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Applications In deep inelastic scattering 

The preceding chapters have established the theoretical framework 
which ought to describe the perturbative scattering of strongly 
interacting particles at high centre-of-mass energies (in the Regge 
region). In this chapter (and the next), we shall attempt to place 
this framework under the experimental spotlight. That is to say, 
we shall turn the theoretical calculations of the preceding chapters 
into physical cross-sections for processes which can be measured 
at present or future colliders. 

To construct these cross-sections, we need to specify the impact 
factors which define the coupling of the Pomeron to the external 
particles. These impact factors are then convoluted with the uni­
versal BFKL amplitude, f(w, kI, k2' q) (see Eq.( 4.33)) in order to 
obtain the relevant elastic-scattering amplitude. Remember that 
we are using perturbation theory and so can take our result seri­
ously only if we are sure that the typical transverse momenta are 
much larger than AQCD. As we showed in Section 5.1, for t = 0 
the largeness of the typical transverse momenta is assured pro­
vided we pick processes with impact factors which are peaked at 
large transverse momenta. Clearly, this is not the case for proton­
proton scattering and that is why we were not surprised to find 
that our results were incompatible with the relatively modest rise 
of the p-p total cross-section with increasing s. Another way of 
keeping our integrals away from the infra-red region is to work at 
high-t but we defer this topic until the next chapter. 

In this chapter we shall focus on the process of deep inelastic 
lepton-nucleon scattering. In the centre-of-mass frame, the incom­
ing lepton is scattered through a large angle, radiating a highly 
virtual photon (,*) which scatters inelastically off the incoming 
nucleon (let us say it is a proton, p). The total cross-section for 
,*p - X (where X labels all possible final states) is obtained by 
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140 Applications in deep inelastic scattering 

taking the imaginary part of the elastic ,*p ---7 ,*p cross-section 
at t = ° (recall the optical theorem of Chapter 1). For high ,*-p 
centre-of-mass energies we can try to use the BFKL amplitude to 
compute this cross-section. As we shall see, the high virtuality of 
the ,* provides the large scale in the associated impact factor. 
Unfortunately, we also need the impact factor associated with the 
proton line. In this case (as is also the case in p-p scattering) 
we have no large scale (indeed we cannot calculate this impact 
factor using perturbation theory) and as such must consider the 
fact that our transverse momentum integrals pick up significant 
contributions from the infra-red region. 

After illuminating the above remarks, we will consider a pro­
cess which should provide a much more direct test of the purely 
perturbative dynamics. By picking the impact factor associated 
with the proton such that it describes the production of a par­
ton of high PT into the final state, we can sidestep the infra-red 
problems which plague the deep inelastic total cross-section. 

In Section 6.4, we shall discuss how our approach relates to the 
more conventional ('Altarelli-Parisi') one. To finish the chapter 
we demonstrate that the assumption of multi-Regge kinematics 
(i.e. strong ordering of the Sudakov components) is not in general 
suitable as we move away from the discussion of elastic-scattering 
amplitudes (and hence total cross-sections). 

6.1 Introduction 

The basic deep inelastic amplitude for electron-proton (e-p) scat­
tering is shown in Fig. 6.1. The incoming electron and proton 
four-momenta are k and p, respectively, and the virtual (space­
like) photon has four-momentum q. The important kinematic in­
variants are 

Q2 _q2 > 0, 

s (p+k)2, 
W2 (p + q)2, 

Q2 
~ 

Q2 
X ~ 

Q2 + W2' 2p· q 
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k 

p 

Fig. 6.1. The basic deep inelastic scattering process. 

and 
p' q Q2 

y= -- ~-. 
p' k :vs 

The approximate equalities become exact in the limit of negligi­
ble lepton and proton masses. We shall subsequently assume this 
limit. As always, we also work in the high energy limit, i.e. 

W2~Q2~M;. 

Since this inequality implies that :v ~ 1 we say we are working in 
the low-:v regime. 

