
5

Open systems of interacting quantum fields

As introduced in Chapter 1, for many problems in statistical mechanics one is
interested in the detailed behavior of only a part of the overall system (call it
the system) interacting with its surrounding (call it the environment). In field
theory one can accordingly decompose the field describing the overall system
φ = φS + φE into a sum of the system field φS and the environment field φE.
This decomposition is always possible formally but only when there is a clear
physical discrepancy between the two sectors will it be physically meaningful and
technically implementable. The division could be made between slow and fast
variables, low and high frequencies or light and heavy mass sectors. Drawing
examples from cosmology, in the stochastic inflation scenario one regards the
system field as containing only the lower modes and the environmental field as
containing the higher modes with the division provided by the event horizon in
de Sitter spacetime. A similar problem in quark–gluon plasma is to ascertain the
effect of the hard thermal loops on the soft gluon modes. Another is the effect of
the atoms in the noncondensate on the Bose–Einstein condensate (BEC). These
cases will be discussed in later chapters.

Usually the reason for performing such a decomposition is because one is inter-
ested more in the details of the system (the “relevant” variables or the “distin-
guished” sector), and less in that of the environment (the “irrelevant” variables).
Since the environment often contains many more degrees of freedom than the
system the details of which are not of particular interest to us, introducing some
way of coarse graining them and extracting their overall influence on the sys-
tem is desirable. This procedure renders the original system an open system,
and its behavior would then be describable by the open system conceptual and
technical framework we introduced in Chapter 3. In particular, the quantity of
special interest is the influence action obtained from the integration over the
environment field in a CTP path integral.

We recall that when the time limits in this path integral are taken to infin-
ity, the influence action turns into the so-called closed time path (CTP) coarse-
grained effective action (CGEA). The idea behind this quantity which originated
from studies in dynamical critical phenomena (“coarse-grained” free energy den-
sity) was transplanted to nonequilibrium quantum field theory by Hu and Zhang
[Hu91, Zha90] first in the “in–out” (Schwinger–Dewitt) formulation and then
by Sinha and Hu [SinHu91] in the “in–in” (Schwinger–Keldysh) formulation. A
clear presentation of the CTP CGEA can be found in Lombardo and Mazzitelli
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[LomMaz96]. (See also [CaHuMa01] for a review.) We shall restrict usage of the
term effective action (EA) to the particular case in which φS is the c-number
part of the field operator. The so-called background field decomposition in quan-
tum field theory, Φ = φc + φq, on an interacting field Φ is a special case of this
open system method, where the discrepancy parameter is the Planck constant
�, separating and systemizing the quantum contributions from the classical. The
familiar loop expansion (in orders of �) of the effective action is an example of
the CGEA, with the special feature that the equations of motion it yields do not
contain any dissipation (unless some causal condition like the factorizable initial
state similar to the Boltzmann molecular chaos assumption is introduced). We
will introduce the CTP CGEA in the language of influence functionals in this
chapter and introduce more formal techniques for its development in the next
chapter. The IF formalism and the CTP CGEA will be our main workhorse for
the rest of the book.

Our goal in this chapter is to derive the influence action and the CGEA and the
stochastic equations for two simple but fundamental quantum field scenarios. We
treat first the case of two interacting scalar fields, one of which is chosen as the
system and the other as its environment. This case is technically easier than the
second case, that of a single quantum field split into two by separating the long
and short wavelength sectors (to be defined precisely below), even though the
CGEA was introduced historically for the latter situation, which exemplifies a
broader class of statistical mechanical problems [Hu91]. For pedagogical reasons,
we will stay within the technically simplest approach in quantum field theory
familiar to the reader, using a straightforward perturbative expansion in powers
of the coupling constants. More powerful methods will be introduced later in the
book.

5.1 Influence functional: Two interacting quantum fields

In this section we study the problem of two quantum self-interacting scalar
fields (one the system field, the other the environment field) interacting with
each other in Minkowski spacetime. To do so we only need to generalize to
quantum field theory the results for the quantum mechanical Brownian model
based on the influence functional method introduced in Chapter 3. We first
derive the influence functional, from which we identify the dissipation and noise
kernels. We then derive a Langevin equation for the dissipative dynamics of the
system field. The nonlinear mode–mode coupling between the system field and
the environment field induces a nonlinear nonlocal dissipation and a coupled
multiplicative colored noise source for the system field. Finally we write down
the functional quantum master equation for the system field. Our presentation
in this section follows [Hu94b, Zha90].

Consider two independent self-interacting scalar fields in Minkowski spacetime:
φ(x) depicting the system, and ψ(x) depicting the environment. The classical
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actions for these two fields are given respectively by:

S[φ] =
∫

d4x

(
−1

2
∂νφ(x)∂νφ(x) − V (φ)

)
= S0[φ] + SI [φ] (5.1)

S[ψ] =
∫

d4x

(
−1

2
∂μψ(x)∂μψ(x) − V (ψ)

)
= S0[ψ] + SI [ψ] (5.2)

where V [φ], V [ψ] are the self-interaction potentials. For a φ4 interaction,

V [φ] =
1
2
m2

φφ
2(x) +

1
4!
λφφ

4(x), (5.3)

and similarly for V [ψ]. Here, mφ and mψ are the bare masses and λφ and λψ

are the bare self-coupling constants for the φ(x) and ψ(x) fields respectively. In
equation (5.2) we have written S[ψ] in terms of a free part S0 and an inter-
acting part SI which contains λψ. Assume these two scalar fields interact via a
polynomial coupling of the form

Sint =
∫

d4xVφψ[φ(x)]ψk(x) (5.4)

where Vφψ[φ(x)] ≡ −λφψf [φ(x)] is the vertex function with coupling constant
λφψ, which we assume to be small and of the same order as λφ, λψ.

