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Abstract

As generalizations of inverse semigroups, Ehresmann semigroups are introduced by Lawson and
investigated by many authors extensively in the literature. In particular, Lawson has proved that
the category of Ehresmann semigroups and admissible morphisms is isomorphic to the category of
Ehresmann categories and strongly ordered functors, which generalizes the well-known Ehresmann–
Schein–Nambooripad (ESN) theorem for inverse semigroups. From a varietal perspective, Ehresmann
semigroups are derived from reducts of inverse semigroups. In this paper, inspired by the approach
of Jones [‘A common framework for restriction semigroups and regular ∗-semigroups’, J. Pure Appl.
Algebra 216 (2012), 618–632], Ehresmann semigroups are extended from a varietal perspective to
pseudo-Ehresmann semigroups derived instead from reducts of regular semigroups with a multiplicative
inverse transversal. Furthermore, motivated by the method used by Gould and Wang [‘Beyond orthodox
semigroups’, J. Algebra 368 (2012), 209–230], we introduce the notion of inductive pseudocategories
over admissible quadruples by which pseudo-Ehresmann semigroups are described. More precisely, we
show that the category of pseudo-Ehresmann semigroups and (2,1,1,1)-morphisms is isomorphic to the
category of inductive pseudocategories over admissible quadruples and pseudofunctors. Our work not
only generalizes the result of Lawson for Ehresmann semigroups but also produces a new approach to
characterize regular semigroups with a multiplicative inverse transversal.
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1. Introduction

Let S be a semigroup. We denote the set of all idempotents of S by E(S ) and the set
of all inverses of x ∈ S by V(x). Recall that

V(x) = {a ∈ S | xax = x, axa = a}

for all x ∈ S . A semigroup S is called regular if V(x) , ∅ for any x ∈ S , and a
regular semigroup S is called inverse if E(S ) is a commutative subsemigroup (that is,
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a subsemilattice) of S , or, equivalently, the cardinal of V(x) is equal to 1 for all x ∈ S .
On inverse semigroups, we have the following Ehresmann–Schein–Nambooripad or
ESN theorem, due to its varied authorship.

Theorem 1.1 (ESN theorem; see Lawson [21]). The category of inverse semigroups
and morphisms is isomorphic to the category of inductive groupoids and inductive
functors.

The above ESN theorem have been extended in various directions by many authors.
Nambooripad [23] introduced regular biordered sets and obtained a generalization
of Theorem 1.1 from a semilattice to a regular biordered set which established
the structure of regular semigroups. Meanwhile, Meakin [22] characterized regular
semigroups by using structure mappings. In 1988, Nambooripad’s result was extended
by Armstrong [1] from regular to concordant semigroups. On the other hand,
Theorem 1.1 was generalized in a different direction to Ehresmann semigroups by
Lawson [20] (see section 2 for a definition). Here is Lawson’s result on Ehresmann
semigroups.

Theorem 1.2 (Lawson [20]). The category of Ehresmann semigroups and admissible
morphisms is isomorphic to the category of Ehresmann categories and strongly
ordered functors.

It is worth remarking that the class of Ehresmann semigroups and its subclasses
are investigated extensively in the literature by many authors (see [6, 8, 9, 18,
19], for example). In particular, Jones [18] provided a common framework for
Ehresmann semigroups and regular *-semigroups from a varietal perspective. More
recent developments in this area can be found in good survey articles by Gould [10, 11]
and Hollings [14–16].

The results of Lawson and Armstrong have been further generalized in recent
years by several authors. In particular, by introducing the notion of generalized
categories over bands, Gould–Wang [12] went a step further to extend Lawson’s result
on Ehresmann semigroups to the class of weakly B-orthodox semigroups which extend
the class of Ehresmann semigroups by replacing semilattices by bands. In 2016, using
the notion of so-called regular biordered sets categories over regular biordered sets,
Wang [25] generalized Armstrong’s work to weakly U-regular semigroups, which is
a wide class containing all regular semigroups and all abundant semigroups with a
regular biordered set of idempotents.

On the other hand, Blyth–McFadden [5] introduced the concept of inverse
transversals for regular semigroups. A subsemigroup S ◦ of a regular semigroup
S is called an inverse transversal of S if V(x) ∩ S ◦ contains exactly one element
for all x ∈ S . Clearly, in this case, S ◦ is an inverse subsemigroup of S . Since
an inverse semigroup can be regarded as an inverse transversal of itself, the
class of regular semigroups with inverse transversals contains the class of inverse
semigroups as a proper subclass. Regular semigroups with inverse transversals are
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investigated extensively by many authors (see [2–4, 24] and their references) and some
generalizations of inverse transversals are proposed (see [7, 13, 26], for example).

Inspired by the approach used in Jones [18], in this paper, a common framework,
termed pseudo-Ehresmann semigroups, for Ehresmann semigroups and regular
semigroups with a multiplicative inverse transversal is introduced from a varietal
perspective and some properties of this class of semigroups are explored. Moreover,
motivated by the method in Gould–Wang [12], we introduce pseudocategories over
admissible quadruples and extend Lawson’s result on Ehresmann semigroups to
pseudo-Ehresmann semigroups by using pseudocategories; see Theorem 5.7 below.
Our work also produces a new approach to characterize regular semigroups with a
multiplicative inverse transversal. It is worth pointing out that the class of pseudo-
Ehresmann semigroups considered in this paper is different from the class of weakly
B-orthodox semigroups studied in Gould–Wang [12] (see Example 2.8 in this paper).

2. Pseudo-Ehresmann semigroups

In this section, after giving some preliminaries on Ehresmann semigroups and
inverse transversals, we introduce pseudo-Ehresmann semigroups and consider
some basic properties of this class of semigroups. Firstly, we consider Ehresmann
semigroups. Let S be a semigroup and let E ⊆ E(S ). The relation R̃E is defined on S
by the rule that for any x, y ∈ S , we have xR̃Ey if

ex = x if and only if ey = y for all e ∈ E.

Dually, we have the relation L̃E on S . Observe that both R̃E and L̃E are equivalences
on S but R̃E (respectively, L̃E) may not be a left congruence (respectively, a right
congruence). Recall that a band is a semigroup in which every element is idempotent
and a semilattice is a commutative band. From Gould–Wang [12], (S , E) is called a
weakly E-orthodox semigroup if:

(i) E is a subband of S ;
(ii) every R̃E-class contains an element of E and R̃E is a left congruence; and
(iii) every L̃E-class contains an element of E and L̃E is a right congruence.

If this is the case, E is called the distinguished band of S . In view of Lawson [20], a
weakly E-orthodox semigroup (S , E) is called E-Ehresmann if E is a subsemilattice
of S and, in this case, E is called the distinguished semilattice of S . We say that
a semigroup S is Ehresmann in the subsequent work if (S , E) is an E-Ehresmann
semigroup for some E ⊆ E(S ). From Lemma 2.2 and its dual in Gould [11], we have
the following characterization of Ehresmann semigroups from a varietal perspective.

Lemma 2.1. A semigroup (S , ·) is Ehresmann if and only if there are two unary
operations ‘+’ and ‘∗’ on S such that the following identities hold.

x+x = x, x+y+ = y+x+, (x+y+)+ = x+y+, (xy)+ = (xy+)+;
xx∗ = x, x∗y∗ = y∗x∗, (x∗y∗)∗ = x∗y∗, (xy)∗ = (x∗y)∗; (x+)∗ = x+, (x∗)+ = x∗.
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In this case, S is an Ehresmann semigroup with distinguished semilattice {x+ | x ∈ S }
(or, equivalently, {x∗ | x ∈ S }), and we also call S = (S , ·, +, ∗) an Ehresmann
semigroup.

Now we consider regular semigroups with an inverse transversal. Recall that an
inverse subsemigroup S ◦ of a regular semigroup S is called an inverse transversal of
S if every element x ∈ S has exactly one inverse in S ◦. In this case, for any x ∈ S , we
use x◦ to denote the unique inverse of x in S ◦ and let x◦◦ = (x◦)◦. Observe that

x◦◦◦ = x◦, S ◦ = {x◦ | x ∈ S } and x◦◦x◦, x◦x◦◦ ∈ E(S ◦).

On inverse transversals of regular semigroups, we have the following known results.

Lemma 2.2 (Blyth–Almeida Santos [4]). Let S be a regular semigroup with an inverse
transversal S ◦. Then:

(i) (xy)◦ = y◦(x◦xyy◦)◦x◦ for all x, y ∈ S ; and
(ii) (xy)◦ = y◦x◦ for all x, y ∈ S with {x, y} ∩ S ◦ , ∅.

Here we are only interested in the case when S ◦ is multiplicative in the sense that

x◦xyy◦ ∈ E(S ◦) for all x, y ∈ S .

For this kind of inverse transversal, we have the following lemma.

Lemma 2.3. If S ◦ is a multiplicative inverse transversal of a regular semigroup S , then
xyz = xy◦◦z for all x, z ∈ S ◦ and y ∈ S .

Proof. Since S ◦ is multiplicative, it follows that

xyz = x(x◦xyy◦)y◦◦(y◦yzz◦)z ∈ S ◦,

which implies that xyz = (xyz)◦◦ = xy◦◦z by using Lemma 2.2(ii). �

Let S be a regular semigroup with an inverse transversal S ◦. Then we can consider
the induced triunary semigroup (S , ·,+, ∗,−), where

x+ = xx◦, x∗ = x◦x and x = x◦◦.

Proposition 2.4. Let S be a regular semigroup with a multiplicative inverse transversal
S ◦. The triunary semigroup S = (S , ·,+, ∗,−) satisfies the identities given in Table 1.

Proof. By symmetry, we only need to show (1)–(10). Identity (1) is equivalent to the
equality (xx◦)x = x. Using Lemma 2.3,

x+y+x+ = xx◦yy◦xx◦ = xx◦y◦◦y◦x◦◦x◦

= xx◦x◦◦x◦y◦◦y◦ = xx◦y◦◦y◦ = xx◦yy◦ = x+y+,

which gives (2). Using Lemma 2.3 and Lemma 2.2(ii),

(x+y+)+ = x+y+(x+y+)◦ = (xx◦yy◦)(xx◦yy◦)◦

= (xx◦y◦◦y◦)(xx◦y◦◦y◦)◦ = xx◦y◦◦y◦y◦◦y◦x◦◦x◦

= xx◦y◦◦y◦x◦◦x◦ = xx◦x◦◦x◦y◦◦y◦ = xx◦y◦◦y◦ = xx◦yy◦ = x+y+.
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Table 1. Pseudo-Ehresmann conditions.

(1) x+x = x (1)′ xx∗ = x
(2) x+y+x+ = x+y+ (2)′ x∗y∗x∗ = y∗x∗

(3) (x+y+)+ = x+y+ (3)′ (x∗y∗)∗ = x∗y∗

(4) (xy)+ = (xy+)+ (4)′ (xy)∗ = (x∗y)∗

(5) (x+)z = x+ (5)′ (x∗)+ = x∗

(6) x+
= x+ (6)′ x∗ = x∗

(7) x = x+xx∗ (8) x = x+xx∗

(9) (x∗y+)+ = x∗y+ (10) (x∗y+)∗ = x∗y+

This shows (3). Moreover, using Lemma 2.2(ii) and Lemma 2.3 again,

(xy+)+ = (xyy◦)(xyy◦)◦ = xyy◦y◦◦(xy)◦ = xyy◦y(xy)◦ = xy(xy)◦ = (xy)+,

which shows that (4) is true. On the other hand, by Lemma 2.2(ii),

(x+)∗ = (xx◦)◦(xx◦) = x◦◦x◦xx◦ = x◦◦x◦ = x◦◦x◦◦◦ = x+

and
x+ = (xx◦)◦◦ = x◦◦x◦ = x◦◦(x◦◦)◦ = x+.