The total e-p cross-section can be written as a contraction of 
a lepton tensor (calculated purely within QED) and a hadronic 
tensor. t The hadronic tensor is then written in terms of two in­
dependent structure functions (utilizing gauge, Lorentz and time­
reversal invariance, parity conservation and assuming unpolarized 
beams), i.e. 

d2
(T 27ra2 {[ ( )2] ( 2) 2 2 } d:vdQ2 = :vQ4 1 + 1 - Y F2 :v, Q - y FL(:V, Q) , (6.1) 

where a is the fine structure constant. Given the assumptions, this 
is a completely general expression and tells us nothing about the 

t For those readers unfamiliar with these details, we refer to the standard 
texts, e.g. Close (1979). 
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functional form of structure functions. However, we can re-write 
them in terms of the cross-sections for scattering transverse or 
longitudinal photons off the proton, i.e. 

F2(x,Q2) 4Q: (O"r(x,Q 2) + O"L(X,Q2)) 
7ra 
Q2 2 

FL(x,Q2) 47r2aO"L(X,Q ). (6.2) 

Our goal in the next section will be to calculate these structure 
functions as far as is possible (we will struggle with the proton 
impact factor). 

6.2 The low-x structure functions 

We shall obtain the structure functions by computing the imag­
inary part of the amplitude for elastic ,*p scattering (for each 
photon polarization). In the high energy limit, for photons with 
polarization A, we have (from Eq.(4.36)) 

2 9 J d2 k 1 d2k2 
O"),(x,Q ) = (27r)4 ki ki <P),(kl)<Pp(k2)F(x, kI, k2), 

(6.3) 
where <Pp is the proton impact factor and <P), is the impact factor 
for a photon of polarization A. This equation is shown graphically 
in Fig. 6.2 for one particular contribution to the photon impact 
factor (e.g. there are also contributions where the gluons couple 
to the different quark lines). Notice that we have shifted to a 
more convenient notation (with respect to Eq.(4.36)): we have 
suppressed all dependence on the momentum transfer q since it is 
zero and we have taken the inverse Mellin transform of the BFKL 
amplitude so as to obtain it as a function of x ~ Q2 /W2. 

We have already computed the BFKL amplitude (see 
Eq.( 4.28)), i.e. 

(6.4 ) 

This is where the x-dependence of our final result resides and we 
can clearly see that the leading eigenvalue of the kernel leads to a 
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6.2 The low-z structure functions 143 

Fig. 6.2. One of the graphs contributing to the amplitude for elas­
tic "(*z; scattering. The '®' symbols represent the convolution of 
the BFKL amplitude with the impact factors. 

strong rise with decreasing z, i.e. 
-Wo 

F rv ---;:z== 
Jln1/z' 

where Wo is as in Eq.(4.31), i.e. Wo = 4iisln2.t This translates 
directly into the same rise at low z for the total deep inelastic 
scattering cross-section (i.e. the structure functions F2( z, Q2) and 
FL(Z, Q2)). We will discuss this behaviour and compare it with 
experimental data shortly. For now let us merely say that the 
data on low-z structure functions does indeed exhibit a strong 
rise with decreasing z. This is the first time a total cross-section 
has been measured which rises strongly with increasing centre-of­
mass energy. Such a rise cannot be explained by the soft Pomeron 

t Recall that 0:. = 3Ci../7r for the three colours of QeD. 
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144 Applications in deep inelastic scattering 

pole which describes so well the total hadronic cross-sections and 
we are therefore encouraged in our attempt to use perturbative 
QeD. 

It only remains to compute the impact factors and perform 
the convolution. We are unable to compute the proton impact 
factor using perturbation theory and so we choose to take it as a 
phenomenological input. We expect it to describe some primordial 
gluon distribution in transverse momenta which is peaked around 
"-' Mp. The photon impact factor is calculable in perturbation 
theory. The calculation is detailed in Appendix A to this chapter. 

