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A CORRESPONDENCE BETWEEN QUATERNARY
QUADRATIC FORMS

PAUL PONOMAREV*

Introduction

Let p be a prime = 1(mod4). Let ¥ denote the quaternion algebra
of discriminant p* over the field of rational numbers Q, and let V be a
quaternary quadratic space over Q of discriminant p(Q*)?. In this note
we establish a natural correspondence between the similitude classes of
two-sided normal ideals of % and certain similitude classes of the lattices
of V which have reduced discriminant p or p’. The classes for which
it fails to be a function can be explicitly described, and at such classes
it is at worst “one-to-two”, the two associated classes merely being the
duals of each other.

In the classical terminology, our correspondence is between classes
of positive definite integral quaternary forms which have an improper
automorphigsm, on the one hand, those of discriminant p? and, on the
other hand, those of discriminant p or p°. In both cases the classes
having an improper automorphism can be obtained by taking the classes
which represent 1 along with their adjoints. In §5 we disprove a con-
jecture of Hecke ([4], p. 884) concerning the linear independence of the
theta series coming from a fixed column of the Brandt matrices associ-
ated to A. We propose, instead, that the theta series coming from the
classes having an improper automorphism should provide a basis for the
corresponding space of modular forms. In the case of Nebentypus this
reduces to a conjecture of Kitaoka ([5], p. 152). If the more general
conjecture were verified, then our correspondence would have the prop-

erty of associating a basis of modular forms of Nebentypus (—Z,p, (-))
p

to a basis of modular forms of Haupttypus (—2,p,1).
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§1. Symmetric normal ideals

Let K = Q(v/p) and let @ denote the ring of integers of K. Put
A = ARy K. Let a — a* be the canonical involution of A and N: Az — K
the reduced norm, N(a) = aa*. The conjugation z—Z of K extends
uniquely to a Q-automorphism a— & of Ar having U as its ring of fixed
elements. Let n be the norm map of K, n(x) = 2% for x c K.

NOTATION. For any associative ring R with 1 let R* denote the
multiplicative group of all invertible elements in R.

Let V be a definite quadratic space of dimension four over Q. Let
f:V — Q be the quadratic form on V. The associated bilinear form B
is defined by B, w) = f(v + w) — f(») — f(w), v,we V. The discrimi-
nant 4(V) is the coset of det[B(v;,v;)] in Q*/(Q*)’, where {v;} is a basis
of V,i,7=1,2,3,4. We assume that 4(V) = p(Q*)* and V, is isotropic
for each finite prime q. Then V is similar to the quadratic space W =
{a e Ug: a* = a}, the quadratic form on W being the restriction of the
norm form N ([8], §2, Prop. 4). Since we will be concerned only with
similitude classes of lattices of ¥V, we may assume that V=W, f=N.
The proper similitudes of V are then given by all mappings of the form
& > cafe*, where ce Q*%,a e A% ([8],81, Prop. 3).

For each rational prime ¢ put K, =K®gQ, Ux, = Ux Ve Q, =
A, ®q, K, The conjugation on Ax extends uniquely to Ax, and V, may
be identified with the subspace {¢, € Ug, : @Ff = ,}. The proper similitudes
of V, are all mappings of the form &, — c,6,@¥, ¢, € @, a € U, Let
Jus J g, Ju, denote the idele groups of U, K, ¥y, respectively. For an 0-
lattice 4 of Ax we put 4, = 4Q,Z,. Putting 0, =0&,Z,, we see that
4, is an O, lattice of e, If @ = (a),f = (8,) are ideles of ., and
A is an O-lattice of Ag, then @4f is the 0-lattice defined by (@4p), = 4,8,
for all rational ¢q. Similarly, we can define caLa* for a lattice L of
V,ce Q% acJy;and 725 for a lattice & of U, 7,6 e Jy.

An (¢-lattice 4 of U (resp. O,-lattice A(g) of Ug) is symmetric if
A* = A (resp. 4(@)* = A(g)). It is clear that A is symmetric if and only
if 4, is symmetric for every rational q. A lattice of ¥ or ¥ is a nor-
mal ideal if its left and right orders are maximal. The existence of a
symmetric maximal order is insured by [8], § 3, Prop. 5.