This deduces the identities (5) and (6). The identity (7) is equivalent to the statement
x = (xx◦)x◦◦(x◦x) and (8) is equivalent to the statement x◦◦ = (x◦◦x◦)x(x◦x◦◦). The
identities (9) and (10) follow from the fact that S ◦ is multiplicative. �

We shall term any triunary semigroup S = (S , ·,+, ∗,−) that satisfies the identities in
Table 1 a pseudo-Ehresmann semigroup. By Proposition 2.4, any regular semigroup S
with a multiplicative inverse transversal S ◦ induces the pseudo-Ehresmann semigroup
S = (S , ·,+, ∗,−) by setting x+ = xx◦, x∗ = x◦x and x = x◦◦. The following example
gives a very special case of this kind of pseudo-Ehresmann semigroups.

Example 2.5. Let S be a rectangular band. Fix an element u in S . Consider the triunary
semigroup S = (S , ·,+, ∗,−) where

x+ = xu, x∗ = ux, x = u for all x ∈ S .

Then it is routine to check that the identities in Table 1 are satisfied and so S =

(S , ·,+, ∗,−) is a pseudo-Ehresmann semigroup. In fact, {u} is a multiplicative inverse
transversal of S .

Example 2.6. Any Ehresmann semigroup (S , ·,+, ∗) also induces a pseudo-Ehresmann
semigroup, which justifies our term ‘pseudo-Ehresmann semigroups’. In fact, for an
Ehresmann semigroup (S , ·,+, ∗), we define the third unary operation ‘−’ on S by x = x
for all x ∈ S . Then we have triunary semigroup S = (S , ·,+, ∗,−) and it is easy to see
that the identities in Table 1 are all satisfied by Lemma 2.1.

Since a rectangular band having more than one element must not be an
Ehresmann semigroup, the class of pseudo-Ehresmann semigroups contains the class
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of Ehresmann semigroups and the class of rectangular bands as proper subclasses by
the above two examples. We observe that a pseudo-Ehresmann semigroup which is
also regular may not contain any inverse transversal. In fact, any monoid S with the
identity 1 is always a (pseudo-)Ehresmann semigroup by setting

x+ = x∗ = 1 and x = x for all x ∈ S .

Obviously, a regular monoid may not contain any inverse transversal. Here is an
example.

Example 2.7. Let M = {1, b, c, x} (taken from [17, Exercise 10, Ch. VI]) with the
multiplication

M 1 b c x
1 1 b c x
b b b b b
c c c c c
x x c b 1.

Then M is monoid and

E(M) = {1, b, c}, V(1) = {1}, V(b) = {b, c} = V(c), V(x) = {x}.

It is easy to check that M contains no inverse transversal.

The following example shows that there is a pseudo-Ehresmann semigroup S which
is not a weakly E-orthodox semigroup for any E ⊆ E(S ).

Example 2.8. Consider the semigroup S with the Cayley table

S 0 e f g a
0 0 0 0 0 0
e 0 e f e f
f 0 e f 0 0
g 0 g a g a
a 0 g a 0 0.

In view of the fact that E(S ) = {0, e, f , g}, it is routine to check that S is not a
weakly E-orthodox semigroup for any E ⊆ E(S ). However, we can see that {0, e}
is a multiplicative inverse transversal of S and so S is a pseudo-Ehresmann semigroup
by Proposition 2.4.

Now, we consider some properties associated with pseudo-Ehresmann semigroups
which will be used in the next sections. Let S = (S , ·,+, ∗,−) be a pseudo-Ehresmann
semigroup. Denote

IS = {x+ | x ∈ S }, ΛS = {x∗ | x ∈ S }, E◦S = {x+
| x ∈ S }.

Recall that a band B is left normal (respectively, right normal) if e f g = eg f
(respectively, e f g = f eg) for all e, f , g ∈ B.
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Lemma 2.9. Let S = (S , ·,+, ∗,−) be a pseudo-Ehresmann semigroup.

(a) e+ = e, e∗ = e and f ∗ = f , f + = f for all e ∈ IS and f ∈ ΛS, respectively.
(b) E◦S = {x∗ | x ∈ S } = IS ∩ΛS, and so E◦S is a subsemilattice of S and x∗y+ ∈ E◦S for

all x, y ∈ S (or, equivalently, f g ∈ E◦S for all f ∈ ΛS and g ∈ IS).
(c) (xy)+ = x+(xx∗y+)+ and (xy)∗ = (x∗y+y)∗y∗.
(d) x+Lx+ and x∗Rx∗.
(e) IS is a left normal band and ΛS is a right normal band, respectively.

Proof. (a) Using identities (1), (4) and (3) in Table 1,

x+ = (x+x)+ = (x+x+)+ = x+x+

and so x+ ∈ E(S ). Take e ∈ IS. Then e = x+ for some x ∈ S . This implies that

e+ = (x+)+ = (x+x+)+ = x+x+ = x+

by x+ ∈ E(S ) and the identity (3). Moreover,

e∗ = (x+)∗ = x+
= x+ = e

by the identities (5) and (6). Dually, f ∗ = f and f + = f for all f ∈ ΛS.
(b) By identity (5), x+

= (x+)∗ ∈ IS ∩ ΛS for all x ∈ S . Now let u = x+ ∈ IS ∩ ΛS
for some x ∈ S . Using item (a) and the identity (5), we have u = u∗ = (x+)∗ = x+

∈ E◦S.
Thus E◦S = IS ∩ ΛS. Dually, {x∗ | x ∈ S } = IS ∩ ΛS. By the proof of item (a) in the
current lemma, we can see that every element in IS is idempotent. Moreover, by the
identity (3), x+y+ = (x+y+)+ ∈ IS for all x+, y+ ∈ IS. So IS is a subband of S . Dually,
ΛS is also a subband of S . In view of the identities (2) and (2)′, E◦S is a semilattice.
Finally, the identities (9) and (10) give that x∗y+ ∈ IS ∩ ΛS = E◦S for all x, y ∈ S .

(c) Using (4), (7), (4) and (3) in Table 1 one by one,

(xy)+ = (xy+)+ = (x+xx∗y+)+ = (x+(x x∗y+)+)+ = x+(x x∗y+)+.

Dually, (xy)∗ = (x∗y+y)∗y∗.
(d) Using identities (7), (4), (3), (4), (5)′ and (1)′ in Table I one by one, we have

x+ = (x+xx∗)+ = (x+(xx∗)+)+

= x+(xx∗)+ = x+(x(x∗)+)+ = x+(x x∗)+ = x+x+.

On the other hand, in view of identities (8), (4), (3) and the item (c) of this lemma,

x+
= (x+xx∗)+ = (x+(xx∗)+)+ = x+(xx∗)+ = x+(x+(xx∗)+),

which implies that

x+x+ = (x+x+(xx∗)+)x+ = x+x+(xx∗)+ = x+

by identity (2). This shows that x+Lx+. Dually, x∗Rx∗.
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(e) By the proof of item (b) in the current lemma, IS is a subband of S . Let x, y, z ∈ S .
By the identity (5), x+

= (x+)∗ and hence (x+)∗y+, (x+)∗z+ ∈ E◦S by item (b), and so
x+y+, x+z+ ∈ E◦S. By item (d), the identity (2) and the fact that E◦S is a semilattice,

x+y+z+ = x+(x+y+)z+ = x+(x+y+x+)z+

= x+(x+y+)(x+z+) = x+(x+z+)(x+y+) = x+z+y+,

which yields that IS is a left normal band. Dually, ΛS is a right normal band. �

The following result gives a condition under which a pseudo-Ehresmann semigroup
becomes an Ehresmann semigroup.

Proposition 2.10. Let S = (S , ·, +, ∗, −) be a pseudo-Ehresmann semigroup. Then
(S , ·,+, ∗) is an Ehresmann semigroup if and only if x = x for all x ∈ S .

Proof. If (S , ·,+, ∗) is an Ehresmann semigroup and x ∈ S , then x+ = (x+)∗ = x+ by
Lemma 2.1 and the identity (5) in Table 1. Dually, x∗ = x∗. This implies that

x = x+xx∗ = x+xx∗ = x

by the identities (8), (1) and (1)′. Conversely, assume that x = x for all x ∈ S . In view
of Lemma 2.1 and the identities in Table 1, we can see that (S , ·,+, ∗) is an Ehresmann
semigroup. �

The following proposition shows that every pseudo-Ehresmann semigroup contains
an Ehresmann subsemigroup.

Proposition 2.11. Let S = (S , ·,+, ∗,−) be a pseudo-Ehresmann semigroup. Then

S = {x | x ∈ S }

is a (2, 1, 1, 1)-subalgebra of S . In fact, (S , ·,+, ∗) is an Ehresmann semigroup with
distinguished semilattice E◦S.

Proof. We assert that

x = x, xy = xx∗y+y for all x, y ∈ S . (2.1)

In fact, we have x+
Lx

+
and x∗Rx

∗

by Lemma 2.9(d). In view of Lemma 2.9(b),
x+, x

+
, x∗, x

∗

are all in the semilattice E◦S, and this implies that x+
= x

+
and x∗ = x

∗

.
It follows that

x = x
+

x x
∗

= x+x x∗ = x

by the identities (8), (1) and (1)′. On the other hand, by Lemma 2.9(c), (d) and the
identity (4) in Table 1,

(xy)+ = x+(xx∗y+)+ = x+(xx∗y+y+)+ = x+(xx∗y+y)+.

Using the identities (5), (4)′, (10), (5) and (2) one by one, we obtain that

xy+
= ((xy)+)∗ = (x+(xx∗y+y)+)∗ = ((x+)∗(xx∗y+y)+)∗

= (x+)∗(xx∗y+y)+ = x+(xx∗y+y)+ = x+(xx∗y+y)+x+.
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Dually, xy∗ = y∗(xx∗y+y)∗y∗. Thus

xy = xy+xy xy∗ (by the identity (8) in Table 1)
= x+(xx∗y+y)+x+x+xx∗y+yy∗y∗(xx∗y+y)∗y∗ (by the identity (7) in Table 1)
= x+(xx∗y+y)+x+xx∗y+y y∗(xx∗y+y)∗y∗ (by Lemma 2.9(d))
= xx∗y+y. (by the identities (1) and (1)′).

Now let x, y ∈ S . By (2.1) and the identities (1) and (1)′,

x y = x x∗y+y = x x∗y+y = x y.

This yields that S is closed with respect to the binary operation. Moreover, by the
identities (6) and (6)′, x+

= x+ ∈ S and x∗ = x∗ ∈ S for all x ∈ S . This shows that S is
closed under ‘+’ and ‘∗’. From (2.1), S is also closed under ‘−’. Thus S = {x | x ∈ S }
is a (2, 1, 1, 1)-subalgebra of S .

To see the remainder part of this proposition, let x ∈ S for some x ∈ S . By identity
(5) in Table 1 and (2.1), (x+)∗ = x

+
= x+. Dually, (x∗)+ = x

∗

= x∗. In view of the
identities (1)–(4) in Table 1 and their duals, the result follows from Lemma 2.1 and the
first part of this proposition. �

As pointed out in Example 2.7, a pseudo-Ehresmann semigroup being regular may
contain no inverse transversal. However, we have the following proposition.