Using these impact factors along with Eqs.(6.3) and (6.4), we 
can deduce the proton structure functions up to the largely un­
known proton impact factor, <1>p(k2). Before discussing this pro­
cedure further we want to deviate a little in order to introduce the 
concept of the gluon distribution (or density) function. 

We define the unintegrated gluon density, F(x,k), to be 
that (dimensionless) 'cross-section' which would be observed if 
the photon impact factor (<1> >.) were replaced by the impact factor 
<1>g where 

Thus we have the definition 

(6.5) 

The gluon density is then defined to be 

where we have introduced the theta (step) function, 0(Q2 - k 2 ), 

which is defined to equal unity when Q2 > k 2 and zero when 
Q 2 < k 2 • This definition of the gluon density will be particularly 
useful when we come to make our comparisons with the Altarelli­
Parisi approach to the structure functions at low x. For now it 
merely simplifies our notation. Note that F(x, k) contains the 
BFKL dynamics (convoluted with the proton impact factor) but 
that, unlike the structure functions, it is not a physical observable. 
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6.2 The low-x structure functions 145 

The structure functions are thus given by 

2 ~J d2kF(x,k)(..T. (k) ..T. (k)) 
F2(X, Q) = 47r 2a k4 47r '£T + '£L 

Q2 nj 2 J d2k 11 
-2asLeq k2F(:z:,k) dpdT 
47r q=1 0 

X 1 - 2p(1- p) - 2T(1- T) + 12p(1- p)T(l- T) (6.7) 
Q2p(1 - p) + k 2T(1- T) 

and 

We have multiplied by the factor T(F) = t, to account for the 
colour factor associated with the upper quark loop. The impact 
factors, <PT and <P L, are for scattering off transverse and longi­
tudinal photons, respectively, and their calculation is detailed in 
Appendix A to this chapter. 

Note that our definition of G(:z:, Q2) is such that, in the limit 

k2 ~ Q2 

(which is equivalent to taking the leading log Q2 approximation 
to the BFKL equation and is usually referred to as the double 
leading log approximation), we can write 

~ 2ct s r1 2 2 L.. eq6 in dTPqg(T)G(X, Q ) 
q=1 0 

nj _ 

""' 2 as 2 L.. eqgG(x, Q ), 
q=1 

(6.9) 

where Pqg(T) = t(T2 + (1- T)2) is the usual Altarelli-Parisi split­
ting function. The key to obtaining this expression is to notice 
that, after differentiating Eq.(6.7) with respect to lnQ2, the dom­
inant contribution to the p integral is from the end-points where p 

is within T(l - T)k2/Q2 of either 0 or 1 (modulo terms which are 
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146 Applications in deep inelastic scattering 

suppressed by "-' k 2/Q2). Later we shall discuss the connection 
between the Altarelli-Parisi and the BFKL approaches in more 
detail. 

Let us conclude this section by introducing a toy model for the 
proton impact factor. We can then compute the low-a: structure 
functions. We will try an impact factor of the form 

(6.10) 

where JL is a scale which is typical of the non-perturbative dynam­
ics and 0 is essentially unknown (except that we know that 0 > ~ 
in order that the k' integral is finite). The k' integral can now be 
performed since 

! d2k' ( k,2 )0 (k,2)-1/2-iv 
k,2 k,2 + JL2 

_ (2)-1/2-ivr(0 - 1/2 - iv)r(1/2 + iv) 
- 7r JL r( 0) . (6.11) 

Thus, in the n = 0 limit, which selects the leading eigenvalue of 
the kernel (the angular integrals are then trivial), we have 

;:-(a:, k) 

k 2 

The constant Ng contains the unknown normalization of the pro­
ton impact factor as well as the colour factor and factors of 7r. 