PROPOSITION 1. Let 2 be a symmetric maximal order of Ur. An
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O-lattice A of Ux is a symmetric normal ideal of Ux if and only if
there exist ce Q*,@ e Jy, such that either A = cala* or A = e/ pafe*.

Proof. It is evident that a lattice in either of the latter two forms
is a symmetric normal ideal of ;. Suppose A is a symmetric normal
ideal of Ax. We must show that 4, = ¢, 2.a* or 4, = ¢,v/pa,Q,a* for
each ¢, where ¢, € Qy,a, € U%,. This assertion is trivial for ¢ which split
in K. Suppose g does not split in K, g +p. We can write 4, = «,2,8,
g, Bg € A%, Then «, 02,8, = fQ.af, which implies that 2.,8,(@)™ is a
two-sided ideal. Since UAr splits at every finite prime of K, we must
have B,(@)™" = 2., with x,e K},e,e 2. Then 4, = z,a2.a" = A =
Too.8,af, which implies Z;'z, € 0. Using the fact that H'(Gal (K,/Q,),
0y) =1, we deduce that z, = c,e,, where c,c Q),e,c 0y, which shows
that 4, = cx 2,0F. If ¢ =p we have the additional possibility z, =
c V' De,. '

If L is a lattice of V, its norm N(L) is the unique positive rational
number which generates the Z-span of {N(v):veL}. The reduced dis-
criminant 4'(L) is defined to be det [N(L)'B(v;, v,)], where {v;} is a Z-
basis of L,%,7 =1,2,3,4. For a lattice L of V, the lattices L ®&®,0,
V(L ®,0) are symmetric lattices of U, but are not normal ideals of Uy.
If, however, 4'(L) = p, then we have

PROPOSITION 2. For each lattice L of V with reduced discriminant
p there exists a unique symmetric normal ideal L of UAx such that
LNVv=L. Any symmetric normal ideal A of Ug is of the form A = L
or A = +/pL for some lattice L of V with reduced discriminant p.

Proof. We can choose a symmetric maximal order 2 of %, so that
M= 0NV is a lattice of reduced disecriminant p ([8], § 3, Prop. 5). The
lattices of V with reduced discriminant p, being maximal, form an
idealcomplex. Hence L = caMa* for some ce Q*,@c Jy,. Put L = caQa*.
Then LNV = ca(? N V)@ = L. To prove uniqueness, suppose caQa* NV
=dfQf* N V. Then d-'ef~'aM(f~'a)* = M, which implies d-'cf'a2(F'a)*
=0 (8], §4, Prop. 8), or cala* = dﬁQﬁ*. To complete the proof we
apply Proposition 1.

Remark. According to Proposition 2, the symmetric normal ideals
A of A, are of two kinds: 1) 4 = L or 2) 4 = +/pL, L a lattice of V with
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reduced discriminant p. If 4 is of the second kind, it is easily seen that
ANV is a non-maximal lattice with reduced discriminant p. If 4= 0,
a symmetric maximal order, then (vp)'2 NV is the dual latticeof 2NV
with respect to the bilinear form B. From this it follows that the lat-
tices of V coming from A of the second kind are nothing more than
the dual lattices of those coming from A of the first kind.

§2. Reflexive normal ideals

The quaternion algebra 2 is split at all finite primes ¢ except q =p.
Let ©, denote the unique maximal order of %, and P, the unique non-
zero prime ideal of O,.

LEMMA 1. There exists a symmetric maximal order 2(p) of Ug,
with the properties:

(i) 20)NY, =9,

(i) +/p2®) = z2(®) for any generator r of By

Proof. We may assume that Ur, = M(2,K,) and the conjugation
on g, is given by

(1) [” y]r—»[w ”512], e, y,2,we K, ,

z W Uy %

where u, € Z*, (Uy, p)p = —1 (cf. [8], §2). Then we have

(2) A, = {[uxy ?]:x,yeK,,}
D
(3) ®p={[u:?7 g]:x,ye(ﬂp}.

We take 2(p) = M(2,0,). Then 2(p)* = 2(p) and 2P)NY, = O,. It is
enough to verify (ii) for a particular generator =, say
=[% al=vl; %
”"[0 _val =Py Al

LEMMA 2. There exists a symmetric maximal order 2, of Up with
the properties:

(i) =02, N YA is a maximal order of A.