Proposition 2.12. Let S = (S , ·,+, ∗,−) be a pseudo-Ehresmann semigroup. If there
exists x′ ∈ S such that xx′ = x+ and x′x = x∗ for all x ∈ S , then S = {x | x ∈ S }
is a multiplicative inverse transversal of (S , ·) and induces the pseudo-Ehresmann
semigroup S.

Proof. By Proposition 2.11, S is a subsemigroup of S with E◦S ⊆ S . In view of the
hypothesis and the identity (1) in Table 1, xx′x = x+x = x for all x ∈ S . This implies
that S is regular and

x′xx′ ∈ V(x), x(x′xx′) = xx′ = x+, (x′xx′)x = x′x = x∗

for all x ∈ S . Thus there exists x◦ ∈ V(x) such that

xx◦ = x+ and x◦x = x∗ for all x ∈ S . (2.2)

We observe that the above x◦ is unique. In fact, if y ∈ V(x) and xy = x+, yx = x∗, then

y = yxy = x∗y = x◦xy = x◦x+ = x◦xx◦ = x◦.

Now let x ∈ S and x◦ be the element satisfying (2.2) and let x◦◦ = (x◦)◦. By
Lemma 2.9(d), x+Lx+ and x∗Rx∗. Therefore, we have the following diagram.

x x+

x∗ x◦ (x◦)+ x∗

(x◦)∗ x◦◦

x+
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This implies that x∗Rx◦Lx+ and hence

x◦ = x∗x◦x+
= (x∗(x◦)+)x◦((x◦)∗x+) ∈ E◦SS E◦S ⊆ S

by the identity (7), Lemma 2.9(b) and the fact that S is a subsemigroup with E◦S ⊆ S .
Thus, every element x in S has an inverse x◦ in S . Furthermore, since (x◦)∗, x+

=

(x+)∗ ∈ ΛS by the identity (5) and ΛS is a right normal band (by Lemma 2.9(e)),
we have (x◦)∗ = x+ by the fact that (x◦)∗Lx+. Dually, (x◦)+ = x∗. This implies that
x+

= (x◦)∗Rx◦◦L(x◦)+ = x∗ and hence

x◦◦ = x+x◦◦x∗ = x+x+x◦◦x∗x∗ = x+xx◦x◦◦x◦xx∗ = x+xx∗ = x (2.3)

by the identity (8) in Table 1.
Let y ∈ S with y ∈ V(x). Since y∗x+, x∗y+

∈ E◦S and x+y∗ ∈ IS, y+x∗ ∈ ΛS by
Lemma 2.9(b) and (e),

x x+ xy = x+y∗

x∗ x◦ x∗y+

y+x∗ = yx y y+

y∗x+ y∗ y◦

Since IS is a left normal band and x+ ∈ IS, xy = x+y∗ ∈ IS, it follows that x+ = x+y∗ = xy.
Dually, yx = y+x∗ = x∗. This implies that x◦Hy and so x◦ = y by the fact that
x◦, y ∈ V(x). Thus x◦ is the unique inverse of x in S . Moreover,

x+ = xx◦, x∗ = x◦x, x = x◦◦, x◦xyy◦ = x∗y+ ∈ E◦S ⊆ E(S )

by (2.2), (2.3) and Lemma 2.9(b). Therefore, S = (S , ·,+, ∗,−) is exactly the pseudo-
Ehresmann semigroup induced by the multiplicative inverse transversal S of (S , ·). �

To give more properties of pseudo-Ehresmann semigroups, we need the notion of
admissible quadruples which is defined in the text [26]. Let I (respectively, Λ) be a
left normal band (respectively, a right normal band), let E◦ = I ∩Λ be a subsemilattice
of I and Λ, and let ‘�’ be a mapping

� : Λ × I → E◦, ( f , g) 7→ f � g.

The quadruple (I,Λ, E◦, �) is called admissible if, for all g ∈ I and f ∈ Λ, there exist
g◦, f ◦ ∈ E◦ such that gLg◦, fR f ◦ and, for all i ∈ E◦,

i( f � g) = (i f ) � g, ( f � g)i = f � (gi), f � i = f i, i � g = ig. (2.4)

Since E◦ is a subsemilattice, the elements g◦ and f ◦ above are uniquely determined by
g and f , respectively. In particular, i ∈ E◦ if and only if i◦ = i. Thus, ( f � g)◦ = f � g
for all f ∈ Λ and g ∈ I. By Lemma 2.9(b), (d) and (e), we can obtain the following
result easily.
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Lemma 2.13. Let S = (S , ·,+, ∗,−) be a pseudo-Ehresmann semigroup. Then

QS = (IS,ΛS, E◦S, �S)

forms an admissible quadruple, called the admissible quadruple of S, where

(x+)◦ = (x+)∗ = x+, (y∗)◦ = (y∗)+ = y∗, y∗ �S x+ = y∗x+

for all x+ ∈ IS and y∗ ∈ ΛS.

We say that ϕ = (ϕI , ϕΛ) is a morphism from an admissible quadruple Q1 =

(I1,Λ1, E◦1, �1) to an admissible quadruple Q2 = (I2,Λ2, E◦2, �2) if ϕI is a semigroup
morphism from I1 to I2 and ϕΛ is a semigroup morphism from Λ1 to Λ2 such that

ϕI |E◦1 = ϕΛ|E◦1 , E◦1ϕI ⊆ E◦2, ( f �1 g)ϕI = ( fϕΛ) �2 (gϕI)

for all f ∈ Λ1 and g ∈ I1. Observe that

g◦ϕI = (gϕI)◦ and f ◦ϕΛ = ( fϕΛ)◦ (2.5)

for all f ∈ Λ1 and g ∈ I1 in this case. Moreover, for all f ∈ Λ1 and g ∈ I1, we
always denote gϕI = gϕ, fϕΛ = fϕ in the subsequent work. For example, the equation
( f �1 g)ϕI = ( fϕΛ) �2 (gϕI) will be written as ( f �1 g)ϕ = ( fϕ) �2 (gϕ).

Let S = (S , ·,+, ∗,−) and T = (T, ·,+, ∗,−) be two pseudo-Ehresmann semigroups.
A mapping θ from S to T is called a (2,1,1,1)-morphism from S to T if θ preserves
‘·’, ‘+’, ‘∗’ and ‘−’, respectively. By Lemma 2.9, it is not difficult to check that the
following lemma is true.

Lemma 2.14. Let S = (S , ·,+, ∗,−) and T = (T, ·,+, ∗,−) be two pseudo-Ehresmann
semigroups and let θ be a (2,1,1,1)-morphism from S to T. Then θ induces a morphism
from (IS,ΛS, E◦S, �S) to (IT,ΛT, E◦T, �T).

To state our next observation, we need the notion of a category. The following
concept of categories is standard.

Definition 2.15. A category C consists of a class Ob(C) of objects, a class Mor(C)
of morphisms between objects and two assignments, d and r, from Mor(C) to Ob(C),
such that the following conditions hold.

(i) If A, B,C,D ∈ Ob(C), then there is a binary operation

MorC(A, B) ×MorC(B,C)→MorC(A,C), ( f , g) 7→ f ? g

called composition of morphisms such that if f ∈ MorC(A, B), g ∈ MorC(B,C)
and h ∈MorC(C,D), then ( f ? g) ? h = f ? (g ? h), where

MorC(A, B) = { f ∈Mor(C)|d( f ) = A, r( f ) = B}

for all A, B ∈ Ob(C).
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(ii) For each A ∈ Ob(C), there exists a local identity 1A such that 1A ? f = f and
g? 1A = g for all f ,g ∈Mor(C) with d( f ) = A = r(g). The class of local identities
of C is denoted by Co, that is to say, Co = {1A | A ∈ Ob(C)}.

It is routine to check that the following lemma is valid.

Lemma 2.16. The class of pseudo-Ehresmann semigroups together with (2,1,1,1)-
morphisms forms a category in the sense of Definition 2.15, denoted by PES.

In the remainder of this section, we shall recall some concepts and results on
the theory of category which are necessary in the discussion later. We first give the
definition of a functor. This is a structure preserving mapping between two categories,
which allows us to compare categories.

Definition 2.17. Let C and D be two categories. A functor F = (Φ,Ψ) from C to D is
a pair of maps

Φ : Ob(C)→ Ob(D), A 7→ AΦ; Ψ : Mor(C)→Mor(D), f 7→ f Ψ

satisfying the following conditions.

(i) Ψ maps an element of MorC(A, B) to MorD(AΦ, BΦ) for all A, B ∈Mor(C).
(ii) If f , g ∈Mor(C) and f ? g is defined in C, then f Ψ ? gΨ is defined in D and

( f ? g)Ψ = f Ψ ? gΨ.
(iii) For all A ∈ Ob(C), 1AΨ = 1AΦ.

As usual, if C and D are categories and F = (Φ,Ψ) is a functor from C to D, then
we denote AΦ and f Ψ by AF and fF for all A ∈ Ob(C) and f ∈Mor(C), respectively.

Definition 2.18. Let C and D be categories. Then C and D are isomorphic if there
exist functors F : C→ D and G : D→ C such that FG = 1C and GF = 1D, where 1C
and 1D are identity functors on C and D, respectively.

Recall that a category C is small if both Ob(C) and Mor(C) are sets. We now present
the algebraic definition of a small category which will be used in the next sections.

Definition 2.19 (Lawson [20, 21]). Let C be a set, let ‘·’ be a partial binary operation
on C, and let d and r be two mappings from C to C. Then C = (C, ·, d, r) is called a
small category if the following statements hold.

(i) x · y is defined if and only if r(x) = d(y) and then d(x · y) = d(x), r(x · y) = r(y).
(ii) If x, y, z ∈ C such that both x · y and y · z are defined, then (x · y) · z = x · (y · z).
(iii) For all x ∈ C, d(x) · x and x · r(x) are defined and d(x) · x = x = x · r(x).

In this case, it is easy to see that {d(x) | x ∈ C} = {r(x) | x ∈ C}, denoted by EC. One
can check routinely that C is indeed a category in the sense of Definition 2.15, where

Ob(C) = EC, Mor(C) = C, 1u = u = d(u) = r(u)

for all u ∈ Ob(C). In this case, the set of local identities Co is also EC (see Lawson [20]
for details).
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The following results can be proved easily.

Proposition 2.20. Let C = (C, ·,d, r) and D = (D, ·,d, r) be two small categories in the
sense of Definition 2.19 and let F = (Φ,Ψ) be a pair of maps

Φ : EC → ED, u 7→ uΦ; Ψ : C → D, x 7→ xΨ.

Then F is a functor from C to D in the sense of Definition 2.17 if and only if:

(i) for all x ∈ C, d(xΨ) = (d(x))Φ and r(xΨ) = (r(x))Φ;
(ii) for all x, y ∈ C satisfying that x · y is defined in C, (xΨ) · (yΨ) = (x · y)Ψ; and
(iii) for all u ∈ EC, uΨ = uΦ.

Observe that Φ can be regarded as the restriction of Ψ to EC by the above items (i)
and (iii) in this case.

Corollary 2.21. Let C = (C, ·, d, r) and D = (D, ·, d, r) be two small categories in the
sense of Definition 2.19. Then a functor from C to D in the sense of Definition 2.17 is
essentially a mapping ψ from C to D such that:

(i) for all x ∈ C, d(xψ) = (d(x))ψ and r(xψ) = (r(x))ψ; and
(ii) for all x, y ∈ C satisfying that x · y is defined in C, (xψ) · (yψ) = (x · y)ψ.

