3

4
, 1; 1−x2

)2
, where x = b/a and F (α, β, γ; z)

is the Gauss hypergeometric function. By our main theorem, we have

FD

(1

4
,
1

4
,
1

4
,
1

4
, 1; 1 − x2, 1 − x2, 1 − x2

)2

=
1

µ(1, x, x, x)
=

1

M4(1, x)
= F

(1

4
,
3

4
, 1; 1 − x2

)2

.

Note that the above reduction of FD to F can be easily obtained by the

integral representation of FD.
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