(i) +pR, = 70, for any 7eJy such that #0, = the unique nonzero
two-sided prime ideal of O,.
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Proof. Let O be any maximal order of 2. Then 2 = O®,0 is a
symmetric order of U and 2, is maximal for q # p, since O has dis-
criminant p*. Furthermore, 2, N YA, = O, for ¢ = p. We take 2, so that
£2), = 2, for ¢ # p and (2), = 2(p) as in Lemma 1.

An O-lattice 4 of A, is said to be reflexive if 4 = A. For a maxi-
mal order 2 of Ar we have 2* = Q. Hence the notions of reflexivity
and symmetry coincide for maximal orders of .

PROPOSITION 3. Let 2 be a symmetric maximal order of Ur. A
lattice A of Ux is a reflexive normal ideal of WUy if and only if there
exist 7,6 e Jy such that A = 704.

Proof. It is clear that any A of the given form is reflexive. Sup-
pose Ais a reflexive normal ideal of A;. For each rational prime ¢ we
can find ay, §, € A%, such that 4, = @,2,8,: If ¢ splits in K it is easily
seen that «,, B, can be chosen from ,. Suppose ¢ does not split in K,
so that K, is a field. From #,28, = a,2p8, it follows that a;'@,2,, 28,8;"
are two-sided ideals. Furthermore, N(«;'@,) = N(x,) 'N(a,) € 0F. It fol-
lows that «;'@, € 2f and, similarly, g,8;'e 27. We may assume g, =
M@, Ky, 2, = M2,0,), 2f = GL2,0,). If ¢+ p then H'(Gal(K,/Qp),
GL(2, 0,) = 1 implies that a, = 7,64, By = 7404 Where y,, 5, € UX; &4, 1, € 2F.
If ¢ = p we have the additional possibilites @, = vDreeq By = VD70 It
follows that 4 = 725 or 4 = v/p725 for some 7,5cJ,. Similarly, 2 =
0.4 or Q = +/piR,ji for some 1, ieJy,, where 2, is chosen as in Lemma
2. Using property (ii) of £,, we see that +/p2 = 92 for some veJy.
Thus 4 = 72§ or A = w05.

COROLLARY 1. Let 2,, 2, be symmetric maximal orders of Ag. Then
there exists an element @cJy such that Q, = aQ.a™*.

Proof. We know that 2, = @2, for some & feJy. The fact that
1e 0, implies § = 7a~* for some 7€ Jy,. Then 2,7 = & 'Q2,&, which implies
Q7 =9, 2, =ala".

COROLLARY 2. Properties (i) and (ii) in Lemma 2 are valid for any
symmetric maximal order 2, of Ug.

PROPOSITION 4. For each normal ideal { of U there exists a unique
reflexive normal ideal @ of A such that ENA = . Any reflexive nor-
mal ideal A of g is of the form A = & for some normal ideal Q of UA.

https://doi.org/10.1017/50027763000024776 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024776

130 PAUL PONOMAREV

Proof. Fix a symmetric maximal order 2 of U;. Let O =02 N Y.
Then { = &Of for some & feJ,. We.take &= afQf. Proposition 3
shows that every reflexive normal ideal 4 is of the latter form. To
prove uniqueness, suppose @25 N % = 726 N A. Then &OF = 705, which
implies 770 = O§f~! is a two-sided ideal of ©. Applying property (ii)
and the fact that every two-sided ideal of © is a rational multiple of a
power of its two-sided prime ideal, we deduce 77'aQ = c¢(y/DP)"2 = 2657,
ce Q%, meZ, which completes the proof.

COROLLARY. The mapping O— L gives a one-to-one correspondence
between the maximal orders of A and the symmetric maximal orders of
p)

PROPOSITION 5. A normal ideal A of Ux ts both symmetric and
reflexive if and only if A = c or A = c,/DR, ce Q*, for some symmetric
maximal order 2 of Ug.

Proof. A mormal ideal in either of these two forms is clearly both
reflexive and symmetric. Conversely, suppose 4 is reflexive and sym-
metric. Then 4 = { for a unique normal ideal & of . Let © be the
left order of Q, so that O = Q2 is the left order of 4. Then 4 = A* =
A* = (* = (2*)", which implies & = 2%, or { is a two-sided ideal of ©O.
It follows that & = ¢P™, ce @%, m e Z, where B is the two-sided prime
ideal of ©. Then 4= & = ¢(P™)" = c(y/D)" L.