3. Inductive pseudocategories over admissible quadruples

This section is devoted to the introduction of the category of inductive
pseudocategories over admissible quadruples and obtains some elementary properties
of this category. To this aim, we need a result on admissible quadruples, which will be
used frequently in the subsequent work. The following lemma appears in the text [26],
but we also give its proof here for the sake of completeness.

Lemma 3.1 [26, Lemma 3.3]. Let (I,Λ, E◦, �) be an admissible quadruple and e, g ∈
I, f , h ∈ Λ. Then

eg = eg◦, (eg)◦ = e◦g◦, f h = f ◦h, ( f h)◦ = f ◦h◦. (3.1)

Proof. Since gLg◦ and I is a left normal band, we have eg = egg◦ = eg◦g = eg◦. This
implies that e◦g = e◦g◦, and so egLe◦g = e◦g◦ ∈ E◦ by the fact that eLe◦. This yields
that (eg)◦ = e◦g◦. The remaining facts of this lemma can be proved by symmetry. �

Now we can give the notion of pseudocategories over admissible quadruples.

Definition 3.2. Let P be a set which contains the underlying set I ∪Λ of an admissible
quadruple Q = (I,Λ, E◦, �) and let ‘·’ be a partial binary operation on P. Assume that

d : P→ I, x 7→ d(x), r : P→ Λ, x 7→ r(x)

are maps such that

d(e) = e, r(e) = e◦, d( f ) = f ◦, r( f ) = f (3.2)

for all e ∈ I and f ∈ Λ. Then P = (P, ·, d, r,Q) is called a pseudocategory over an
admissible quadruple Q if the following conditions hold.
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(PC1) For all x, y ∈ P, x · y is defined if and only if r◦(x) = r(x) � d(y) = d◦(y)
and then d(x · y) = d(x) and r(x · y) = r(y), where r◦(x) = (r(x))◦ and d◦(y) =

(d(y))◦.

(PC2) If x, y, z ∈ P such that both x · y and y · z are defined, then (x · y) · z = x · (y · z).

(PC3) For all x ∈ P, d(x) · x and x · r(x) are defined and d(x) · x = x = x · r(x).

The following proposition can be deduced easily from (3.2) and (PC3) in the above
Definition 3.2.

Proposition 3.3. Let P = (P, ·, d, r, Q) be a pseudocategory over an admissible
quadruple Q = (I,Λ, E◦, �). Then the following results hold.

(i) I = {d(x) | x ∈ P} and Λ = {r(x) | x ∈ P}.
(ii) For all e ∈ I and f ∈ Λ, we have d(d(e)) = d(e), r(r( f )) = r( f ) and

r(d(e)) = d◦(e) = e◦ = r(e), d(r( f )) = r◦( f ) = f ◦ = d( f ).

(iii) For all e ∈ I and f ∈ Λ, we have e · e = e = e · e◦ and f · f = f = f ◦ · f .

Remark 3.4. In Definition 3.2, if I = Λ = E◦, then I ∪ Λ = E◦ is a semilattice. So
u◦ = u for all u ∈ I ∪ Λ = E◦ and d(u) = r(u) = u for all u ∈ E◦. In this case, by (2.4)
the condition (PC1) reduces to the following (PC1)#: for all x, y ∈ P, x · y is defined
if and only if r(x) = d(y) and then d(x · y) = d(x) and r(x · y) = r(y). Thus, in the case
that I = Λ = E◦, P becomes a small category in the sense of Definition 2.19. In this
case, the set of local identities of P is E◦.

Now, we focus on a class of special pseudocategories, namely inductive
pseudocategories. Recall that the natural partial order ‘≤B’ on a band B is defined
as follows: for all e, f ∈ B,

e ≤B f if and only if e f = f e = e.

Definition 3.5. A pseudocategory P = (P, ·, d, r, Q) over an admissible quadruple
Q = (I,Λ, E◦, �) is called inductive if the following conditions and the duals (IPC1)′,
(IPC2)′ and (IPC3)′ of (IPC1), (IPC2) and (IPC3) hold.

(IPC1) For x ∈ P and e ∈ I with e ≤I d(x), there exists e|x ∈ P, which is called the
restriction of x to e, such that d(e|x) = e, r(e|x) ≤Λ r(x) and d(x)|x = x.

(IPC2) If e, g ∈ I and x ∈ P with e ≤I g ≤I d(x), then e|(g|x) =e |x.

(IPC3) If e ∈ I, x, y ∈ P, e ≤I d(x) and x · y is defined, then

e|(x · y) =e |x · d(y)(r(e |x)�d(y))|y.

(IPC4) If e, g ∈ I, f , h ∈ Λ, u ∈ E◦ and e◦u = u, u f ◦ = u, then

e|u = eu, eg|e = eg, eg · ge = eg; u| f = u f , f |h f = h f , h f · f h = f h.

Moreover, if f · g is defined in P (i.e. f ◦ = f � g = g◦), then f · g = f � g.

(IPC5) If g ∈ I, f ∈ Λ, x ∈ P and p = x|(r(x)�g)r(x), q =d(x)( f�d(x)) |x, then d(p)( f�d(p))|p =

q|(r(q)�g)r(q).
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At this stage, it is worth remarking that (IPC3) makes sense. Suppose that e ∈
I, x, y ∈ P, e ≤I d(x) and x · y is defined. Then d(x · y) = d(x) and so e ≤I d(x · y). This
shows that e|(x · y) is meaningful. Moreover, we have r◦(x) = r(x) � d(y). By (IPC1),
r(e|x) ≤Λ r(x). This implies that r(e|x)r(x) = r(e|x). We deduce by (3.1) and (2.4) that

r◦(e|x) = r◦(e|x)r◦(x) = r◦(e|x)(r(x) � d(y))
= (r◦(e|x)r(x)) � d(y) = (r(e|x)r(x)) � d(y) = r(e|x) � d(y).

(IPC1) also gives that d(d(y)(r(e |x)�d(y))|y) = d(y)(r(e|x) � d(y)). By (2.4),

r(e|x) � [d(y)(r(e|x) � d(y))] = (r(e|x) � d(y))(r(e|x) � d(y)) = r(e|x) � d(y).

Finally, in view of (IPC1), (3.1) and (2.4),

d◦(d(y)(r(e |x)�d(y))|y) = (d(y)(r(e|x) � d(y)))◦ = (r(e|x) � d(y))◦d◦(y)
= (r(e|x) � d(y))d◦(y) = r(e|x) � (d(y)d◦(y)) = r(e|x) � d(y).

Hence the right-hand side of the equality in (IPC3) is meaningful. We also remark that
the equations in (IPC4) and (IPC5) make sense according to (2.4), (3.1) and (PC1).

Remark 3.6. From Definition 3.5, we can deduce the notion of an inductive
pseudocategory (in fact a category by Remark 3.4) over a semilattice. A
pseudocategory P = (P, ·, d, r, E) over a semilattice E is called inductive if the
following conditions and the duals (IC1)′, (IC2)′ and (IC3)′ of (IC1), (IC2) and (IC3)
hold.

(IC1) For x ∈ P and e ∈ E with e ≤E d(x), there exists e|x ∈ P, which is called the
restriction of x to e, such that d(e|x) = e, r(e|x) ≤E r(x) and d(x)|x = x.

(IC2) If e, g ∈ E and x ∈ P with e ≤E g ≤E d(x), then e|(g|x) =e |x.

(IC3) If e ∈ E, x, y ∈ P, e ≤E d(x) and x · y is defined, then

e|(x · y) =e |x · r(e |x)d(y)|y.

(IC4) If e, u ∈ E with u ≤E e, then e|u = u =u |e.

(IC5) If g, f ∈ E, x ∈ P and p = x|r(x)g, q = f d(x) |x, then f d(p)|p = q|r(q)g.

We pause to introduce a pair of partial orders ‘≤l’ and ‘≤r’ on an inductive
pseudocategory P = (P, ·,d, r,Q) over an admissible Q = (I,Λ,E◦,�). For any x, y ∈ P,
define

x ≤l y if and only if x =e |y for some e ∈ I,

x ≤r y if and only if x = y| f for some f ∈ Λ.

The following lemma shows that ≤l and ≤r defined as above are indeed partial orders.

Lemma 3.7. ≤l and ≤r defined as above are partial orders.
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Proof. Firstly, for all x ∈ P, we have x =d(x) |x, where d(x) ∈ I by (IPC1). Next, if
x, y ∈ P and x =e |y and y =g |x for some e, g ∈ I, then

d(x) = e ≤I d(y) = g ≤I d(x)

by (IPC1). This implies that e = d(y) and so x =d(y) |y = y by (IPC1) again. Finally, if
x, y, z ∈ P and x =e |y and y =g |z for some e, g ∈ I, then

d(x) = e ≤I d(y) = g ≤I d(z)

and so x =e |(g|z) =e |z by (IPC2). Thus x ≤l z. This proves that ≤l is a partial order.
Dually, we can see that ≤r is also a partial order. �

We end this section by proving that the class of inductive pseudocategories over
admissible quadruples forms a category, together with certain maps referred to as
pseudofunctors, which appear in the next definition.

Definition 3.8. Let P1 = (P1, ·, d, r, Q1) and P2 = (P2, ·, d, r, Q2) be inductive
pseudocategories over admissible quadruples Q1 = (I1, Λ1, E◦1, �) and Q2 =

(I2,Λ2, E◦2, �), respectively. A pseudofunctor ϕ from P1 to P2 is a mapping from P1 to
P2 satisfying the following conditions.

(PF1) ϕ induces a morphism from Q1 to Q2.
(PF2) For all x ∈ P1, d(xϕ) = (d(x))ϕ and r(xϕ) = (r(x))ϕ.
(PF3) If x, y ∈ P1 and x · y is defined in P1, then (xϕ) · (yϕ) = (x · y)ϕ.
(PF4) If x ∈ P1, e ∈ I1, f ∈ Λ1 and e ≤I1 d(x), f ≤Λ1 r(x), then

(e|x)ϕ =eϕ |xϕ and (x| f )ϕ = xϕ| fϕ.

To see that (PF3) makes sense, let x, y ∈ P1 and x · y be defined in P1. Then

r◦(x) = r(x) �1 d(y) = d◦(y). (3.3)

By (PF1), (PF2) and (2.5), r◦(xϕ) = (r(x)ϕ)◦ = (r◦(x))ϕ. Dually, d◦(yϕ) = (d◦(y))ϕ.
Moreover,

r(xϕ) �2 d(yϕ) = (r(x))ϕ �2 (d(y))ϕ = (r(x) �1 d(y))ϕ

by (PF1) and (PF2). In view of the equation (3.3),

r◦(xϕ) = r(xϕ) �2 d(yϕ) = d◦(yϕ)

and so xϕ · yϕ is defined in P2. Condition (PF4) also makes sense. In fact, let
e ∈ I1 and e ≤I1 d(x). Since ϕ is a morphism from I1 to I2 by (IPC1), we have
eϕ ≤I2 (d(x))ϕ = d(xϕ) by (PF2), which implies that eϕ|xϕ is meaningful. Dually, we
can see that xϕ| fϕ is meaningful.

The following two lemmas now are straightforward.

Lemma 3.9. Let P1,P2 and P3 be inductive pseudocategories and let ϕ1 : P1 → P2 and
ϕ2 : P2 → P3 be pseudofunctors. Then ϕ1ϕ2 : P1 → P3 is also a pseudofunctor.