The total classical action of the combined system is

S[φ, ψ] = S[φ] + S[ψ] + Sint[φ, ψ] (5.5)

The total density matrix of the combined system plus environment field is defined
by

ρ[φ1, ψ1, φ2, ψ2, t] = 〈φ1, ψ1| ρ̂(t) |φ2, ψ2〉 (5.6)

where the superscripts 1, 2 are the closed time path branches to integrate over as
will be described in more detail in Chapter 6, and |φ〉 and |ψ〉 are the eigenstates
of the field operators φ̂(x) and ψ̂(x), namely,

φ̂(x)|φ〉 = φ(x)|φ〉, ψ̂(x)|ψ〉 = ψ(x)|ψ〉 (5.7)

Since we are primarily interested in the behavior of the system, and of the
environment only to the extent in how it influences the system, the object of
interest is the reduced density matrix defined by

ρr[φ1, φ2, t] =
∫

dψ ρ[φ1, ψ1, φ2, ψ1, t] (5.8)

For technical convenience, let us assume that the total density matrix at an
initial time is factorized, i.e. that the system and environment are statistically
independent,

ρ̂(ti) = ρ̂φ(ti) × ρ̂ψ(ti) (5.9)

where ρ̂φ(ti) and ρ̂ψ(ti) are the initial density matrix operator of the φ and ψ

field respectively, the former being equal to the reduced density matrix ρ̂r at ti
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by this assumption. The reduced density matrix of the system field φ(x) evolves
in time following

ρr[φ1
f , φ

2
f , t] =

∫
dφ1

i

∫
dφ2

i Jr

[
φ1
f , φ

2
f , t | φ1

i , φ
2
i , ti
]
ρr[φ1

i , φ
2
i , ti] (5.10)

As in Chapter 3, the propagator Jr[φ1
f , φ

2
f , t | φ1

i , φ
2
i , ti] is given by a CTP Feyn-

man integral of the exponent of the influence action

Jr[φ1
f , φ

2
f , t | φ1

i , φ
2
i , ti] =

φ1
f (x)∫

φ1
i (x)

Dφ1

φ2
f (x)∫

φ2
i (x)

Dφ2 exp
i

�
Seff [φ1, φ2] (5.11)

where

Seff [φ1, φ2] ≡ S[φ1] − S[φ2] + SIF[φ1, φ2] (5.12)

is the full influence functional (IF) effective action and SIF is the influence action.
The Feynman–Vernon influence functional F [φ1, φ2] is defined as

F [φ1, φ2] = e
i
�
SIF[φ1,φ2]

=
∫

dψ1
f (x)

∫
dψ1

i (x)
∫

dψ2
i (x) ρψ[ψ1

i , ψ
2
i , ti]

ψ1
f (x)∫

ψ1
i (x)

Dψ1

ψ1
f (x)∫

ψ2
i (x)

Dψ2

× exp
i

�

{
S[ψ1] + Sint[φ1, ψ1] − S[ψ2] − Sint[φ2, ψ2]

}
(5.13)

which summarizes the averaged effect of the bath on the system. For a zero-
temperature bath (i.e. the environment field ψ is in a vacuum state, ρ̂b(ti) =
|0〉〈0|), the influence functional F is formally equivalent to the CTP vacuum
generating functional, and the influence action SIF in equation (5.12) is the
usual CTP vacuum effective action, to be discussed in the next chapter.

5.1.1 Perturbation theory

The above formal framework is nice but often difficult to tackle. To evaluate
the influence action we need to develop a perturbation theory. If λφψ and λψ

are assumed to be small parameters, the influence functional can be calculated
perturbatively by making a power expansion of exp i

�
[Sint + SI ]. In this section,

we set λψ = 0 for simplicity. Up to second order in λφψ, and first order in �

(one-loop), the influence action is given by

SIF[φ1, φ2] = 〈Sint[φ1, ψ1]〉0 − 〈Sint[φ2, ψ2]〉0
+

i

2�

{
〈Sint[φ1, ψ1]2〉0 − 〈Sint[φ1, ψ1]〉0

2
}

− i

�

{
〈Sint[φ1, ψ1]Sint[φ2, ψ2]〉0 − 〈Sint[φ1, ψ1]〉0〈Sint[φ2, ψ2]〉0

}
+

i

2�

{
〈Sint[φ2, ψ2]2〉0 − 〈Sint[φ2, ψ2]〉0

2
}

(5.14)
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where the quantum average of a physical variable Q[ψ1, ψ2] over the unperturbed
action S0[ψ] is defined by

〈Q[ψ1, ψ2]〉0 =
∫

dψ1
f (x)

∫
dψ1

i (x)
∫

dψ2
i (x) ρψ[ψ1

i , ψ
2
i , ti]

×
ψ1

f (x)∫
ψ1

i (x)

Dψ1

ψ1
f (x)∫

ψ2
i (x)

Dψ2 exp
i

�
{S0[ψ1] − S0[ψ2]} × Q[ψ1, ψ2]

≡ Q
[

�δ

iδJ1(x)
,− �δ

iδJ2(x)

]
F (0)[J1, J2]

∣∣∣∣ J1=J2=0 (5.15)

Here, F (0)[J1, J2] is the influence functional of the free environment field, assum-
ing a linear coupling with external sources J1 and J2:

F (0)[J1, J2]

=
∫

dψ1
f (x)

∫
dψ1

i (x)
∫

dψ2
i (x) ρψ[ψ1

i , ψ
2
i , ti]

ψ1
f (x)∫

ψ1
i (x)

Dψ1

ψ1
f (x)∫

ψ2
i (x)

Dψ2

× exp
i

�

{
S0[ψ1] +

∫
d4xJ1(x)ψ1(x) − S0[ψ2] −

∫
d4xJ2(x)ψ2(x)

}
(5.16)

Let us define the following free propagators of the ψ field

〈Tψ1(x)ψ1(y)〉0 = ΔF (x, y) (5.17)

〈ψ1(x)ψ2(y)〉0 = Δ−(x, y) (5.18)

〈T̃ψ2(x)ψ2(y)〉0 = ΔD(x, y) (5.19)

As we have seen in Chapter 3, the CTP path integral time-orders fields in the
first branch, anti-time-orders fields in the second branch, and puts fields on the
second branch to the left of fields on the first branch. Therefore these are just
the familiar Feynman, Dyson and negative-frequency Wightman propagators of
a free scalar field given respectively by

ΔF,D (x, x′) = ∓i�

∫
d4k

(2π)4
eik(x−x′)

k2 + m2
ψ ∓ iε

(5.20)

Δ− (x, x′) =
∫

d4k

(2π)4
eik(x−x′)θ

(
−k0

)
2π�δ

(
k2 + m2

ψ

)
(5.21)

The perturbation calculation by means of Feynman diagrams for the λφ4 the-
ory in the CTP formalism has been worked out before for quantum fluctua-
tions [CalHu87, CalHu89] and for coarse-grained fields [Hu91, SinHu91]. For
biquadratic coupling,

Sint[φ, ψ] = −
∫

d4xλφψφ
2(x)ψ2(x) (5.22)
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the influence action up to the second order in λ is given by (cf. [HuPaZh93a])

SIF[φ, φ′] = −
∫

d4xλφψ ΔF (x, x)
[
(φ1(x))2 − (φ2(x))2

]
+ i�−1

∫
d4x

∫
d4y λ2

φψ (φ1(x))2 [ΔF (x, y)]2 (φ1(y))2

− 2i�−1

∫
d4x

∫
d4y λ2

φψ (φ1(x))2 [Δ−(x, y)]2 (φ2(y))2

+ i�−1

∫
d4x

∫
d4y λ2

φψ (φ2(x))2 [ΔD(x, y)]2 (φ2(y))2 (5.23)