Remark. We have a one-to-one mapping © — O N V from the set
of maximal orders of U into the set of lattices of V with reduced dis-
criminant p, and a one-to-one mapping R — R N V from the set of all
two-sided prime ideals of maximal orders of % into the set of lattices
of V with reduced discriminant p®. Proposition 5 shows that these two
mappings are essentially the only ones of this kind.

§3. Equivalences of symmetric maximal orders

The earlier discussion yields three possible notions of equivalence on
the set of symmetric maximal orders of .
I. Conjugacy: 8, = afia™!, acUjf.
II. Similarity: £, = caf,@*, ce Q*, ac U}.
III. Strict conjugacy: 2, = afa™, acUA*.
Notion I is natural to g, being equivalent to: £,, 2, are isomorphic
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as (@-orders. On the other hand, notion II is inherited from V, being
equivalent to: 2, N V,2, N V are similar as lattices of V. Notion III
comes from U, being equivalent to: 2, N, 2, N Y are isomorphic as Z-
orders. In this section we will determine the relation between these three
kinds of equivalence.

The implication III = I is trivial. Suppose I holds, 2,= a2}, @ € A%.
We imitate the proof of Proposition 1 to deduce that 2, = cafl,@* or
2, = cy/paf@*, ce Q*. The latter case is not possible, as 2, N V would
then have reduced discriminant p® instead of p. Thus I = II.

Now suppose II holds, 2, = cafa*, cc Q*, xcU%. The reflexivity
of 92, implies that @ 'w®, is a two-sided ideal of 2,. Then @ '¢ = Yo,
where ¥ e K*, w e 2F, and o can be taken to be a root of unity ([8], §7,
Prop. 14, Remark). Taking norms, we obtain %> = N(«)"'N(a), n(y)* =1,
so that n(y)= +1. If n(y)=1, then y=zx', x ¢ K*¥, and (Za) (2a) = 0.
If n(y) = —1, then y = eTx!, x ¢ K*, where e is the fundamental unit
of K. Thus, without loss of generality, we may assume @ 'o¢ = w or
@ 'a = ew. Multiplying « by 4/» changes w to —w. Hence we may as-
sume that o is a primitive m-th root of 1 for m = 1,38,4,5. If a7'a =
ew, then o = eaw = e(éad)w = —adw, which shows @w = —1. Hence m
=4, as @ must have the same order as w. Then @ = —0™' = 0w, which
implies w € U, a contradiction to the fact that %, is not split, p = 1 (mod 4).
We conclude that @ 'o = w is the only pbssibility and that @w = 1. We
now consider the various cases.

1. o=1. If a'a=1, then ac¥* and 02, = cala* = cala* =
cN(@)al,e!, which implies ¢cN(@)= + 1, 2, = aQa™.

2. w=2{¢, a primitive third root of 1. Then { = Z¢~' which shows
al = e U, 2, = pR.B.

3. w=1,%= —1. Then i = —i, which implies ¢ = T + 9)~'(l + 9).
Thus a« = (1 + %), e A%, and 2, = pA + D2,QA + ))'p7.

4, @*=1,0#1. Then @ = 0! = ', which shows o = (&®)(?)},
ae® = Be WX, 2, = BB

As a particular consequence, we have shown II = 1.

PROPOSITION 6. Let 2, be a fixed symmetric maximal order of Ug.
Another symmetric maximal order is similar to 2, if and only if it is
conjugate to 9,. If 9, does not contain a primitive fourth root of 1,
then any symmetric maximal order conjugate to 2, is actually strictly
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conjugate to 2, If 2, does contain a primitive fourth root of 1, then
it contains one satisfying 1= —i and, for any such i, a symmetric
mazximal order which is conjugate to £, is strictly conjugate either to
2, or to A + DL,A + )L