Lemma 3.10. The class of inductive pseudocategories over admissible quadruples
together with pseudofunctors forms a category in the sense of Definition 2.15, denoted
by IPC.
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4. A construction

Our primary aim in this section will be a construction of pseudo-Ehresmann
semigroups, built from an inductive pseudocategory over some admissible quadruple.
Let P = (P, ·, d, r, Q) be a pseudocategory over an admissible quadruple Q =

(I,Λ, E◦, �). We define the pseudoproduct ‘⊗’ on P by

x ⊗ y = x|(r(x)�d(y))r(x) · d(y)(r(x)�d(y))|y

for all x, y ∈ P. Observe that the above pseudoproduct is well defined. In fact, let
x, y ∈ P. Firstly, since I is a left normal band,

[d(y)(r(x) � d(y))]d(y) = d(y)(r(x) � d(y)) = d(y)[d(y)(r(x) � d(y))].

Dually,

r(x)[(r(x) � d(y))r(x)] = (r(x) � d(y))r(x) = [(r(x) � d(y))r(x)]r(x).

This implies that d(y)(r(x) � d(y)) ≤I d(y) and (r(x) � d(y))r(x) ≤Λ r(x). Secondly, by
(IPC1), (2.4) and (3.1),

d◦(d(y)(r(x)�d(y))|y) = (d(y)(r(x) � d(y)))◦

= (r(x) � d(y))d◦(y) = r(x) � (d(y)d◦(y)) = r(x) � d(y).

Dually, r◦(x|(r(x)�d(y))r(x)) = r(x) � d(y). Finally,

((r(x) � d(y))r(x)) � (d(y)(r(x) � d(y))
= (r(x) � d(y))(r(x) � d(y))(r(x) � d(y)) = r(x) � d(y)

by (2.4). This implies that

x|(r(x)�d(y))r(x) · d(y)(r(x)�d(y))|y

is defined in P and so ‘⊗’ is well defined. Moreover, we have the following result.

Lemma 4.1. With the above notation, (P,⊗) is a semigroup.

Proof. Let x, y, z ∈ P. For convenience, we denote

s = y|(r(y)�d(z))r(y), t =d(z)(r(y)�d(z)) |z

and
u = x|(r(x)�d(s))r(x), v =d(s)(r(x)�d(s)) |s, w =d(t)(r(v)�d(t)) |t.

This implies that
d(v) = d(s)(r(x) � d(s)) (4.1)

by (IPC1). On the one hand, by (IPC3),

x ⊗ (y ⊗ z) = u · (v · w). (4.2)
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Denote a =d(y)(r(x)�d(y)) |y. In view of (IPC5),

v = a|(r(a)�d(z))r(a), (4.3)

which gives
r(v) = (r(a) � d(z))r(a)

by (IPC1)′. Since

d(t) = d(d(z)(r(y)�d(z))|z) = d(z)(r(y) � d(z)) (4.4)

by (IPC1),

r(v) � d(t) = [(r(a) � d(z))r(a)] � [d(z)(r(y) � d(z))]
= (r(a) � d(z))(r(a) � d(z))(r(y) � d(z)) (by (2.4))
= (r(a) � d(z))(r(y) � d(z)) (since E◦ is a semilattice).

In view of the equation (4.4),

w = d(t)(r(v)�d(t))|t =[d(z)(r(y)�d(z))][(r(a)�d(z))(r(y)�d(z))] |t
= [d(z)(r(y)�d(z))]((r(a)�d(z))|t (since E◦ is a semilattice)
= [d(z)(r(y)�d(z))]((r(a)�d(z))|z (by t =d(z)(r(y)�d(z)) |z and (IPC2)).

Since r(a) = r(d(y)(r(x)�d(y))|y) ≤Λ r(y) by (IPC1), we have r◦(a)r(y) = r(a)r(y) = r(a) by
(3.1). By (2.4), this implies that

r(a) � d(z) = (r◦(a)r(y)) � d(z) = r◦(a)(r(y) � d(z)).

Thus

w = [d(z)(r(y)�d(z))](r(a)�d(z))|z =[d(z)(r(y)�d(z))]r◦(a)(r(y)�d(z)) |z
= d(z)r◦(a)(r(y)�d(z))|z (since E◦ is a semilattice)
= d(z)(r(a)�d(z))|z. (4.5)

On the other hand, write c = x|(r(x)�d(y))r(x). By (IPC3)′, (4.3) and (4.5),

(x ⊗ y) ⊗ z = (c|(r(c)�d(v))r(c) · v) · w. (4.6)

Since
r(c) = r(x|(r(x)�d(y))r(x)) = (r(x) � d(y))r(x) (4.7)

by (IPC1)′, it follows that

r(c) � d(v) = [(r(x) � d(y))r(x)] � [d(s)(r(x) � d(s))] (by (4.1))
= (r(x) � d(y))(r(x) � d(s))(r(x) � d(s)) (by (2.4))
= (r(x) � d(y))(r(x) � d(s)) (since E◦ is a semilattice)

which implies that

(r(c) � d(v))r(c) = (r(x) � d(y))(r(x) � d(s))[(r(x) � d(y))r(x)] (by (4.7))
= (r(x) � d(s))[(r(x) � d(y))r(x)] (since E◦ is a semilattice)
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and so

c|(r(c)�d(v))r(c) = c|(r(x)�d(s))[(r(x)�d(y))r(x)]

= (x|(r(x)�d(y))r(x))|(r(x)�d(s))[r(x)�d(y))r(x)]

= x|(r(x)�d(s))[(r(x)�d(y))r(x)] (by (IPC2)′). (4.8)

Since d(s) = d(y|(r(y)�d(z))r(y)) ≤ d(y) by (IPC1)′, it follows from (3.1) that d(y)d◦(s) =

d(y)d(s) = d(s). By (2.4), this implies that

r(x) � d(s) = [r(x) � (d(y)d◦(s))] = [r(x) � d(y)]d◦(s),

which gives

c|(r(c)�d(v))r(c) = x|(r(x)�d(s))(r(x)�d(y))r(x) (by (4.8))
= x|[(r(x)�d(y))d◦(s)][(r(x)�d(y))r(x)]

= x|(r(x)�d(y))d◦(s) r(x) (since E◦ is a semilattice)
= x|(r(x)�d(s)) r(x)

= u. (4.9)

This implies that

x ⊗ (y ⊗ z) = u · (v · w) = (u · v) · w = (x ⊗ y) ⊗ z

by (4.2), (PC2), (4.6), (4.8) and (4.9). Thus (S ,⊗) is a semigroup. �

To obtain our desired pseudo-Ehresmann semigroups, we need the following
lemmas.

Lemma 4.2. In the semigroup (P,⊗), if x, y ∈ P and x · y is defined in P, then x ⊗ y =

x · y.

Proof. By hypothesis, we have r◦(x) = r(x) � d(y) = d◦(y), and hence

x ⊗ y = x|(r(x)�d(y))r(x) · d(y)(r(x)�d(y))|y

= x|r◦(x)r(x) · d(y)d◦(y)|y = x|r(x) · d(y)|y = x · y

by (2.4) and (IPC1) and its dual. �

Lemma 4.3. In the semigroup (P,⊗), e ⊗ g = eg and f ⊗ h = f h for all e, g ∈ I and
f , h ∈ Λ.

Proof. By Definition 3.2, (2.4), (3.1) and (IPC4),

e ⊗ g = e|(r(e)�d(g))r(e) · d(g)(r(e)�d(g))|g = e|(e◦�g)e◦ ·g(e◦�g) |g

= e|e◦ge◦ ·ge◦g |g = e|e◦g◦e◦ ·geg |g = e|e◦g◦ · ge|g = ee◦g◦ · ge = eg · ge = eg

for all e, g ∈ I. Dually, f ⊗ h = f h. �
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Theorem 4.4. In the semigroup (P,⊗), define

x♣ = d(x), x♠ = r(x), x̂ = d◦(x) ⊗ x ⊗ r◦(x). (4.10)

Then PS = (P,⊗,♣, ♠,̂ ) forms a pseudo-Ehresmann semigroup.

Proof. By symmetry, it suffices to show that the identities (1)–(10) in Table 1 are valid.
Firstly, since d(x) · x is defined and d(x) · x = x by (PC3),

x♣ ⊗ x = d(x) ⊗ x = d(x) · x = x (4.11)

by Lemma 4.2. This gives the identity (1) in Table 1. Since I is a left normal band, by
Lemma 4.3,

x♣ ⊗ y♣ ⊗ x♣ = d(x) ⊗ d(y) ⊗ d(x) = d(x)d(y)d(x) = d(x)d(y) = x♣ ⊗ y♣.

Thus the identity (2) holds. By (3.2) in Definition 3.2,

(x♣ ⊗ y♣)♣ = (d(x)d(y))♣ = d(d(x)d(y)) = d(x)d(y) = x♣ ⊗ y♣,

which proves the identity (3). Since

x ⊗ y = x|(r(x)�d(y))r(x) · d(y)(r(x)�d(y))|y,

we have d(x ⊗ y) = d(x|(r(x)�d(y))r(x)). Similarly, we have d(x ⊗ y♣) = d(x|(r(x)�d(y♣))r(x)).
By Proposition 3.3, d(y♣) = d(d(y)) = d(y). This implies that

(x ⊗ y)♣ = d(x ⊗ y) = d(x ⊗ y♣) = (x ⊗ y♣)♣.

That is, the identity (4) is satisfied. To verify the identity (5), we first observe that

(x♣)♠ = (d(x))♠ = r(d(x)) = d◦(x)

by Proposition 3.3. Furthermore, since

r(x) � d(r◦(x)) = r(x) � r◦(x) = r(x)r◦(x) = r◦(x) = d◦(r◦(x))

by Proposition 3.3 and (2.4), it follows that x · r◦(x) is defined and so x ⊗ r◦(x) = x ·
r◦(x) by Lemma 4.2, and hence d(x ⊗ r◦(x)) = d(x · r◦(x)) = d(x). By Proposition 3.3,
(2.4) and (IPC4),

x̂ = d◦(x) ⊗ x ⊗ r◦(x) = d◦(x) ⊗ (x ⊗ r◦(x))
= d◦(x)|(r(d◦(x))�d(x))r(d◦(x)) · d(x)(r(d◦(x))�d(x))|(x ⊗ r◦(x))
= d◦(x)|d◦(x) · d(x)|(x ⊗ r◦(x)) = d◦(x) · d(x)|(x ⊗ r◦(x))

and hence d(x̂) = d(d◦(x)) = d◦(x) by Proposition 3.3 again, and so

x̂♣ = d(x̂) = d◦(x). (4.12)

Hence (x♣)♠ = x̂♣. This is the identity (5). Moreover, the identity (6) follows from

x̂♣ = d̂(x) = d◦(d(x)) ⊗ d(x) ⊗ r◦(d(x))
= d◦(x) ⊗ d(x) ⊗ d◦(x) = d◦(x)d(x)d◦(x) = d◦(x) = x̂♣
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by Proposition 3.3, Lemma 4.3 and (4.12). Furthermore, by Lemma 4.3 and (4.11) and
its dual,

x♣ ⊗ x̂ ⊗ x♠ = (d(x) ⊗ d◦(x)) ⊗ x ⊗ (r◦(x) ⊗ r(x))
= (d(x)d◦(x)) ⊗ x ⊗ (r◦(x)r(x)) = d(x) ⊗ x ⊗ r(x) = x.

This is exactly the identity (7). In view of (4.12) and its dual,

x̂♣ ⊗ x ⊗ x̂♠ = d◦(x) ⊗ x ⊗ r◦(x) = x̂.