We now evaluate each term in the perturbation expansion. It is well known
that all one-loop diagrams in equation (5.23) contain ultraviolet divergences in
spacetime dimension d = 4 − ε. By dimensional regularization, one can show that
the first one-loop bubble diagram for the ψ1 field is

ΔF (x, x) = �

∫
ddp

(2π)d
(−i)

p2 + m2
ψ − iε

= −
�m2

ψ

8π2

[
1
ε

+ constant − 1
2

ln

(
m2

ψ

4πμ2

)]
(5.24)

where μ2 is the renormalization energy scale. The first term on the right-hand
side is a singular part and must be canceled by mass renormalization. The counter
action for this singular mass term is

δSr1[φ1] =
∫

d4x
�

8π2ε
m2

ψλφψ(φ1(x))2 (5.25)

The second term on the right-hand side is the one-loop finite mass renormaliza-
tion term, which can be absorbed into the definition of the physical mass of the
φ field.

For the one-loop bubble diagram for the ψ2 field, since

〈(ψ2(x))2〉0 = 〈(ψ1(x))2〉0 (5.26)

the mass renormalization counter-action for the φ2(x) field is the same as equa-
tion (5.25), so is the finite mass renormalization.

Next, for the “fish” diagram of the ψ1 field, it also can be shown by dimensional
regularization that

i�−2Δ2
F (x− y) =

∫
d4p

(2π)4
eip(x−y) 1

8π2

×
[

1
ε

+ constant − 1
2

∫ 1

0

dα ln

(
m2

ψ + α (1 − α)
(
p2 − iε

)
4πμ2

)]

=
1

8π2ε
δ4(x− y) +

1
16π2

(
2 + ψ(1) − ln

m2
ψ

4πμ2

)
δ4(x− y)

+
1
2
U(x− y) + i

1
2
ν(x− y) (5.27)
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with the following two real nonlocal kernels

U(x− y) = − 2
16π2

∫
d4p

(2π)4
eip(x−y)

1∫
0

dα ln

∣∣∣∣∣1 − iε + α(1 − α)
p2

m2
ψ

∣∣∣∣∣ (5.28)

ν(x− y) =
2

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) (5.29)

The first term on the right-hand side of equation (5.27) is another singular term.
Its counter-action is

δS2[ψ1] =
∫

d4xλ2
φψ

�

16π2ε
(φ1(x))4 (5.30)

The second term on the right-hand side of equation (5.27) represents a finite
coupling constant renormalization, which can be absorbed into a redefinition of
the physical coupling constant of the φ1 field. The contribution from the fish
diagram for the ψ2 field is obtained from the above by changing the sign of the
ν kernel; it can be renormalized with a counter-action similar to equation (5.30).

For the mixed “fish” diagram, we find

i�−2(Δ−(x, y))2 = −μ(x− y) +
i

2
ν(x− y) (5.31)

where Cutkowsky rules have been used. The kernel μ in equation (5.31)

μ(x− y) =
i

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) sgn(p0) (5.32)

is real.
Substituting equations (5.24), (5.27) and (5.31) into the influence action and

adding the counter-action equations (5.25) and (5.30), finally we obtain the
effective action for this biquadratically coupled system–environment scalar field
model as follows

Seff [φ1, φ2] = Sren[φ1] + �

∫
d4x

∫
d4y

1
2
λ2
φψ (φ1(x))2 Vφψ(x− y) (φ1(y))2

−Sren[φ2] − �

∫
d4x

∫
d4y

1
2
λ2
φψ (φ2(x))2 Vφψ(x− y) (φ2(y))2

− �

∫
d4x

∫ x0

d4y λ2
φψ

[
(φ1(x))2 − (φ2(x))2

]
×μ(x− y)

[
(φ1(y))2 + (φ2(y))2

]
+

i�

2

∫
d4x

∫
d4y λ2

φψ

[
(φ1(x))2 − (φ2(x))2

]
× ν(x− y)

[
(φ1(y))2 − (φ2(y))2

]
(5.33)
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where Sren[φ1,2] is the renormalized action of the φ1,2 field (with physical mass
m2

φr and physical coupling constant λφr),

Sren[φa] =
∫

d4x

(
−1

2
∂μφ

a∂μφa − 1
2
m2

φr(φ
a)2 − 1

4!
λφr(φa)4

)
(5.34)

where a = 1, 2. The kernel for the nonlocal potential in equation (5.33)

Vφψ(x− y) = U(x− y) − sgn(x0 − y0)μ(x− y) (5.35)

is symmetric.
For the biquadratic interaction case analyzed here, the potential renormaliza-

tion is thus

ΔV (2)(x− y) = U (2)(x− y) − sgn(x0 − y0)μ(2)(x− y) (5.36)

which is symmetric; and μ(2), ν(2) and U (2) are real nonlocal kernels

μ(2)(x− y) =
1

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) sgn(p0)

(5.37)

ν(2)(x− y) =
2

16π2

∫
d4p

(2π)4
eip(x−y) π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ) (5.38)

U (2)(x− y) = − 2
16π2

∫
d4p

(2π)4
eip(x−y)

1∫
0

dα ln

∣∣∣∣∣1 − iε− α(1 − α)

(
−p2
)

m2
ψ

∣∣∣∣∣
(5.39)

For a general polynomial-type coupling with Sint given by equation (5.4), the
renormalized full effective action has the same form as that derived above for
biquadratic coupling, except that (φa(x))2 would be replaced by f [φa(x)], etc.
(and the kernels would carry superscripts indicating the proper order k instead
of (2)). To second order in λ the renormalized full effective action is given by
[Zha90, HuPaZh93a]

Seff [φ1, φ2]

= Sren[φ1] + �
k−1

∫
d4x

∫
d4y

1
2
λ2
φψf [φ1(x)]ΔV (k)(x− y)f [φ1(y)]

−Sren[φ2] − �
k−1

∫
d4x

∫
d4y

1
2
λ2
φψf [φ2(x)]ΔV (k)(x− y)f [φ2(y)]

− �
k−1

∫
d4x

∫ x0

d4y λ2
φψ

×
{(

f [φ1(x)] − f [φ2(x)]
)
μ(k)(x− y)

(
f [φ1(y)] + f [φ2(y)]

)
− i�k−1

(
f [φ1(x)] − f [φ2(x)]

)
ν(k)(x− y)

(
f [φ1(y)] − f [φ2(y)]

)}
(5.40)
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Renormalization of the potential which arises from the contribution of the
environment appears only for even order k couplings. This is a generalization of
the result obtained in [Zha90, HuPaZh93a] where it was shown that the nonlocal
kernel μ(k)(s1 − s2) is associated with the nonlocal dissipation (or the generalized
viscosity) function that appears in the corresponding Langevin equation and
ν(k)(s1 − s2) is associated with the time–time autocorrelation function of the
stochastic forcing (noise) term. In general ν is nonlocal, which gives rise to colored
noises. Only at high temperatures would the noise kernel become a delta function,
which corresponds to a white noise source. Let us examine more closely the
meaning of the noise kernel.