Substituting this into the expression for F2( a:, Q2), we can also 
perform the k integral, using 
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6.2 The low-;e structure functions 147 

Putting all this together we obtain the result that 

(
Q2)1/2N, 1 1 00 

F2(x, Q2) = -2 gas L.>~ r dp r dr! dv 
JL 87r Jo Jo -00 

1 (Q2) iv 
X -2 exp(as xo(v)ln1/;e) 

cosh7rv JL 

x [1 - 2p(1- p) - 2r(1 - r) + 12rp(1 - r)(1 - p)] 

[
P(1- p)] -l/2+iv r(8 -1/2 - iv)r(1/2 + iv) 

x r(1 _ r) r(1 - r)r(8) . (6.14) 

We can perform the v-integral by expanding about the sad­
dle point t at v ;:::; o. This has the effect of decoupling all the 
8-dependence and renders the p- and r-integrals purely numeri­
cal. Thus we can factorize them into some new (and unknown) 
constant, N2. Our final result for F2(;e, Q2) is therefore 

_ 2 (Q 2)1/2 ewolnl/x 
F2(x, Q2) ;:::; N2as '" e -

L.. q JL2 y'asln 1/;e 

x exp (_ In 2(Q2 / JL2) ). 
56as ((3)ln 1/;e (6.15) 

In Fig. 6.3, we show a sample of the HERA data collected 
from e-p collisions at a centre-of-mass energy VS ;:::; 300 GeV. 
The curves arise from Eq.(6.15). What exactly did we do with 
Eq.(6.15) in order to produce these curves? The answer to this 
question highlights the difficulty in making firm predictions for the 
structure function F2( x, Q2). The normalization, N2, is unknown 
(it depends on non-perturbative physics through the normaliza­
tion of the proton impact factor and our ansatz for its shape, i.e. 
8 in our toy model) - so we need to fit it to the data. The scale JL2 
is again of non-perturbative origin. Additionally, we do not know 
the appropriate value of as to take nor do we know the appro­
priate scale to define the logarithms of energy (i.e. do we take 
In 1/x or In 1/2;e, etc?). These are both problems which originate 
because we only summed the leading logarithms in energy and 
can only be improved by going beyond this approximation. For 

t A brief introduction to the saddle point method is given in Appendix B to 
this chapter. 
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Fig. 6.3. Data on the deep inelastic structure function, F2(X, Q2), 
collected by the HI (open circles) (Ahmed et al. (1995)) and Zeus 
(full circles) (Derrick et al. (1995)) collaborations at the HERA 
e-p collider. 

the solid line we chose as = 0.1 and introduced a parameter, Xo, 
such that all occurrences of In 1/ x are replaced by In Xo / x. The 
parameters Xo, N2 and J.L2 were then fitted to the data. The best 
fit values were Xo = 0.6, N2 = 0.30 and J.L2 = 0.31 GeV2 • The am· 
biguity in Xo is equivalent to saying that we really cannot answer 
the question "how low in x must we be to observe the dynam· 
ics associated with the leading logarithm summation?", since this 
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6.3 Associated jet production 149 

region is defined to be that for which x ~ Xo. Correspondingly, 
we fitted only to data which satisfy this criterion, i.e. we fitted to 
data with x < 10-2 • Even so, with this four parameter fit, we are 
able to obtain good agreement with the low-x data. The dashed 
line illustrates the strong sensitivity to our choice of as. It is pro­
duced with as = 0.2. The other parameters are correspondingly 
re-fitted, i.e. Xo = 0.01, JL2 = 2 GeV2 and N2 = 0.38, and the fit 
is to all those data with x < 10-3 . Since Wo ex as drives the low-x 
rise we should not be surprised to see a much steeper behaviour 
with as = 0.2. 