Proof. It remains for us to prove the last statement. Let G be
the group of roots of 1 in £, modulo {+1}. If 2, contains a primitive
fourth root of 1, then the set of elements of order 2 in G has an odd
number of elements. Hence at least one element of order 2 in G must
be fixed by the conjugation, that is, 2 = +4 for some primitive fourth
root 2. Since U does not have a primitive fourth root of 1, we must
have 1 = —i. Suppose 1,7 are two fourth roots of 1 in £, satisfying
1= —i,j7= —j. Then ¢je QF and?j = ij. This implies that ¢j is a unit
of the maximal order O, =2, N A. If ¢ = +1, then A + DL,A + !
=1 + NLA + /)% The on}y other possibility is i = +¢,{ a primitive
third root of 1. In this case O, is the unique maximal order of % (up
to isomorphism) which contains a non-trivial unit. The elements ./71,
+/Dj are generators of the two-sided prime ideal of ©, and as such are
conjugate by a unit ¢ of O, (cf. §4, Lemma 2, Proof), /pi = es/Dje,
ee Oy, It follows that A + 92,1 + D' =1 + NR,A + e,

§4. The correspondence

The mapping O — O induces a mapping {O} — {0} from the set of
conjugacy classes of maximal orders of ¥ onto the set of conjugacy
clagsses of symmetric maximal orders of 2. Proposition 6 shows that
this mapping is one-to-one on the classes of orders © for which © does
not contains a primitive fourth root of 1. Suppose, on the other hand,
that O contains a primitive fourth root 4 such that 2 = —i. Then ==,2i
satisfies 7’ = —p, 7 = x, so that x ¢ . Conversely, if © contain an ele-
ment r with z> = —p, then z/4/D e (§2, Prop. 3, Cor. 2) and z/4/D is a
primitive fourth root of 1. Thus we must study the mapping on the
classes of maximal orders which have a principal two-sided prime ideal.
The first step is to give explicitly a complete set of representatives for
the conjugacy classes of such maximal orders.

Suppose first that the Legendre symbol (_2_) = -1, that is, p =5

(mod 8). Then (-2, ~p), = (-2, ~p), = —1 and (~2, —p), =1 for all
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rational primes q #* p. Hence there exist 2, pe such that 2= —p,
y$=—2,2p= —pi Then (1 + ) ~'x is a pure element of A with norm
21 + p)°Y, a unit of Z,. Hence there is a maximal order © of U such
that {, ) € O, L + D 'we OF. We put F = Q(1), 0r = ring of integers
of F,p=the prime ideal of ¢, such that 9’ = (2). Then p(0p), =
A + A(@),, which gives

(4) PO~ = pOp~" .
More generally, if ¢ is an ideal of F, then
(5) pOp~le! = pe*O(e*)

This follows from the fact that pap™ = o* for all acF. Let {¢,---,¢.}
be a complete set of representatives for the principal genus of F'. Then
{er << 5ep5 00, -+, ¢op} is a complete set of representatives for the ideal
classes of F', and, by the Chevalley-Hasse-Noether Theorem ([2], p.134),
the set {c;Oc;%,c;pO(,p)':j=1,---,9} represents all the conjugacy
classes of maximal orders containing an element r with z? = —p. Since
* preserves the principal genus of F, (5) implies that {¢;Oc;': =1, .-+, g}
already represents all such conjugacy classes.

Suppose now that (%) = 1. Choose a rational prime 7 such that
r,—p)p = (@, —p),=—1. Then r #p, 2 and (—r, —p), = —1,(—r, —p),
=1. By the product formula, (—r, —p), = (r, —p), = 1. Hence we can
find 2, pe¥ such that = —p, = —7,Ap= —pd. We put F =0Q)

~and define 0y, p as before. It follows from (r, —p), =1 that r» = N(v)
for a prime ideal v of F. Since (r, —p), = —1, t is in the nonprincipal
genus of . Take a, b ¢ Z such that v(0p), = (@ + b)(07),. We can choose
a maximal order © of ¥ so that {1, 4} € O, (@ + b)) e OX. It follows

that

(6) et = pe*O(c*) 'yt

for any ideal ¢ of F'. Reasoning exactly as before, with t instead of p,
we see that if {c;:7=1,...,9} is a complete set of representatives for
the principal genus of F, then {¢;Oc;':j =1, .-, g} represents all con-
jugacy classes of maximal orders containing an element = with »? = —p.

LEMMA 1. Let O be a maximal order of A containing an element
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A such that * = —p. Let ¢ be an ideal of F = Q). If ¢Oc! = 9O, then
¢ 18 principal.