5.1.2 Noise and fluctuations

The real part of the influence functional comes from the imaginary part of the
influence action which contains the noise kernel. This term can be rewritten using
a functional Gaussian identity introduced by Feynman and Vernon [FeyVer63]
and discussed in Chapter 3. Thus introducing a stochastic forcing term ξ(k)

coupled to the field:

−
∫

d4x ξ(k)(x) {f [φ1(x)] − f [φ(x2)] }/� (5.41)

we can view ξ(k)(x) as a classical nonlinear noise source external to the system
arising from the environment. The reduced density matrix is calculated by tak-
ing a stochastic average over the distribution P[ξ(k)] of this source. Since the
expansion of the action is to quadratic order, the associated noise is Gaussian.
It is completely characterized by

〈ξ(k)(x)〉ξ = 0 (5.42)

〈ξ(k)(x)ξ(k)(y)〉ξ = �
kν(k)(x− y) (5.43)

where ν(k) is redefined by absorbing the λ2
φψ. We see that the nonlocal ker-

nel �
kν(k)(x− y) is just the two-point autocorrelation function of the external

stochastic source ξ(k)(x) called colored noise.
In this framework, the expectation value of any functional operator Q[φ] of

the field φ is then given by

〈Q[φ]〉 =
∫

Dξ(k)(x)P[ξ(k)]
∫

dφ ρr(φ, φ, [ξ(k)])Q[φ] (5.44)

=
〈
〈Q[φ]〉quantum

〉
noise

(5.45)

This provides the physical interpretation of ν(k)(x− y) as a noise or fluctuation
kernel of the quantum field.
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5.1.3 Langevin equation and fluctuation–dissipation relation

We will now derive the semiclassical equation of motion generated by the influ-
ence action SIF. Define a “center-of-mass” function φ+ and a “relative” function
φ− as follows

φ+(x) =
1
2
[φ1(x) + φ2(x)] (5.46)

φ−(x) = φ1(x) − φ2(x) (5.47)

The equation of motion for φ is derived by demanding (cf. [CalHu87])

δSeff

δφ−

∣∣∣∣
φ−=0

= 0 (5.48)

which gives

−∂Lr

∂φ
+

d

dt

∂Lr

∂φ̇
+ 2

∂f(φ)
∂φ

x∫
0

d4y γ(k)(x− y)
∂f(φ(y))

∂y0
= F

(k)
ξ (x) (5.49)

We see that this is in the form of a Langevin equation with a nonlinear stochastic
force

F
(k)
ξ (x) = ξ(k)(s)

∂f(φ)
∂φ

(5.50)

This corresponds to a multiplicative noise arising from a nonlinear field coupling
(additive if f(φ) = φ). Lr is the renormalized effective Lagrangian of the system
action Seff . The nonlocal kernel γ(k)(t− s) defined by

∂

∂(x0 − y0)
γ(k)(x− y) = �

k−1μ(k)(x− y) (5.51)

is responsible for nonlocal dissipation. Interaction with the environment field
imparts a dissipative force in the effective dynamics of the system field given
by

F (k)
γ (x) = 2

∫
d4y γ(k)(x− y)

∂f(φ(y))
∂y0

∂f(φ(x))
∂φ

(5.52)

Only in special cases like a high temperature ohmic environment will the dissi-
pation become local.

In the biquadratic coupling example the corresponding stochastic force is

F
(2)
ξ (x) ∼ ξ(2)(x)φ(x) (5.53)

The γ(2) kernel is

γ(2)(x− y) =
�

16π2

∫
d4p

(2π)4
eip(x−y)π

√
1 −

4m2
ψ

(−p2)
θ(−p2 − 4m2

ψ)
1

|p0|
(5.54)
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158 Open systems of interacting quantum fields

and the dissipative force is

F (2)
γ (x) ∼ �

∫
d4y μ(x− y)φ2(y)φ(x) (5.55)

As discussed in [HuPaZh93a], we can show that a general fluctuation–
dissipation relation exists between the dissipation and the noise kernels in the
form

�
k−1ν(k)(x) =

∫
d4y K(k)(x− y)γ(k)(y) (5.56)

Apart from a delta function δ3(x − x′), the fluctuation–dissipation kernel Kk for
quantum fields has exactly the same form as for the quantum Brownian harmonic
oscillator. In general it is a rather complicated expression [HuPaZh93a], but
simplifies at high and zero temperatures. At high temperatures,

K(k)(s) =
2kBT

�
δ(s) (s ≡ x− y) (5.57)

which gives back the famous Einstein relation. At zero temperature,

K(k)(s) =
∫ +∞

0

dω

π
ω cosωs (5.58)

which is the same as in the linear coupling case. Both limiting forms are inde-
pendent of k. In other words, at both high and zero temperatures, the FDT is
insensitive to the way the system is coupled to the environment.

Our derivation of the fluctuation–dissipation relation shows that it has a more
general meaning than the more restrictive conditions where it is usually pre-
sented, e.g. in the near-equilibrium or the linear response regimes. It should be
viewed as a categorical relation depicting the stochastic stimulation of the system
and the averaged response of the environment.