We took a model for the proton impact factor (Eq.(6.10)) which 
(after dividing by k 2 ) is peaked in the region of low k 2 • In light of 
the discussion in Section 5.1 of the preceding chapter, we should 
question the validity of our calculation. The diffusion 'cigar' is 
tilted (one end fixed by rv Q2 and the other by rv JL2) and as a 
result there is the danger that contributions from the infra-red re­
gion could possibly be large. At the end of this chapter, when we 
make the connection with the Altarelli-Parisi approach, we shall 
show that (neglecting terms suppressed by powers of rv JL2/Q2) 
the largely unknown infra-red physics factorizes from the known 
perturbative physics. This is good news since it means that we 
can make meaningful perturbative calculations. We defer further 
studies on the total inelastic cross-section to the end of this chap­
ter and turn to a process which avoids many of the problems 
associated with the unknown infra-red effects we have just been 
discussing. 

6.3 Associated jet production 

Although the total deep inelastic cross-section is relatively 
straightforward to measure, the work of the last section has taught 
us that the non-perturbative behaviour of the proton impact fac­
tor spoils a clean perturbative analysis. Our problem was with 
the fact that the proton impact factor introduced unknown non­
perturbative effects into our calculation. We modelled them at the 
price of introducing unknown parameters JL2 and 8. If we could re­
place this impact factor with one which is peaked at a much larger 
scale then we eliminate most of our difficulties (we always need to 
worry about the effects of diffusion if the centre-of-mass energy is 
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Fig. 6.4. One of the amplitudes relevant for associated jet produc­
tion. The lower quark line could also be a gluon line and the 'X' 
denotes a high-PT parton. 

too big). Mueller (1991) appreciated that it is possible to do this 
by insisting on the production of a high-PT parton which emerges 
at a small angle relative to the direction of the incoming proton 
(e.g. in the ,*p eM frame). In Fig. 6.4 we show the relevant am­
plitude. The cross on the lower parton line indicates that it has 
a high transverse momentum. The initial studies into associated 
jet production can be found in the papers by Kwiecinski, Martin 
& Sutton (1992), Bartels, De Roeck & Loewe (1992) and Tang 
(1992). 

We say that the high-PT parton is in the forward direction, i.e. it 
carries a not-too-small fraction, ;Cj, of the incoming proton energy 
(relative to its transverse momentum). Of course, experimental­
ists do not measure this parton. They observe the jet of hadrons 
which it produces. In this limit, we may neglect the transverse 
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momentum of the parton from the proton. Consequently, if the 
associated jet is a quark of flavour i, the proton impact factor, 
<P~, becomes 

i 2 2 <Pp(k2) = 871" O:sqi(Xj, k 2 ), (6.16) 

i.e. the quark impact factor of Eq.( 4.37) multiplied by the quark 
number density. The colour factor for this process is now 9 = 

N G~l) (since we do not average over the colour of the quark loop 
in the photon impact factor). Putting the number of colours equal 
to 3 (as we shall do subsequently in this chapter), 9 = ~. Similarly, 

<P~(k2) = 871" 20:sg(Xj, k~), (6.17) 

for a gluonjet and the colour factor is now ~fabc!abdTr(TcTd) = ~, 
i.e. it is C2(A)/C2(F) = ~ larger than the quark colour factor. 

By observing the associated jet, we fix k2 = kj (assuming the 
incoming parton to be collinear with the proton). Thus, for the 
differential structure functions we can write: 

{)2 F>.(x Q2. X· k?) Q2 3 
x .k? " J' J _-871"20: __ 71"_ 

J J {)Xj{)kl 471"20: 8 2 (271")4 

J d2k [2 4 2 ] 
X k 2 <p>.(k)F(x/Xj,k,kj) G(Xj,kj) + 9~(Xj,kj) , (6.18) 

where 

xg( x, Q2) and 
nf 

.l)xqi(X, Q2) + xiii(x, Q2)] (6.19) 
i=l 

are the momentum distribution functions. Notice that we have 
taken x/Xj in the arguments of F. Since Xj ~ x this is, strictly 
speaking, sub-leading. However our choice reflects the fact that 
the ,*-parton sub-energy is ~ Q2( Xj / x). 