Proof. If ¢! =, then ¢© is a two-sided ideal of £. Thus
¢ = a2’ for some acQ*, ec Z. Since p =1(mod4), {1,4} is a Z-basis
for 0. It follows that O N F = 0y, OF N F, = (0p)}, all rational q.
Hence ¢ = a2°0p.

LEMMA 2. Let ©,% be maximal orders of U, both containing an
element 2 with 2= —p. Let F =QQ). If aDa™' =, acU*, then
a = fe, where e O* and pFp" =F.

Proof. By assumption, 1,a 2ac . Then 1,a 'A¢ must be genera-
tors for the two-sided prime ideal of £, which implies a~'Aa = 41, § € O*.
If 6 = +£1, we take f=a,e =1. If § % 1, then 6 = +¢, { a primitive
third root of 1. There is only one maximal order (up to isomorphism)
with a non-trivial unit group, satisfying the relation A = {~'A. Then
ala =+l = L= {72, and we take f=al, e =¢.

PROPOSITION 7. Let r be any rational prime such that (r, —p), =
(r, —p), = —1. Then we can find A, pe ¥ such that 2= —p,pff = —r,
Ap= —pi. Let F=Q0). Then r =N(v) for a prime t of F and we
can find a maximal order O, of U containing 2, p such that tOx~' =
O, For each such O, and any complete set of representatives
{ey -+, ¢} of the principal genus of F, the set {c;O%7':7=1,--.,9} 18
a complete set of representatives for the conjugacy classes of maximal
orders of U containing an element = with n* = —p.

Proof. We observe that we can take r =2,r =p if (—) = —1.

Suppose acOp;'e™ = ¢O; for some 7, 4;xcU*. According to Lemma
2, we may assume afa'=F. If ade™' = 4, then awc F'* and we may
apply Lemma 1 to deduce that j = ¢. If ada™' = —2, then o« = gy, fe F¥%,
and we have Op;' = Buc;O;p ' = Bkt !(cH)'p~.  Applying
Lemma 1, we see that ¢, cfr are in the same class, which contradicts
the fact that v is not in the principal genus of F.

Proposition 7 enables us to determine the effect of the mapping
{0} — {O} on the classes of © which contain an element r with z* = —p.
We take £, {c,} as in Proposition 7 with the stipulation that + = p when
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(%) = —1. Let 2,=9, It is clear that (;O0;)" = ¢;2,;". Let i =

2/+/p, a primitive fourth root of 1. Then 7 e ¢;Q.;! for all 7, and 7= —1.
We note that

(7) 1+ 92,0 + 97" = pQp~*

Suppose ¢; 2,7, ¢, 2,;' are conjugate. Then, using (7) and Proposition
6, we deduce that either (a) 7 = ¢ or (b) ¢;O,; c,pOp~'c;* are conjugate.
If (3) — —1, then (b) implies, by virtue of (5), that c,cF are

D

equivalent, that is, ¢;, ;' are equivalent. Conversely, if ¢;,¢;' are equiv-
alent, then c¢;2,;%, ¢,2;! are conjugate. Hence the total number of con-
jugacy classes of symmetric maximal orders containing a primitive fourth
root of 1 is the total number of elements in the principal genus of F
upon identifying inverse elements, namely (g + 1)/2.

If (E) =1, then p is in the principal genus and the total number
D

of conjugacy classes of symmetric maximal orders containing a primi-
tive fourth root of 1 is the number of elements in the principal genus
modulo they subgroup generated by the class of p, namely g/2.

We have completed the proof of

THEOREM. The mapping {O} — {Sf)}, from conjugacy classes of maxi-
mal orders of U to conjugacy classes of symmetric maximal orders of
N, is one-to-one on the classes of O which do mot have a principal
two-sided prime ideal. Let r,9,,{c;} be chosen as in Proposition 7, with

r=2 if (3) — —1. Then
p
(i) If (3> = —1, (¢;007)" 8 conjugate to (¢On;) & ¢ =17 or ¢,
D
~ ;L
Gy If (%) =1, ;979" is conjugate to (¢On;)" &L =17 or ¢, ~
pc;, where p* = (2).