5.2 Quantum functional master equation

We now turn to a derivation of the functional master equation for the system
field with the interaction described in the last section. The full equation is quite
involved because it contains nonlinear nonlocal dissipation and multiplicative
colored noise plus a nonlocal potential term. Just to see the qualitative features
let us first examine the simplified case under a local truncation to the dissipation
kernel and the noise kernel (i.e. white noise) and omitting the nonlocal potential
term. Namely, we set

γ(x− x′) = γ0δ
4(x− x′) (5.59)

�
k−1ν(x− x′) = ν0δ

4(x− x′) (5.60)

Vφψ(x− x′) = 0 (5.61)
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Under this approximation the quantum master equation derived from the influ-
ence functional is much simpler. However, we need to emphasize that this approx-
imation violates the fluctuation–dissipation relation at zero temperature. The
effective action equation (5.33) simplifies to

Seff [φ1, φ2] =
∫

d4x

{
− 1

2
∂μφ

1∂μφ1 − 1
2
m2

φr(φ
1)2 − 1

4!
λφr(φ1)4

+
1
2
∂μφ

2∂μφ2 +
1
2
m2

φr(φ
2)2 +

1
4!
λφr(φ2)4

− 2λ2
φψγ0

(
(φ1)2 − (φ2)2

)(
φ1 ∂φ

1

∂s
+ φ2 ∂φ

2

∂s

)

+ (i/2)λ2
φψν0

(
(φ1)2 − (φ2)2

)2}
(5.62)

We can now write down a “Hamiltonian” which corresponds to equation (5.62)
as

Ĥρ[φ1, φ2, t]

=
∫
d3x
{
−�

2

2
δ2

δ(φ1(x))2
+

1
2
(∇φ1(x))2 +

1
2
m2

φr(φ
1(x))2 +

1
4!
λφr(φ1(x))4

+
�

2

2
δ2

δ(φ2(x))2
− 1

2
(∇φ2(x))2 − 1

2
m2

φr(φ
2(x))2 − 1

4!
λφr(φ2(x))4

− 2i�λ2
φψγ0

[
(φ1(x))2 − (φ2(x))2

] [
φ1(x)

δ

δφ1(x)
− φ2(x)

δ

δφ2(x)

]

− (i/2)λ2
φψν0

[
(φ1(x))2 − (φ2(x))2

]2}
(5.63)

which also is correct up to order of λ2
φψ. Therefore the quantum functional master

equation is given by the following functional “Schrödinger” equation

i�
∂

∂t
ρr[φ1, φ2, t] = Ĥρ[φ1, φ2, t] ρr[φ1, φ2, t] (5.64)

This quantum functional master equation for the system field is very similar
to the quantum master equation for the anharmonic oscillator with nonlinear
dissipation and nonlinear coupled noise in the Brownian particle model treated
in [HuPaZh93a].
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Let us define the Wigner functional for the quantum field as follows

W [φ, π, t] =
∫

dψ(x) exp
{
i�−1

∫
d3xπ(x)ψ(x)

}
× ρr

[
φ− 1

2
ψ, φ +

1
2
ψ, t

]

(5.65)

Applying equation (5.65) to both sides of the above functional master equation,
we can obtain the following Wigner functional equation

∂

∂t
W [φ, π, t]

=
∫

d3x
{
−π(x)

δ

δφ(x)
− [∇φ(x) · ∇ + m2

φrφ(x) +
1
6
λφrφ

3(x)]
δ

δπ(x)

+ 4λ2
φψγ0φ

2(x)
δ

δπ(x)
π(x) + 2�λ2

φψν0φ
2(x)

δ2

δπ2(x)

+ �
2λφrφ(x)

δ3

δφ3(x)
+ 2λ2

φψ�
2γ0φ(x)

δ3

δφ(x)δπ2(x)

}
W [φ, π, t] (5.66)

It is clear that the last two terms on the right-hand side of equation (5.66) which
contain third-order derivatives are the quantum corrections. In the classical limit
they go to zero, and equation (5.66) becomes the functional Fokker–Planck equa-
tion. We also know that the Wigner functional (5.65) becomes the classical phase
space distribution functional in the classical limit.

The quantum Wigner function contains just as much information as the wave-
function so it oscillates and can assume negative values. In particular it does not
exhibit a peak along the classical trajectory in phase space except at high tem-
perature or for harmonic oscillators. Thus viewing the quantum Wigner func-
tion as possessing the equivalent traits of a classical one-particle phase space
distribution function is untenable except under special conditions. This has spe-
cial significance in quantum–classical correspondence issues. See discussions in
[Hab90, HabLaf90].

One can also show that the following “equilibrium” state distribution

W [φ, π] ∼ exp−β̄

∫
d3x
{

1
2
π2(x) +

1
2
(∇φ(x))2 +

1
2
m2

φrφ
2(x) +

1
4!
λφrφ

4(x)
}

(5.67)

is the asymptotic solution of the above functional Wigner equation in the classical
limit, provided that β̄−1 = �ν0/γ0. Thus the above functional Wigner equation
can describe the process of relaxation to equilibrium state.

We are now ready to present the functional master equation. The calculation
closely parallels that of the QBM case studied in Chapter 3 [HuPaZh92, Paz94].
The quantum functional master equation for the case of nonlocal dissipation,
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colored noise and nonlocal potential is given by

i�
∂

∂t
ρr[φ1, φ2, t]

=
∫

d3x
{
− �

2

2
δ2

δ(φ1(x))2
+

1
2
(∇φ1(x))2 +

1
2
m2

φr(φ
1(x))2 +

1
4!
λφr(φ1(x))4

+
�

2

2
δ2

δ(φ2(x))2
− 1

2
(∇φ2(x))2 − 1

2
m2

φr(φ
2(x))2 − 1

4!
λφr(φ2(x))4

− iλ2
φψa1(x, s)

[
(φ1(x))2 + (φ2(x))2

]
+ 2λ2

φψa2(x, t)
[
(φ1(x))2 + (φ2(x))2

]
−λ2

φψ (φ1(x))2 {v ∗ Ô2
+}(x, t) + λ2

φψ(φ2(x))2 {v ∗ Ô2
−}(x, t)

−λ2
φψ

[
(φ1(x))2 − (φ2(x))2

]
{μ ∗ (Ô2

+ + Ô2
−)}(x, t)

− (i/2)λ2
φψ

[
(φ1(x))2 − (φ2(x))2

]
{ν ∗ (Ô2

+ − Ô2
−)}(x, t)

}
ρr[φ, φ′, t]

(5.68)

where ∗ denotes convolution, namely

{v ∗ φ2}(x, t) =

t∫
t0

ds

∫
d3x′ v(x − x′, t− s)φ2(x′, s) (5.69)

The time-dependent coefficients in equation (5.68) are as follows

a1(x, t) =

t∫
t0

ds

∫
d3x′ v(x − x′, t− s)Q(s) = {v ∗Q}(x, t) (5.70)

a2(x, t) =

t∫
t0

ds

∫
d3x′ ν(x − x′, t− s)Q(s) = {ν ∗Q}(x, t) (5.71)

where

Q(s) =
∫

d3k
(2π)

sinω(k)(s− t0) sinω(k)(t− s)
ω(k) sinω(k)(t− t0)

(5.72)

and the operators

Ô+(x, s) ≡ {α(t− s) ∗ φ1
f}(x) −

{
β(t− s) ∗ i �δ

δφ1
f

}
(x) (5.73)

Ô−(x, s) ≡ {α(t− s) ∗ φ2
f}(x) +

{
β(t− s) ∗ i �δ

δφ2
f

}
(x) (5.74)

with

α(x, s) =
∫

d3k
(2π)3

eik·x cosω(k)s (5.75)

β(x, s) =
∫

d3k
(2π)3

eik·x
sinω(k)s
ω(k)

(5.76)
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This is a nonstationary quantum functional master equation. In spite of its
complicated appearance (convolution products appearing in the equation), it is
not difficult to see that the structure of the equation is similar to the nonsta-
tionary quantum master equation for a Brownian anharmonic oscillator with
nonlinear dissipation and multiplicative colored noise. Actually, in momentum
space, the convolution product becomes a direct product, so the above equation
in momentum space will become the quantum master equation for one particular
mode (harmonic oscillator). However, the different modes will still be coupled
together in the quantum master equation because of mode–mode coupling in
the system field via the nonlinear potential. We now turn to the case of one
interacting field divided into two sectors.