This proves the identity (8). Finally,

x♠ ⊗ y♣ = r(x) ⊗ d(y) = r(x)|(r(x)�d(y))r(x) · d(y)(r(x)�d(y))|d(y)
= (r(x) � d(y))r(x) · d(y)(r(x) � d(y)) (by (IPC4))
= [(r(x) � d(y))r(x)] � [d(y)(r(x) � d(y))] (by (IPC4))
= (r(x) � d(y))(r(x) � d(y))(r(x) � d(y)) (by (2.4))
= r(x) � d(y) ∈ E◦ (since r(x) � d(y) ∈ E◦). (4.13)

This implies that

(x♠ ⊗ y♣)♣ = d(r(x) � d(y)) = r(x) � d(y) = r(r(x) � d(y)) = (x♠ ⊗ y♣)♠

by Proposition 3.3, which states that the identities (9) and (10) hold. �

The next lemma shows that a pseudofunctor between inductive pseudocategories
provides a (2,1,1,1)-morphism between the corresponding pseudo-Ehresmann
semigroups.

Lemma 4.5. Let P1 = (P1, ·, d, r, Q1), P2 = (P2, ·, d, r, Q2) and P3 = (P3, ·, d, r, Q3)
be three inductive pseudocategories. If ϕ is a pseudofunctor from P1 to P2, then
ϕS : P1 → P2, x 7→ xϕ provides a (2,1,1,1)-morphism from P1S to P2S. Moreover,
if ϕ1 and ϕ2 are pseudofunctors from P1 to P2 and from P2 to P3, respectively, then
(ϕ1ϕ2)S = (ϕ1S)(ϕ2S).

Proof. Let x, y ∈ P1. Firstly,

(x ⊗ y)ϕ= (x|(r(x)�d(y))r(x) · d(y)(r(x)�d(y))|y)ϕ
= (x|(r(x)�d(y))r(x))ϕ · (d(y)(r(x)�d(y))|y)ϕ (by (PF3))
= xϕ|((r(x)�d(y))r(x))ϕ · (d(y)(r(x)�d(y)))ϕ|yϕ (by (PF4))
= xϕ|((r(x)ϕ)�(d(y)ϕ))(r(x)ϕ) · (d(y)ϕ)((r(x)ϕ)�(d(y)ϕ)|yϕ (by (PF1))
= xϕ|(r(xϕ)�d(yϕ))r(xϕ) · d(yϕ)(r(xϕ)�d(yϕ))|yϕ (by (PF2))
= (xϕ) ⊗ (yϕ).

This implies that (x ⊗ y)(ϕS) = (x(ϕS)) ⊗ (y(ϕS)). Hence ϕS preserves ‘⊗’. Secondly,

x♣(ϕS) = x♣ϕ = (d(x))ϕ = d(xϕ) = (xϕ)♣ = (x(ϕS))♣
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by (PF2), which shows that ϕS preserves ‘♣’. Dually, ϕS also preserves ‘♠’. Finally,
since ϕ preserves ‘⊗’ by the above discussion, it follows that

x̂ϕ = (d◦(x) ⊗ x ⊗ r◦(x))ϕ= (d◦(x))ϕ ⊗ (xϕ) ⊗ (r◦(x))ϕ
= (d(x)ϕ)◦ ⊗ (xϕ) ⊗ (r(x)ϕ)◦ (by (PF1) and (2.5))
= d◦(xϕ) ⊗ (xϕ) ⊗ r◦(xϕ) (by (PF2))
= x̂ϕ,

which implies that x̂(ϕS) = x̂(ϕS) and so ϕS preserves ‘̂’. Thus ϕS is a (2,1,1,1)-
morphism. The final part of the lemma is clear. �

5. Correspondence

In the previous section, we started with an inductive pseudocategory over an
admissible quadruple and constructed a pseudo-Ehresmann semigroup. Our present
aim is to prove a converse to this result and thus provide a correspondence between
the class of inductive pseudocategories over admissible quadruples and the class of
pseudo-Ehresmann semigroups.

Let S = (S , ·,+,∗,−) be a pseudo-Ehresmann semigroup and let QS = (IS,ΛS,E◦S,�S)
be the admissible quadruple of S, where

g◦ = g∗, f ◦ = f + and f �S g = f g for all g ∈ IS and f ∈ ΛS,

by Lemma 2.13. We shall define a pseudocategory SC = (S , ·, d, r,QS). Obviously, S
contains the underlying set IS ∪ ΛS of QS. Define a partial binary operation ‘·’ on S ,

x · y =

{
xy if x∗ = x∗y+ = y+,
undefined otherwise,

where xy is the product of x and y in S. Define

d : S → IS, x 7→ x+, r : S → ΛS, x 7→ x∗.

Then d(e) = e+ = e, r(e) = e∗ = e◦ and r( f ) = f ∗ = f , d( f ) = f + = f ◦ for all e ∈ IS and
f ∈ ΛS by Lemma 2.9(a). Clearly, for x, y ∈ S , by Lemma 2.13, x · y is defined if and
only if

(x∗)◦ = x∗ = x∗y+ = y+
= (y+)◦

if and only if
r◦(x) = r(x) �S d(y) = d◦(y).

If this is the case, by Lemma 2.9(c), (d) and the identity (1)′ in Table 1,

d(xy) = (xy)+ = x+(xx∗y+)+ = x+(x x∗)+ = x+x+
= x+ = d(x).

Dually, r(xy) = (xy)∗ = y∗ = r(y). This implies that d(x · y) = d(x) and r(x · y) = r(y).
Thus (PC1) holds. Let x, y, z ∈ S and x · y and y · z be defined. Since r(x · y) = r(y) and
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d(y · z) = d(y), (x · y) · z and x · (y · z) are also defined and so (x · y) · z = x · (y · z) = xyz.
Finally, it is easy to see that d(x) · x and x · r(x) are defined and

d(x) · x = x+x = x = xx∗ = x · r(x)

for all x ∈ S . Thus (PC2) and (PC3) are valid. From the above discussion, we have the
following result.

Lemma 5.1. Let S = (S , ·, +, ∗, −) be a pseudo-Ehresmann semigroup. Then SC =

(S , ·,d, r,QS) is a pseudocategory, where

d(x) = x+, r(x) = x∗, e◦ = e∗, f ◦ = f +, f �S e = f e

for all e ∈ IS and f ∈ ΛS.

We build on the above to show that SC = (S , ·, d, r, QS) may be equipped with
restrictions and co-restrictions, under which it becomes an inductive pseudocategory.
For x ∈ S , e ∈ IS, f ∈ ΛS with e ≤IS d(x) and f ≤ΛS r(x), we define the restriction and
co-restriction of x to e and f as

e|x = ex, x| f = x f .

Lemma 5.2. Let S = (S , ·, +, ∗, −) be a pseudo-Ehresmann semigroup. Then SC =

(S , ·, d, r,QS) is an inductive pseudocategory with the above definitions of restriction
and co-restriction.

Proof. It remains to show that the conditions in Definition 3.5 are all satisfied. By
symmetry, we only need to check the conditions (IPC1)–(IPC5).

(IPC1) Let x ∈ S and e ∈ IS with e ≤IS d(x). Since d(x) = x+, we have ex+ = e and

d(e|x) = d(ex) = (ex)+ = (ex+)+ = ex+ = e

by the identities (4) and (3) in Table 1. Moreover, d(x)|x =x+ |x = x+x = x. On the other
hand, by the identities (3)′, (4)′ and (1)′,

r(e|x)r(x) = (ex)∗x∗ = ((ex)∗x∗)∗ = (exx∗)∗ = (ex)∗ = r(e|x).

Since ΛS is a right normal band by Lemma 2.9(e),

r(x)r(e|x) = x∗(ex)∗ = (ex)∗x∗(ex)∗ = ((ex)∗x∗)(ex)∗ = (ex)∗(ex)∗ = (ex)∗.

This implies that r(e|x) = (ex)∗ ≤ΛS x∗ = r(x).
(IPC2) If e, g ∈ IS and x ∈ S with e ≤IS g ≤IS d(x), then

e|(g|x) = e(g|x) = e(gx) = egx = ex =e |x.
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(IPC3) If e ∈ IS, x, y ∈ S , e ≤IS d(x) = x+ and x · y is defined, then e|(x · y) =e |(xy) =

exy and

(e|x) ·d(y)(r(e |x)�Sd(y)) |y = (e|x) ·y+((ex)∗y+) |y
= ex(y+(ex)∗y+y) = exy+(ex)∗y+y
= ex(ex)∗y+(ex)∗y+y (by the identity (1)′ in Table 1)
= ex(ex)∗y+y (since (ex)∗y+ ∈ E◦S by Lemma 2.9(b))
= exy (by the identities (1) and (1)′ in Table 1).

(IPC4) Let e, g ∈ IS, u ∈ E◦S with e◦u = u. Then e|u = eu and

eg|e = ege = eg, eg · ge = (eg)(ge) = egge = ege = eg,

as IS is a left normal band. Dually, for f , h ∈ ΛS, u ∈ E◦S with u f ◦ = u,

u| f = u f , f |h f = h f , h f · f h = f h.

Moreover, if f ∈ ΛS, g ∈ IS and f · g is defined in SC, then f · g = f g = f �S g.
(IPC5) Let e, g ∈ IS, f ∈ ΛS, x ∈ S and

p = x|(r(x)�Sg)r(x), q =d(x)( f�Sd(x)) |x.

Then

d(p)( f�Sd(p))|p
= (xx∗gx∗)+ f (xx∗gx∗)+xx∗gx∗ = (xx∗gx∗)+ f xx∗gx∗ (using (1) in Table 1)
= (xx∗g(x∗)+)+ f xx∗gx∗ = (xx∗gx∗)+ f xx∗gx∗ (using (4) and (5)′ in Table 1)
= (xx∗(x∗g))+ f xx∗gx∗ (x∗g, x∗ ∈ E◦S by Lemma 2.9(b), E◦S is a semilattice)
= (xg)+ f xgx∗ (x∗Rx∗, xx∗ = x)
= x+(xg)+ f x+xgx∗ = x+(xg)+( f x+)xgx∗

(since x+(xg)+ = (xg)+ by Lemma 2.9(c), x+x = x)
= x+( f x+)(xg)+xgx∗ ( f x+ ∈ E◦S by Lemma 2.9(b), IS is left normal)
= x+( f x+)xgx∗ = x+ f xgx∗ (by (1) in Table 1).

Similarly, we can also obtain that q|(r(q)�Sg)r(q) = x+ f xgx∗, as required. �

We now proceed to establish an isomorphism between the category IPC of inductive
pseudocategories over admissible quadruples and the category PES of pseudo-
Ehresmann semigroups. The next lemma demonstrates that a (2,1,1,1)-morphism
between two pseudo-Ehresmann semigroups gives rise to a pseudofunctor.