COROLLARY. Let t denote the number of conjugacy classes of sym-
metric maximal orders of Ug, and t the number of conjugacy classes
of maximal orders of A. Then
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(8) t=t—(g—a)2
where g = h(v—p)/2 and a = 0,1 according as (E> =1, -1, respectively
D

(cf. [5], §12).

Remark. We note that the mapping {O} — {0} is two-to-one on the
classes of © having a principal two-sided prime ideal except if (%) =
—1, 0 = &,; in the latter case {f)o} uniquely determines {©}.

The algebras Ug, A may be regarded as quadratic spaces over K, Q,
resp., with quadratic forms N, N|%, resp.; the proper similitudes are
all the mappings of the form &~ afB, where «, e ¥U%, @, fc A%, resp.
We observe that two-sided normal ideals with the same norm are con-
jugate if and only if they are similar. Let © be a maximal order of
o and P its two-sided prime ideal. Then P = ,/pD, from which it fol-
lows that the mapping {B}— {f}, from similitude classes of two-sided
prime ideals of % to similitude classes of two-sided symmetric prime
ideals of U, is one-to-one on the classes of nonprincipal P and satisfies
the rest of the Theorem upon replacing O, by its two-sided prime ideal
B,. Noting that any two-sided normal ideal of % is similar either to a
maximal order © or to a prime ideal ¥, we can combine the above two
mappings and intersect with V to obtain a correspondence {}+— {3 N V}
from the set of similitude classes of two-sided normal ideals of 2 into
the set of similitude classes of lattices of V with reduced discriminant
p or p’. This correspondence is a function except on the classes of O
which are similar to their prime ideals, that is, © which have principal
8. For such O we have {O} — {O N V} and {O} —»{B N V}. On the other
hand, for each such O, excluding £, when (%) = —1, we have exactly
one other class {©} such that {9} — {0 N V},{O}1~{B N V). Thus our
correspondence is “two-to-two” on all such classes, except for {O,} when

2

<_) = —1, where it is “one-to-two”. On all other classes it is one-to-
D

one. Furthermore, since the dual lattice of an order O is $7!, which
is similar to B, our correspondence takes classes of dual lattices to
classes of dual lattices. The total number of similitude classes {3} is &,
the ideal class number of 2« ([6], p. 306, (11)), while the total number of
similitude classes {3 N V} is 2¢. In particular, we have
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h = 2t if (%):1
(9) 9
—2f—1 1f<—)=—1
P

§5. Quadratic forms and theta series

We fix an ordered basis of V and call another ordered basis of V
positively oriented if its tranformation matrix relative to the fixed basis
has positive determinant. To each lattice L of ¥V we can associate an
integral quadratic form f, by setting

(10) Folws, @ 22 = N N(3] 0,)

for all z;€Q,7=1,2,3,4, where {v,} is a positively oriented Z-basis of
L. The discriminant of f, is the reduced diseriminant of L. Different
choices of positively oriented Z-bases of L yield properly equivalent
quadratic forms and in this way we obtain a one-to-one correspondence
between proper similitude classes of lattices and proper equivalence
classes of integral quadratic forms. If we let L vary over the integral
lattices of reduced discriminant p, then the classes {f,} will vary over
all the classes of integral positive definite quaternary forms of discrim-
inant p ([8], § 6, Th. 3 (a)). In particular, the number of proper classes
of such forms is equal to T, the number of conjugacy classes of maxi-
mal orders of Ux ([8], §4, Prop. 9 (a)).

If L is an order of g, then f1. represents 1. Conversely, suppose
S represents 1. Let 2 be a symmetric maximal order of %,. We may
assume [ = @Qa* for some @e Jyz. Then N(L) = n(N(a)), where N(a) is
the ideal of K such that N(a), = N(e,)0, for all finite primes q of K.
Since K has only one strict genus, we can find « ¢ ¥, such that n(N(x)) =
N@). Let M = a'L(e)*. Then N(M) =1 and M containg an element
¢ with N(p) = 1. It follows that M = Q,p, where 2, is the left order
of M. Furthermore, x = 21! for some 1¢ A, with N(@) e Q@*. Then M
= 2Q,07! with £, = 27'2,4. The symmetry of M implies that the maximal
order 2, is symmetric. We have shown

PROPOSITION 8. Let L be a lattice of reduced discriminant p in V.
Then f; represents 1 & L is similar to a symmetric maximal order of Ug.
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COROLLARY. The number of classes of integral quaternary forms
of discriminant p which represent 1 is equal to t.