5.3 The closed time path coarse-grained effective action

To add some physical flavor to our derivation and in anticipation of applications
to problems in cosmology, we consider the action of a massless scalar field with
λφ4 self-interaction coupled conformally to a spatially-flat Friedmann–Lemaitre–
Robertson–Walker universe. The conformal-related field χ (introduced in
Chapter 4) is related to φ by χ = a(t)φ and the conformal time η is related
to the cosmic time t by η =

∫
dt/a(t). We shall use d4x to denote d3x dη in

the remainder of this chapter. Since our purpose here is more to illustrate the
coarse-graining idea in the construction of a CGEA than to discuss cosmolog-
ical applications (see Chapter 15), we can just view the scale factor a(t) = eα

as a scaling parameter rather than a dynamical function determined from Ein-
stein’s equations. The content of this section can thus be used without reference
to cosmology by treating a as a constant, e.g. setting a = 1 would keep us in
a Minkowski spacetime with the conformal time η acting as the global time t.
However we wish to tag along the scale factor a so that later we can view the
inflationary cosmology in the light of scaling [Hu91] without added effort.

We begin by separating the quantum field χ(x, η) into two parts, χ = χ< + χ>,
where χ< contains the lower k wave modes and χ> the higher k modes. We can
refer to these two sectors as the system and the environment respectively. Two
useful physical examples are

Case A (critical phenomena)

χ< :| k |< Λ/s, χ> : Λ/s <| k |< Λ (5.77)

where Λ is the ultraviolet cut-off and s > 1 is the coarse-graining parameter
which gives the fraction of total k modes counted in the environment.

Case B (stochastic inflation)

χ< :| k |< εHa, χ> :| k |> ε Ha, ε ≈ 1 (5.78)
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where the Hubble constant H(t) ≡ ȧ/a (the event horizon in the de Sitter uni-
verse) serves to divide the physical wavelength p ≡ k/a into two sectors, with a
window function measuring how sharp the division is. We will have more to say
about this point in Chapter 15. For now, we can build up our intuition for the
coarse-graining ideas using Case A as an illustrative example. The separation
of χ can also be made in other manners, depending on the physical set-up of
the problem and the questions one asks. The formalism we present here is quite
general. Our presentation for this model follows [LomMaz96].

Explicitly, we define the system by

χ<(x, η) =
∫
|k|<Λc

d3k
(2π)3

χ(k, η)eik·x (5.79)

and the environment by

χ>(x, η) =
∫
|k|>Λc

d3k
(2π)3

χ(k, η)eik·x (5.80)

The system field contains the modes with wavelengths longer than the critical
value Λ−1

c , while the environment field contains wavelengths shorter than Λ−1
c .

Λc corresponds to s−1Λ. After the splitting, the total action can be written as

S[a, χ] = S[χ<] + S0[χ>] + Sint[a, χ<, χ>] (5.81)

where S0 denotes the kinetic term

S0[χ] = −1
2

∫
dη

∫
d3k

(2π)3

{
χ(k, η)

[
∂2

∂η2
+ k2

]
χ(k, η)

}
(5.82)

S[χ<] is the system action,

S[χ<] = S0[χ<] −
∫

d4x

{
1
2
M2χ2

< +
λ

4!
χ4
<

}
(5.83)

and the interaction part is given by

Sint[a,χ<,χ>] = −
∫

d4x

{[
1
2
M2 +

λ

4
χ2
<(x)

]
χ2
> +

λ

4!
χ4
> +

λ

6
χ3
<χ> +

λ

6
χ<χ

3
>

}

(5.84)

with

M2 =
[
m2 +

(
ξ − 1

6

)
R

]
a2 (5.85)

We are interested in the influence of the environment on the evolution of
the system. To this end, we seek to construct the Feynman–Vernon influence
functional, following the methods of Chapter 3. This is obtained by integrating
over the environment field configurations between an initial time η = −ηi and
a final time η = ηf . When ηi, ηf are larger than any other characteristic time
and the environment field is initially in the vacuum state, the Feynman–Vernon
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influence action turns into the so-called closed time path (CTP) coarse-grained
effective action (CGEA) SΛ[a1, χ1

<, a
2, χ2

<], which is defined by

exp
{
i�−1SΛc

[a1, χ1
<, a

2, χ2
<]
}

= exp i�−1
{
S[χ1

<] − S[χ2
<]
}∫

dχ>f

∫ χ>f

Dχ1
>

∫ χ>f

Dχ2
> exp i�−1

×
{
S0[χ1

>] + Sint[a1, χ1
<, χ

1
>] − S0[χ2

>] − Sint[a2, χ2
<, χ

2
>]
}

(5.86)

The integration here is performed over all fields χ1
> ( χ2

>) with positive (negative)
frequency modes in the remote past that coincide at the final time χ1

> = χ2
> =

χ>f . More general initial conditions will be discussed in later chapters.
We now derive the CTP CGEA perturbatively in λ and M2, up to quadratic

order in both quantities. A simple calculation leads to

SΛc
[a1, χ1

<, a
2, χ2

<] = S[χ1
<] − S[χ2

<] + 〈Sint[a1, χ1
<, χ

1
>]〉0 − 〈Sint[a2, χ2

<, χ
2
>]〉0

+
i

2�

{
〈Sint[a1, χ1

<, χ
1
>]2〉0 − 〈Sint[a1, χ1

<, χ
1
>]〉0

2
}

− i�−1
{
〈Sint[a1, χ1

<, χ
1
>]Sint[a2, χ2

<, χ
2
>]〉0

−〈Sint[a1, χ1
<, χ

1
>]〉0〈Sint[a2, χ2

<, χ
2
>]〉0

}
+

i

2�

{
〈Sint[a2, χ2

<, χ
2
>]2〉0 − 〈Sint[a2, χ2

<, χ
2
>]〉0

2
}

(5.87)

where the quantum average of a functional of the fields Q is defined with respect
to the kinetic action S0

〈Q[χ1
>, χ

2
>]〉0 =

∫
dχ>f

∫ χ>f

Dχ1
>

∫ χ>f

Dχ2
> exp i�−1

{
S0[χ1

>] − S0[χ2
>]
}
Q

(5.88)
Equation (5.87) is the in–in version of the Dyson–Feynman series.