By looking at forward jets, i.e. Xj rv 1 and kl rv Q2, we are 

focusing on a region where the parton densities, G(Xj, kj) and 

~(Xj, kj), are experimentally well measured. In this way we have 
avoided any need to invoke non-perturbative effects directly since 
they have been implicitly factorized into the parton density func­
tions. 

Let us focus on the scattering of transverse photons, the impact 
factor is given in Eq.(A.6.21) of Appendix A to this chapter. Again 
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we can perform the k-integral (using Eq.(6.13)). Keeping only the 
n = 0 term in the BFKL expansion it then follows that 

(6.20) 

Performing the v-integral by the saddle point method about v = 0 
and using 

(6.21) 

(6.22) 

where AT = 971"2/128. 
In the case of longitudinal photons the calculation proceeds 

along similar lines and it is straightforward to show that the 
form is just as for transverse photons, but with AT replaced by 
AL = 71"2/64. Since F2(x, Q2) = FL(X, Q2) + FT(X, Q2), we have 
A2 = 1171"2/128. 

We have suggested that kj should be chosen to be rv Q2. This 

has the clear benefit (provided Q2 ~ A~CD) of ensuring that 
there is no danger of diffusion effects forcing the loop integrals 
(which are implicit in the BFKL amplitude, F(xj/x,k 2,kj)) to 
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pick up large contributions from the infra-red region. In the lan­
guage of Section 5.1, the axis of the diffusion 'cigar' is horizontal 
and well above the dangerous small T' region. However, since the 
effect of diffusion increases with increasing Xj / x there is a limit 
to how low in x we can go before non-perturbative effects start to 
become important in the calculation of the BFKL amplitude, i.e. 
the diffusion 'cigar' becomes too fat. For a more detailed discus­
sion on the effects of diffusion we refer to the paper by Bartels & 
Lotter (1993). 

One other advantage of choosing kj '" Q2 arises once we ap­
preciate that the In 1/ x terms that we have been concentrating 
so hard on summing up are not the only logarithms that can be 
large. There are also In Q2 terms which can compete in the deep 
inelastic regime. The Altarelli-Parisi equations tell us how to sum 
the In Q2 terms which occur in the perturbative expansion. These 
terms compete with the In l/x terms and ideally we should look at 
both series in a complete treatment. However, by picking kj '" Q2 

we ensure that there are no large logarithms in Q2 in the BFKL 
amplitude (only InQ2/kl terms appear). The summation of the 

large In kjlogarithms is implicit in the parton densities, G( Xj, kj) 

and ~(xj, kl), which, as we have said, we are able to read off from 
experIment. 

Let us conclude our discussion of the associated jet process with 
a short study of the feasibility of its experimental detection. The 
main difficulty associated with insisting on seeing a forward jet 
arises precisely because the jet is forward. There is a limit to how 
forward the jet can go, since we need it to appear in the detector 
(i.e. not vanish down the beam-pipe). Also, since there are other 
particles heading down the forward beam-pipe (from the break up 
of the proton) our jet had better be sufficiently well collimated 
and isolated. If 0 is the minimum angle at which the parton can 
emerge (in the lab frame) so that the associated jet is observable, 
i.e. it appears as a discernible jet in the detectors, then it follows 
that 

JkI __ J > tan0. 
XjP 

In addition, the high energy limit demands that x/x j ~ 1. So we 
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Fig. 6.5. Cross-section for the associated jet process. The cross­
sections are in ph. 

have competing constraints which lead to important cuts on the 
allowed phase space. These problems are inherently due to the con­
figuration of the experiment (and the existence of a proton rem­
nant) and cannot be circumvented simply by increasing the proton 
beam momentum (since this makes the jet more forward) nor by 
increasing the electron beam momentum (since we need to detect 
the scattered electron). In Fig. 6.5, cross-sections for the associ­
ated jet process are shown in different x - Q2 bins. The HERA col­
lider is used to define the proton (820 Ge V) and electron (30 Ge V) 
lab frame energies and the typical acceptance cuts. The boundary 
lines are due to the cuts on the angle of the scattered electron and 
the cross-sections are computed with the following kinematical 
constraints: 0 = 5°, Xj > 0.05, Xj/x > 10, Q2/2 < kj < 2Q2. The 
numbers in parentheses are the cross-sections calculated without 
BFKL corrections, i.e. F(s,kll k 2 ,O) = 82(k1 - k 2 ). We took 
these results from the paper by Martin, Kwiecinski & Sutton 
(1992). 
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6.4 The Altarelli-Parisi approach 