In the manner of (10), we can associate to each lattice & of ¥ an
integral quadratic form f;. The class of f; depends only on the simili-
tude class of &, and the mapping {€}— {f:} is one-to-one. Furthermore,
as { ranges over the normal ideals of ¥, f; will range over all integral
positive definite quaternary forms of diseriminant p%. As before, f
represents 1 & & is a maximal order of . It follows that the number
of proper classes of integral positive definite quaternary forms of dis-
criminant p* which represent 1 is equal to . In [6], §3 we gave the
following formula for H, the number of proper similitude classes of
normal ideals of ¥,

1 Wy =D) \*
11 H= _<h2 (_.__) .
(1) 2 + 2 )
From [1] we have the following formula for ¢
1 h(y/ -—p))
12 £ = —-<h My=p)\
12) 5 + 3

Let H, denote the number of improper classes of integral positive def-
inite quaternary forms of discriminant p?. Then 2H, - H is the num-
ber of classes {f:} which have an improper automorphism, and f, has
an improper automorphism & 2 is properly similar to 2* & & is two-
sided. It follows that 2H, — H = h or

13) m:%m+m.

We have just observed that the quadratic forms f, associated to the
two-sided ideals of U are characterized by the property that they have
an tmproper automorphism. Kitaoka [5] gave an analogous character-
ization for quaternary forms of discriminant p which represent 1; in
fact, he showed that f, represents 1 & o(L) # {+1}. (This stronger result
is not true for square discriminant). Thus our correspondence- has the
property that it associates quaternary forms of discriminant p? with
improper automorphisms to quaternary forms of discriminant p or p?
with improper automorphisms. The significance of this for theta series
is as follows.
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Eichler [3] showed that the theta series associated to positive defi-
nite quaternary forms of discriminant p? span the space of all modular
forms of Haupttypus (—2,p,1). However, the matter of providing an
explicit basis of theta series has not yet been settled. The space of
modular forms of type (—2,p,1) has dimension %, and Hecke ([4], p. 884)
conjectured that the theta series coming from a fixed column of the
Brandt matrices (of size 7 X h) are a basis. He claims to have verified
this for p < 37. In fact, it is false for p = 37. To see this, we first
observe that all unit groups of maximal orders of 2« are trivial since

(%7—1> = (%’) = 1. Hence the Brandt matrices are all symmetric ([2],
§5,(22)). Forp =37Twehavet=2,h=3,H =5,H,=4. If we arrange
the improper classes {f.} in a 3 X 3 symmetric matrix array in accord-
ance with the Brandt matrices, we see that the diagonal has 2 distinct
classes. The remaining 2 improper classes must then be placed in the
3 places above the diagonal. There is no way of doing this without
having at least one column in the matrix array having 2 identical im-
proper classes. It follows that at least one column will yield 2 identical
theta series. Another way of showing this is to find normal ideals L,
M with the property that they have the same left and right orders, are
left inequivalent but right equivalent. This can be done whenever h/t
is not an integral power of 2. We need only take L, M = L« as in [6],
§7, Remark 2. In this way we obtain an infinite number of counter-
examples.

The question still remains as to which set of 2 classes should be
chosen to provide % linearly independent theta series. A reasonable
conjecture would be the classes {f;} coming from the two-sided normal
ideals of . Indeed, Hecke’s own computations ([4]. p. 900-903) show
this to be true for »p < 31 (p = 3 (mod 4) is permissible in the case of
Haupttypus). Kitaoka [5] has conjectured that the theta series coming
from the quadratic forms of discriminant p representing 1, and their

adjoints, form a basis for the modular forms of Nebentypus (—2, D, (_))
D

Both of these conjectures can be summarized in the statement that the
theta series coming from quadratic forms which have an improper
automorphism form a basis for the corresponding space of modular forms.

The correspondence {J}— &n V} induces a correspondence of the as-
sociated theta series. If the preceding conjectures are true, then this
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correspondence has the virtue of associating a basis of modular forms

of type (—2,p,1) to a basis of modular forms of type (—-2, P, (;))
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