We define the propagators of the environment field as

〈Tχ1
>(x)χ1

>(y)〉0 = GΛc

F (x− y), (5.89)

〈χ1
>(x)χ2

>(y)〉0 = GΛc
− (x− y), (5.90)

〈T̃ χ2
>(x)χ2

>(y)〉0 = GΛc

D (x− y). (5.91)

where T, T̃ denote time- and reversed-time ordering respectively.
Despite their appearance these propagators are not the usual Feynman,

negative-frequency Wightman and Dyson propagators of the scalar field since, in
this case, the momentum integration is restricted by the presence of the (infrared)
cut-off Λc. The explicit expressions are

GΛc

F (x− y) = −i�

∫
|p|>Λc

d4p

(2π)4
eip(x−y) 1

p2 − iε
(5.92)

GΛc
− (x− y) =

∫
|p|>Λc

d4p

(2π)4
eip(x−y)2π�δ(p2)Θ(−p0) (5.93)

GΛc

D (x− y) = i�

∫
|p|>Λc

d4p

(2π)4
eip(x−y) 1

p2 + iε
(5.94)
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As an example, we show the expression for the propagator GΛc

F . The usual mass-
less Feynman propagator is

�
−1ΔF (x) =

1
8π2

1
σ

+
i

8π
δ(σ) (5.95)

while

�
−1GΛc

F (x) =
(−1)
8π2

[
cos[Λc(r − x0)]

r(r − x0)
+

cos[Λc(r + x0)]
r(r + x0)

]

+
i

8π2

[
sin[Λc(r − x0)]

r(r − x0)
− sin[Λc(r + x0)]

r(r + x0)

]

GΛc

F (x) ≡ ΔF (x) −G
|p|<Λc

F (x) (5.96)

where σ = − 1
2x

2 and r = |x|.
The CTP CGEA can be computed from equations (5.87)–(5.91) using standard

techniques [GreMul97]. Defining(
M̃1,2

)2

= M2 +
λ

2

(
χ1,2
<

)2

(5.97)

χ
(n)
− = (χ1

<)n − (χ2
<)n, χ

(n)
+ =

1
2
[
(χ1

<)n + (χ2
<)n
]

λQ− = (M̃1)2 − (M̃2)2, λQ+ =
1
2

[
(M̃1)2 + (M̃2)2

] (5.98)

and using simple identities for the propagators, the CTP CGEA can be written
as

SΛc=S(χ1
<) − S(χ2

<) +
λ

4

∫
d4xGΛc

F (0)Q−(x)

+�
−1λ2

∫
d4x

∫
d4yΘ(y0 − x0)

{
1
18

χ
(3)
+ (x) ImGΛc

F (x− y)χ(3)
− (y)

− 1
4
Q+(x) Im

[
GΛc

F (x− y)
]2

Q−(y)− 1
3
χ

(1)
+ (x) Im

[
GΛc

F (x− y)
]3

χ
(1)
− (y)

}

+
iλ2

4�

∫
d4x

∫
d4yΘ(y0 − x0)

{
1
18

χ
(3)
− (x) ReGΛc

F (x− y)χ(3)
− (y)

+
1
4
Q−(x) Re

[
GΛc

F (x− y)
]2

Q−(y)

− 1
3
χ

(1)
− (x) Re

[
GΛc

F (x− y)
]3

χ
(1)
− (y)

}
(5.99)

The real part of the CTP CGEA in equation (5.99) contains divergences and
must be renormalized. As the propagators in equations (5.89)–(5.91) differ from
the usual ones only by the presence of the infrared cut-off, the ultraviolet diver-
gences coincide with those of the usual λχ4 theory. The effective action can
therefore be renormalized using the standard procedure. (For the renormal-
ization of quantum fields in curved spacetimes, it is necessary to add to the
Einstein–Hilbert term in the gravitational action a cosmological constant, and
terms quadratic in the curvature tensor. See, e.g. [BirDav82].)
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Consider the square of the Feynman propagator. Using dimensional regular-
ization we find

[GΛc

F (x)]2 = [ΔF (x)]2 + [G(|p|<Λc)
F (x)]2 − 2ΔF (x)G(|p|<Λc)

F (x) (5.100)

where

�
−2Δ2

F (x) =
1

16π2

[
i

n− 4
+ iψ(1) − 4πi + ln(4πμ2)

]
δ4(x) + iR1(x) + R2(x)

(5.101)

R1(x) =
1

(2π)4

∫
d4p eipx ln |p2|

R2(x) =
π

(2π)4

∫
d4p eipxΘ(−p2)

Note that the divergence is the usual one, i.e. proportional to δ4(x− y) and
independent of Λc. Consequently, the term Re[GΛ

F (x− y)]2Q+(x)Q−(y) in equa-
tion (5.99) is divergent and renormalizes the coupling constant λ and the con-
stants that appear in the gravitational action. The other divergences can be
treated in a similar way. One can also check that the imaginary part of the
effective action does not contain divergences. Of course, a successful ultraviolet
renormalization does not guarantee that an approximation scheme such as RG-
improved perturbation theory will be well behaved. An example is in the RG
equations for λφ4 fields [Hu91] where loops depend on a factor eH(t−t0) which
would invalidate perturbation theory. Further “infrared” H-dependent (envi-
ronmentally friendly) renormalization of λ is needed [OCoSte94a, OCoSte94b,
EiOCSt95, Ste98, FEOS96].

As we have seen in Chapter 3, the (nonlocal) real and imaginary parts of SΛc

can be associated with the dissipation and noise respectively, which are related
by an integral equation known as the fluctuation–dissipation relation.

5.3.1 Stochastic equations

The Langevin equation

We now show how to derive a Langevin equation for the system field from the
CTP CGEA. This equation takes into account the three fundamental effects of
the environment on the system: renormalization, dissipation and noise.