Lemma 5.3. Let S1 = (S 1, ·,+, ∗,−),S2 = (S 2, ·,+, ∗,−) and S3 = (S 3, ·,+, ∗,−) be three
pseudo-Ehresmann semigroups and let θ a (2,1,1,1)-morphism from S1 to S2. Then
the mapping θC : S 1 → S 2 given by the rule that x(θC) = xθ provides a pseudofunctor
from S1C to S2C. Further, if θ1 : S1 → S2 and θ2 : S2 → S3 are (2,1,1,1)-morphisms,
then (θ1θ2)C = (θ1C)(θ2C).
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Proof. Firstly, θ induces a morphism from QS1 to QS2 by Lemma 2.14. Secondly, for
x ∈ S ,

d(xθ) = (xθ)+ = x+θ = (d(x))θ and r(xθ) = (xθ)∗ = x∗θ = r(x)θ,

as θ is a (2,1,1,1)-morphism. Thirdly, if x, y ∈ S 1 and x · y is defined in S1C, then
x · y = xy and so

(x · y)θ = (xy)θ = (xθ)(yθ) = (xθ) · (yθ)

in S2C. Finally, if x ∈ S 1, e ∈ IS1 , f ∈ ΛS1 and e ≤IS1
d(x) = x+, f ≤ΛS1

r(x) = x∗, then

(e|x)θ = (ex)θ = (eθ)(xθ) =eθ |xθ, (x| f )θ = (x f )θ = (xθ)( f θ) = xθ| f θ,

as required. The final assertion is clear. �

Lemma 5.4. Let S = (S , ·,+, ∗,−) be a pseudo-Ehresmann semigroup whose admissible
quadruple is QS = (IS,ΛS, E◦S, �S).Then (SC)S = S.

Proof. By Lemmas 5.1 and 5.2, SC = (S , ·, d, r,QS) is an inductive pseudocategory
and

d(x) = x+, r(x) = x∗, e◦ = e∗, f ◦ = f +, f �S e = f e (5.1)

for all e ∈ IS and f ∈ ΛS. For all x, y ∈ S , x · y = xy if and only if

x∗ = (x∗)+ = r◦(x) = r(x) �S d(y) = d◦(y) = (y+)∗ = y+, (5.2)

where xy is the product of x and y in S. Moreover, for x ∈ S , e ∈ IS, f ∈ ΛS with
e ≤IS d(x) and f ≤ΛS r(x), we have e|x = ex, x| f = x f .

We now construct a pseudo-Ehresmann semigroup (SC)S = (S , ⊗, ♣, ♠,̂ ) by
defining the pseudoproduct

x ⊗ y = x|(r(x)�Sd(y))r(x) · d(y)(r(x)�Sd(y))|y

on S . Observe that

x ⊗ y = x|(r(x)�Sd(y))r(x) · d(y)(r(x)�Sd(y))|y
= x|x∗y+ x∗ · y+ x∗y+ |y
= xx∗y+x∗y+x∗y+y
= xx∗y+y (x∗y+ ∈ E◦S by Lemma 2.9(b))
= xy (by (1) and (1)′ in Table 1) (5.3)

so the binary operations in S and (SC)S are the same. In view of (4.10), (5.1), (5.2)
and (5.3),

x♣ = d(x) = x+, x♠ = r(x) = x∗, x̂ = d◦(x) ⊗ x ⊗ r◦(x) = x+xx∗ = x

by the identity (8) in Table 1. Thus, (SC)S = S. �

Lemma 5.5. Let P = (P, ·, d, r,Q) be an inductive pseudocategory over an admissible
quadruple Q = (I,Λ, E◦, �). Then (PS)C = P.
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Proof. By Theorem 4.4, we can construct the pseudo-Ehresmann semigroup PS =

(P,⊗,♣, ♠,̂ ) by defining the pseudoproduct

x ⊗ y = x|(r(x)�d(y))r(x) · d(y)(r(x)�d(y))|y

and
x♣ = d(x), x♠ = r(x), x̂ = d◦(x) ⊗ x ⊗ r◦(x), (5.4)

for all x, y ∈ P. Moreover, by Lemma 2.13 we have the admissible quadruple QPS =

(IPS,ΛPS, E◦PS, �PS) with

u◦ = u♠, v◦ = v♣, v �PS u = v ⊗ u

for all u ∈ IPS and v ∈ ΛPS. We first show that Q = QPS. In fact, by Proposition 3.3
and (5.4),

IPS = {x♣ | x ∈ P} = {d(x) | x ∈ P} = I,
ΛPS = {x♠ | x ∈ P} = {r(x) | x ∈ P} = Λ.

Let e, g ∈ I = IPS and f , h ∈ Λ = ΛPS. By Lemma 4.3, the product eg of e and g in
I (respectively, f h of f and h in Λ) is equal to the product e ⊗ g of e and g in IPS
(respectively, f ⊗ h of f and h in ΛPS). Moreover, by Definition 3.2, (4.13) and (5.4),
for all f ∈ Λ = ΛPS and g ∈ I = IPS,

f � g = r( f ) � d(g) = f ♠ ⊗ g♣ = r( f ) ⊗ d(g) = f ⊗ g = f �PS g.

Thus Q = QPS. By Lemmas 5.1 and 5.2, we can construct an inductive pseudocategory
(PS)C = (P,�,d1, r1,QPS) by setting

d1(x) = x♣, r1(x) = x♠ (5.5)

for all x ∈ P. Moreover, for all u ∈ IPS and v ∈ ΛPS with u ≤IPS d1(x) and v ≤ΛPS r1(x),
we have u|x (in (PS)C)= u ⊗ x and x|v(in (PS)C) = x ⊗ v. In view of (5.4) and (5.5),
we have d1(x) = x♣ = d(x) and r1(x) = x♠ = r(x) for all x ∈ P. This implies that
d = d1 and r = r1. Therefore for all x, y ∈ P, x � y is defined in (PS)C if and only
if x · y is defined in P. In this case, x � y = x ⊗ y = x · y by Lemma 4.2. Furthermore,

e|x is defined in(PS)C if and only if e|x is defined in P
if and only if e ≤I d(x) if and only if ed(x) = d(x)e = e

for all e ∈ I and x ∈ P. If this is the case, e◦d◦(x) = d◦(x)e◦ = e◦ by (3.1) and

e|x (in (PS)C) = e ⊗ x = e|(r(e)�d(x))r(e) · d(x)(r(e)�d(x))|x
= e|e◦d(x)e◦ · d(x)e◦d(x)|x (by Definition 3.2 and (2.4))
= e|e◦d◦(x)e◦ · d(x)ed(x)|x (by (3.1))
= e|e◦ · e|x = (ee◦) · e|x (by (IPC4))
= e · e|x (by eLe◦)
= d(e|x) · e|x (by (IPC1))
= e|x (in P) (by (PC3)).

Dually, x| f (in (PS)C) = x| f (in P) for all f ∈ Λ with f ≤Λ r(x). Thus, (PS)C = P. �
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Using Lemmas 5.3 and 4.5, we can show the following result easily.

Lemma 5.6. Let θ : S1→ S2 be a (2,1,1,1)-morphism of pseudo-Ehresmann semigroups
and let ϕ : P1→ P2 be a pseudofunctor of inductive pseudocategories. Then (θC)S = θ
and (ϕS)C = ϕ.

Theorem 4.4 and Lemma 4.5 show that S : IPC → PES is a functor, and
Lemmas 5.2 and 5.3 show that C : PES → IPC is a functor in the sense of
Definition 2.17. Moreover, Lemmas 5.4, 5.5 and 5.6 give that S and C are mutually
inverse. Hence we deduce our main result of this paper.

Theorem 5.7. The category PES of pseudo-Ehresmann semigroups and (2,1,1,1)-
morphisms is isomorphic to the category IPC of inductive pseudocategories over
admissible quadruples and pseudofunctors.

6. Two special cases

This section concentrates on two special kinds of pseudo-Ehresmann semigroups.
We firstly concern the class of regular semigroups with a multiplicative inverse
transversal. We say an inductive pseudocategory P = (P, ·, d, r,Q) over an admissible
quadruple Q is an inductive pseudogroupoid if there exists x◦ ∈ P such that x · x◦ and
x◦ · x are defined in P and x · x◦ = d(x), x◦ · x = r(x) for any x ∈ P. Using this notion,
we have the following corollary.

Corollary 6.1. The category of regular semigroups with a multiplicative inverse
transversal as (2,1,1,1)-algebras and (2,1,1,1)-morphisms is isomorphic to the
category of inductive pseudogroupoids and pseudofunctors.

Proof. Let S be a regular semigroup with a multiplicative inverse transversal S ◦ and
let x◦ be the unique inverse of x in S ◦ for any x ∈ S . Then we have the induced pseudo-
Ehresmann semigroup S = (S , ·,+, ∗,−) by setting x+ = xx◦, x∗ = x◦x, x = x◦◦. In the
pseudocategory SC constructed in section 5, we have x∗ = (x◦◦)∗ = (x◦◦)◦x◦◦ = x◦x◦◦

and x∗(x◦)+ = x◦xx◦x◦◦ = x◦x◦◦, x◦
+

= ((x◦)◦◦)+ = (x◦)+ = x◦x◦◦. This implies that
x∗ = x∗(x◦)+ = x◦

+
and hence x · x◦ is defined in SC and x · x◦ = xx◦ = x+ = d(x).

Dually, x◦ · x is also defined in SC and x◦ · x = x◦x = x∗ = r(x). Thus, SC is an
inductive pseudogroupoid.

Conversely, let P = (P, ·, d, r, Q) be an inductive pseudogroupoid. From
Theorem 4.4, we have the pseudo-Ehresmann semigroup PS = (P,⊗, ♣, ♠,̂ ). Since
P is an inductive pseudogroupoid, there exists x◦ ∈ P such that x · x◦ and x◦ · x are
defined in P and x · x◦ = d(x), x◦ · x = r(x) for any x ∈ P. This implies that x ⊗ x◦ =

x · x◦ = d(x) = x♣ and x◦ ⊗ x = x◦ · x = r(x) = x♠ by Lemma 4.2 and Theorem 4.4. In
view of Proposition 2.12, P̂ = {x̂ | x ∈ P} is a multiplicative inverse transversal of the
semigroup (P, ·) and induces the pseudo-Ehresmann semigroup PS. �

On the other hand, for Ehresmann semigroups, we have the following corollary.
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Corollary 6.2. The category of Ehresmann semigroups as (2,1,1)-algebras and
(2,1,1)-morphisms is isomorphic to the category of inductive pseudocategories over
semilattices and pseudofunctors.

Proof. Let (S , ·,+, ∗) be an Ehresmann semigroup. Then by Example 2.6 we have
the pseudo-Ehresmann semigroup S = (S , ·, +, ∗, −) by setting x = x for all x ∈ S .
In this case, IS = {x+ | x ∈ S } = {x∗ | x ∈ S } = ΛS is a semilattice by Lemma 2.1.
So QS = (IS,ΛS, E◦S, �S) is just the semilattice IS (or ΛS). Thus SC constructed in
Section 5 is an inductive pseudocategory over the semilattice IS. Conversely, let
P = (P, ·, d, r, E) be an inductive pseudocategory over a semilattice E. Then we have
the pseudo-Ehresmann semigroup PS = (P,⊗, ♣, ♠,̂ ) by Theorem 4.4. Since E is a
semilattice, we have d◦(x) = d(x) and r◦(x) = r(x) for all x ∈ P. This implies that
x̂ = d◦(x) ⊗ x ⊗ r◦(x) = d(x) ⊗ x ⊗ r(x) = x for all x ∈ P by (4.11) and its dual. In view
of Proposition 2.10, (P,⊗,♣, ♠) is an Ehresmann semigroup. �

In the remainder of this section, we shall explore the connection between
Ehresmann categories and strongly ordered functors introduced in Lawson [20] and
pseudocategories over semilattices and pseudofunctors considered in this paper. To
this aim, we need some notions taken from Lawson [20]. Recall that (P, ·, d, r,≤) is
called an ordered category, if the following conditions hold.

(OC1) (P, ·, d, r) is a small category in the sense of Definition 2.19 and (P,≤) is a
poset.

(OC2) x ≤ y implies that r(x) ≤ r(y) and d(x) ≤ d(y).