The CTP CGEA for our model is given in equation (5.99). Since the imaginary
part is quadratic in the system field, we can invoke the Gaussian identity used
by Feynman and Vernon [FeyVer63], as discussed in Chapter 3. The CTP CGEA
can thus be rewritten as

SΛc [χ
1
<, χ

2
<] = −i� ln

∫
Dξ1P [ξ1]

∫
Dξ2P [ξ2]

×
∫

Dξ3P [ξ3] exp
{
i�−1Seff [χ1

<, χ
2
<, ξ1, ξ2, ξ3]

}
(5.102)
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where

Seff [χ1
<, χ

2
<, ξ1, ξ2, ξ3]

= ReSΛc
[χ1

<, χ
2
<] −

∫
d4x
[
χ

(3)
− (x)ξ1(x) + Q−(x)ξ2(x) + χ

(1)
− (x)ξ3(x)

]
(5.103)

and ξ1(x), ξ2(x), and ξ3(x) are Gaussian stochastic sources with zero mean and
auto-correlations

〈ξ1(x)ξ1(y)〉 =
λ2

9
ReGΛc

F (x− y) (5.104)

〈ξ2(x)ξ2(y)〉 =
λ2

2
Re
[
GΛc

F (x− y)
]2

(5.105)

〈ξ3(x)ξ3(y)〉 =
2λ2

3
Re
[
GΛc

F (x− y)
]3

(5.106)

From this effective action it is easy to derive the stochastic field equation for
the system

∂Seff [χ1
<, χ

2
<, ξ1, ξ2, ξ3]

∂χ1
<

∣∣∣∣
χ1
<=χ2

<

= 0 (5.107)

It is given by (
∂2

∂ξ2
3

−∇2

)
χ< +

[
M2 +

λ

2
GΛc

F (0)
]
χ< +

λ

6
χ3
<

+
λ2

6
χ2
<(x)

∫
d4y θ(x0 − y0)ImGΛc

F (x, y)χ3
<(y)

− λ2

2
χ<(x)

∫
d4y θ(x0 − y0)Re[GΛc

F (x, y)]2χ2
<(y)

− λ2

3

∫
d4y θ(x0 − y0)Im[GΛc

F (x, y)]3χ<(y)

= 3ξ1(x)χ2
<(x) + 2ξ2(x)χ<(x) + ξ3(x) (5.108)

This is the functional Langevin equation derived from the variation of the
CTP CGEA. By construction, it is real and causal. We see that it contains mul-
tiplicative and additive colored noise. The nonlinear coupling between modes
adds complexity to the Langevin equation. This class of equations was first
derived by Sinha and Hu [SinHu91] for considerations of the validity of minisuper-
space approximations in quantum cosmology, and by Lombardo and Mazzitelli
in [LomMaz96], whose treatment we follow here. Greiner and Müller [GreMul97]
obtained a similar stochastic equation in flat spacetime, for a thermal environ-
ment. They found explicit expressions for the momentum-dependent dissipation
function in the Langevin equation using a Markovian approximation for the soft
modes.
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The master equation (for one-mode system)

As we have seen in Chapter 3, an equivalent depiction of the dynamics of the open
system is obtained from the master equation for the reduced density matrix. A
functional master equation for the long-wavelength modes may be derived along
similar lines [LomMaz96], but in general it is very complicated. A tractable result
can be obtained when the system field contains only one mode k = k0. This is a
sort of “minisuperspace” (the space of modes in this case) approximation. Also
we keep terms only up to O

(
λ2
)
. Under these approximations the general form

of the master equation is given by

i�∂hρr[χ1
<f , χ

2
<f , η] = 〈χ1

<f |
[
Ĥren, ρ̂r

]
|χ2

<f 〉

− iλ2

[
−

[(χ1
<f )3 − (χ2

<f )3]2V
1152

D3(k0; η)

+
[(χ1

<f )2 − (χ2
<f )2]2V

32
D2(k0; η)

−
(χ1

<f − χ2
<f )2V

6
D1(k0; η)

]
ρr[χ1

<f , χ
2
<f , η] + . . . (5.109)

Due to the complexity of the equation, we only show the correction to the usual
unitary evolution term coming from the noise kernels. The full expression can
be found in [LomMaz96]. This equation contains three time-dependent diffusion
coefficients Di(η). (The subscripts 3, 2, 1 refer to the order of the system field
φ<f .) Up to one loop, only D3 and D2 survive and are given by

D3(k0; η) =
∫ t

0

ds cos3(k0s) ImGΛc

F (3k0; η − s)

≈ 1
6k0

∫ t

0

ds cos3(k0s) cos(3k0s) θ(3k0 − Λc)

=
2k0η + 3 sin(2k0η) + 3

2 sin(4k0η) + 1
3 sin(6k0η)

576 k2
0

for
Λc

3
< k0 < Λc (k0 ≡ |k0|) (5.110)

D2(k0; η) =
∫ h

0

ds cos2(k0s)
{

Re[GΛc

F (2k0; η − s)]2 + 2Re[GΛc

F (0; η − s)]2
}

(5.111)
Using the expressions

Re[GΛc

F (2k0; η − s)]2 =
π�

2

k0

{∫ 2k0+Λc

Λc

dp

∫ 2k0+p

Λc

dz cos[(p + z)s]

+
∫ ∞

2k0+Λc

dp

∫ p+2k0

p−2k0

dz cos[(p + z)s]

}
(5.112)

Re[GΛc

F (0; η − s)]2 = π�
2

{
2πδ(s) − 2

sin(2Λcs)
s

}
(5.113)
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the D2 diffusion coefficient can be written as

�
−2D2(k0; η) =

π

4

{
3π −

(
3
2
− Λc

2k0

)
Si[2η(Λc − k0)]

−
(

2 − Λc

2k0

)
Si[2Λcη] −

(
3
2

+
Λc

2k0

)
Si[2η(Λc + k0)]

− (1 +
Λc

2k0
)Si[2η(2k0 + Λc)]

+
1

4k0η
(cos[2Λcη] − cos[2η(Λc + k0)]

+ cos[2η(Λc − k0)] − cos[2η(2k0 + Λc)])
}

(5.114)

where Si[z] denotes the sine-integral function [AbrSte72].
Equation (5.109) is the field-theoretical version of the QBM master equation

we were looking for, except that the system here has nonlinear coupling. Owing
to the existence of three interaction terms (χ3

<χ>, χ2
<χ

2
>, and χ<χ

3
>) there are

three diffusion coefficients in the master equation. The form of the coefficients
is fixed by these couplings and by the particular choice of the quantum state of
the environment.

Note that these results are valid in the single-mode approximation. In this
approximation one obtains a reduced density matrix for each mode k0, and
neglects the interaction between different system modes. Due to this interaction,
ρr will be different from

∏
k0

ρr(k0) in the general case. These results will be
applied to the consideration of decoherence of quantum fields in Chapter 9 and
cosmological structure formation in Chapter 15.
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