(OC3) If x1 ≤ y1 and x2 ≤ y2, and x1 · x2 and y1 · y2 are defined, then x1 · x2 ≤ y1 · y2.

(OC4) If r(x) = r(y) and d(x) = d(y), x ≤ y, then x = y.

Also from Lawson [20], an Ehresmann category (P, ·,d, r,≤l,≤r) is a small category
(P, ·,d, r) in the sense of Definition 2.19 with set of local identities

Po = {d(x) | x ∈ P} = {r(x) | x ∈ P},

equipped with two partial orders ‘≤l’ and ‘≤r’ such that the following conditions, and
the duals (E1)′ and (E5)′ of (E1) and (E5) hold.

(E1) (P, ·, d, r,≤l) is an ordered category and, for all x ∈ P and e ∈ Po with e ≤l d(x),
there exists a unique element e|x ∈ P called the restriction of x to e such that
e|x ≤l x and d(e|x) = e.

(E2) If e, g ∈ Po, then e ≤l g if and only if e ≤r g.
(E3) (Po,≤) is a meet semilattice, where ≤=≤l=≤r on Po and e ∧ f is the meet of e

and f in Po.
(E4) ≤l ◦ ≤r=≤r ◦ ≤l.
(E5) If x ≤l y and e ∈ Po, then x|r(x)∧e ≤l y|r(y)∧e.

We note that Lawson [20] interchanges the symbols d and r, the symbols ≤l and ≤r

and the notions of restriction and co-restriction from the conventions of this paper.
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The following lemma shows that an inductive pseudocategory over a semilattice can
produce an Ehresmann category.

Lemma 6.3. If P = (P, ·, d, r, E) is an inductive pseudocategory over the semilattice E,
then (P, ·, d, r ≤l,≤r) forms an Ehresmann category, where ≤l and ≤r are defined as in
the statements before Lemma 3.7.

Proof. From Remark 3.4, P = (P, ·, d, r, E) is a small category in the sense of
Definition 2.19 and the set of local identities of P is E. By Lemma 3.7, ≤l is a partial
order on P. This gives (OC1). We next assert that

the restriction of ≤l to E is equal to ≤E . (6.1)

In fact, if e, g ∈ E and e ≤l g, then e =u |g for some u ∈ E with u ≤E d(g) = g. By (IC4)
of Remark 3.6, e =u |g = u, this implies that e = u ≤E g. Conversely, if e ≤E g, then we
have e =e |g again by (IC4), which gives e ≤l g.

Now let x ≤l y. Then x =g |y for some g ∈ E with g ≤E d(y). This implies that
d(x) = g ≤E d(y) and r(x) ≤E r(y) by (IC1) and so d(x) ≤l d(y) and r(x) ≤l r(y) by
(6.1). This shows (OC2).

To see (OC3), let x1 ≤ y1 and x2 ≤ y2, and x1 · x2 and y1 · y2 be defined in P.
Then x1 =e |y1, x2 =g |y2 for some e, g ∈ E with e ≤E d(y1), g ≤E d(y2) and r(x1) =

d(x2), r(y1) = d(y2). This implies that

r(e|y1) = r(x1) = d(x2) = d(g|y2) = g

by (IC1). Thus

x1 · x2 = (e|y1) · (g|y2) = (e|y1) · (gd(y2)|y2) (by g ≤E d(y2))
= (e|y1) · (r(e |y1)d(y2)|y2) =e |(y1 · y2) (by (IC3)),

which shows that x1 · x2 ≤ y1 · y2. Thus (OC3) holds.
If r(x) = r(y) and d(x) = d(y), x ≤l y, then x =e |y for some e ∈ E. This gives

d(y) = d(x) = d(e|y) = e by (IC1) and so x =d(y) |y = y by (IC1) again. Therefore (OC4)
is true.

Suppose that x ∈ P, e ∈ E and e ≤l d(x). Then e ≤E d(x) by (6.1). By (IC1), there
exists e|x ∈ P such that d(e|x) = e. Clearly, e|x ≤l x by the definition of ‘≤l’. If y ∈ P
satisfying y ≤l x and d(y) = e, then y =g |x for g ∈ E and so e = d(y) = d(g|x) = g by
(IC1). This implies that y =e |x.

The above discussion proves that (E1) is true. Items (E2) and (E3) are direct
consequences of the fact that the set of local identities of P is E, and of (6.1) and
its dual. Now let x, y ∈ P and (x, y) ∈≤l ◦ ≤r. Then x ≤l z ≤r y for some z ∈ P. This
yields that x =e |z and z = y| f for some e, f ∈ E with e ≤E d(z) and f ≤E r(y). So
r(y) f = f , y| f = y|r(y) f and

e ≤E d(z) = d(y| f ) = d(y|r(y) f ).

Thus
x =e |z =e |(y| f ) =ed(y|r(y) f ) |(y|r(y) f ) = (ed(y)|y)|r(ed(y) |y) f
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by (IC5). This implies that x ≤r (ed(y)|y) ≤l y. Consequently, ≤l ◦ ≤r⊆≤r ◦ ≤l. With the
dual, we obtain (E4).

If x ≤l y and e ∈ E, then x =g |y for some g ∈ E with g ≤E d(y). This implies that
x =g |y =gd(y) |y and so

x|r(x)e = (gd(y)|y)|r(gd(y) |y)e = gd(y|r(y)e)|(y|r(y)e)

by (IC5), which implies that x|r(x)e ≤l y|r(y)e. Thus (E5) is proved. �

The following lemma gives a converse of Lemma 6.3.

Lemma 6.4. Every Ehresmann category (P, ·, d, r, ≤l, ≤r) with semilattice of local
identities Po can be regarded as a pseudocategory over the semilattice Po.

Proof. Let (P, ·, d, r, ≤l, ≤r) be an Ehresmann category with semilattice of local
identities Po = {d(x) | x ∈ P} = {r(x) | x ∈ P}. Since (P, ·,d, r) is a small category in the
sense of Definition 2.19, we have d(x), r(x) ∈ Po and d(e) = r(e) = e for all e ∈ Po and
hence we can easily show that (P, ·,d, r,Po) is a pseudocategory over the semilattice Po
in the sense of Definition 3.2. We only need to show that the conditions in Remark 3.6
hold. We denote the restriction of ≤l ( or ≤r) to Po by ≤ and use uv to denote the meet
of u and v in Po under the order ≤.

By (E1), for all e ∈ Po and x ∈ P with e ≤ d(x), there exists a unique element e|x ∈ P
such that e|x ≤l x and d(e|x) = e. In view of (OC2), r(e|x) ≤l r(x), that is, r(e|x) ≤ r(x).
Moreover, since x ≤l x and d(x) = d(x), by the uniqueness of the restriction of x to e,
e|x = x if e = d(x). This proves (IC1).

For (IC2), if e, g ∈ Po and x ∈ P with e ≤ g ≤ d(x), in view of (E1), e|(g|x) ≤l g|x ≤l x
and d(e|(g|x)) = e. By the uniqueness of the restriction of x to e, e|(g|x) =e |x.

To see (IC3), let e ∈ Po, x, y ∈ P, e ≤ d(x) and x · y be defined. Then r(x) = d(y)
and e|(x · y) ≤l x · y, d(e|(x · y)) = e by (E1). On the other hand, since e|x ≤l x and
r(e |x)d(y)|y ≤l y, it follows that e|x · r(e |x)d(y)|y ≤l x · y by (OC3) and

d(e|x · r(e |x)d(y)|y) = d(e|x) = e.

By the uniqueness of the restriction of x · y to e, e|(x · y) =e |x · r(e |x)d(y)|y, as required.
If e, u ∈ Po and u ≤ e, then u ≤l e and d(u) = u. By the uniqueness of the restriction

of e to u, we have u|e = u. Dually, e|u = u. This gives (IC4).
Finally, we consider (IC5). If f , g ∈ Po and x ∈ P, then by [20, Theorem 4.20], we

have ( f⊗x)⊗g = f⊗(x⊗)g, where

y⊗z = y|r(y)d(z) · r(y)d(z)|z

for all y, z ∈ P. Hence

( f⊗x)⊗g = ( f |r( f )d(x) · r( f )d(x)|x)|r(r( f )d(x) |x)d(g) · r(r( f )d(x) |x)d(g)|g
= ( f | f d(x) · f d(x)|x)|r( f d(x) |x)g · r( f d(x) |x)g|g (since r( f ) = f ,d(g) = g)
= ( f d(x) · f d(x)|x)|r( f d(x) |x)g · r( f d(x) |x)g|g (by (IC4))
= ( f d(x)|x)|r( f d(x) |x)g · r( f d(x) |x)g|g (by Definition 2.19(iii) and (IC1))
= ( f d(x)|x)|r( f d(x) |x)g · r( f d(x)|x)g (by (IC4))
= ( f d(x)|x)|r( f d(x) |x)g (by Definition 2.19(iii) and (IC1)′)
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and, similarly, f⊗(x⊗)g = f d(x|r(x)g) |(x|r(x)g). So

f d(x|r(x)g)|(x|r(x)g) = ( f d(x)|x)|r( f d(x) |x)g,

which gives (IC5). �

Let (C, ·,d, r,≤l,≤r) and (D, ·,d, r,≤l,≤r) be Ehresmann categories with semilattices
Co and Do of local identities, respectively. From Lawson [20, Lemma 4.22] and
Corollary 2.21, a strongly ordered functor is just a mapping ϕ from C to D which
satisfies the two conditions in Corollary 2.21 and preserves ≤l, ≤r and the binary
operation of the semilattices of local identities. Hence ϕ induces a morphism from
the semilattices Co to Do. As shown in [20, Lemma 4.23], a strongly ordered functor
ϕ preserves restrictions and co-restrictions. Thus ϕ is a pseudofunctor from the
pseudocategory (C, ·, d, r,Co) to the pseudocategory (D, ·, d, r, Do) in the sense of
Definition 3.8.

On the other hand, let ψ be a pseudofunctor from the pseudocategory (P1, ·,d, r,E1)
to the pseudocategory (P2, ·, d, r, E2) in the sense of Definition 3.8, where E1 and E2
are semilattices. Then ψ is a functor from (P1, ·, d, r,≤l,≤r) to (P2, ·, d, r,≤l,≤r) by
Corollary 2.21 and (PF2) and (PF3), where ≤l and ≤r are defined as in the statements
before Lemma 3.7, and the restriction of ≤l on P1 to E1 is equal to ≤E1 and the
restriction of ≤l on P2 to E2 is equal to ≤E2 by (6.1). Moreover, condition (PF1)
in Definition 3.8 gives that ψ preserves the binary operation of the semilattices E1
and E2 of local identities. Suppose now that x, y ∈ P1 with x ≤l y. Then x =e |y for
some e ∈ E1, by (PF4), xψ =eψ |yψ so that xψ ≤l yψ. Dually, ψ preserves ≤r, so that
ψ is a strongly ordered functor from the Ehresmann category (P1, ·, d, r,≤l,≤r) to the
Ehresmann category (P2, ·,d, r, ,≤l,≤r).

Observe that Lawson’s admissible morphisms between Ehresmann semigroups are
just (2,1,1)-morphisms between Ehresmann semigroups. Therefore, Corollary 6.2,
Lemmas 6.3 and 6.4 and the comments above now give us Lawson’s result
(Theorem 1.2 in this paper).

Corollary 6.5 [20, Theorem 4.24]. The category of Ehresmann semigroups and
admissible morphisms is isomorphic to the category of Ehresmann categories and
strongly ordered functors.
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