In most introductory text books on QCD one will find a discussion 
of the quark-parton model of the proton. The impulse approxima­
tion allows us to consider (in the infinite momentum frame) the 
proton as a system of partons whose transverse motion is frozen 
over the time scales typical of the interaction with the off-shell 
photon. The partons are point-like and so we are led to the concept 
of Bjorken scaling, i.e. the Q2-independence of the deep inelastic 
structure function, F2(x, Q2), and the vanishing of the longitudi­
nal cross-section (the Callan-Gross relation) in the Q2 --+ 00 limit. 

The experimental data is consistent with this picture to a fair 
approximation but scaling violations are seen. These violations can 
be accounted for within the framework of QCD perturbation the­
ory using the so-called Altarelli-Parisi equations. Subsequently, 
we will refer to these equations more correctly as the DGLAP 
equations, after Dokshitzer (1977), Gribov & Lipatov (1972) and 
Altarelli & Parisi (1977). The DGLAP equations rely on the notion 
of proton quark, qi(X, Q2), and gluon, g(x, Q2), density functions 
which specify the number density of partons within the proton. 
For example, the first moment of the quark density (summed over 
all quark ft.avours) is to be interpreted as the fraction of the pro­
ton's momentum carried by the quarks, i.e. 

101 dx[~(x, Q2) + G(x, Q2)] = 1, 

where G(x, Q2) and ~(x, Q2) are defined as in Eq.(6.19). 
Let us recallt the DGLAP equations: 

These equations are easiest to solve in moment space, i.e. we take 
the Mellin transforms of the parton densities using the fact that 

t For an introduction to the DGLAP formalism, we refer to the standard 
texts, e.g. Field (1989), Halzen & Martin (1984), Greiner & Schafer (1994), 
Roberts (1990). 
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N 
lij as e dzzN Pij(Z). 

27r Jo 

(6.24) 

The moment index, N, is not to be confused with the number of 
colours! Although in preceding chapters we labelled the moment 
index w, in this chapter we adopt the notation which is most com­
mon in the literature when discussing the deep inelastic structure 
functions. The DGLAP equations now reduce to a pair of simul­
taneous equations: 

_0_ ( ~N(Q2) ) = (/~ 2nn t;,) ( ~N(Q2) ). (6.25) 
&1nQ2 GN(Q2) Igq I~ GN(Q2) 

This is easy to see after inserting a Dirac delta function to write 

11 dZPij(z)f(x/z) = 101 dz 101 dy ZPij(z)f(y)8(x - yz). 

The solution is now straightforward to obtain. The matrix, Iff, is 
called the anomalous dimension matrix (for reasons that will 
become clear) and is calculable in perturbation theory. 

In terms of the parton densities the deep inelastic structure 
functions can be written in the simple form: 

F>.,N(Q2) L e;Cgj(Q2 / J.L}, as(J.L}))Qi,N(J.L}) 

(6.26) 

where Qi,N(J.L}) is the Nth moment of xqi(X,J.L}). The coefficient 

functions, C((~)) N' are computable in perturbation theory, i.e. all 1"g , 

the long distance physics factorizes into the parton densities. The 
factorization scale, J.L}, is arbitrary and the final result does not 
depend upon it to the given order (in as) of the calculation, i.e. 
the J.L}-dependence is sub-leading in as. It is usually best to take 
J.L} = Q2, so that terms rv as(J.L} )In Q2 / J.L} do not appear in the 
coefficient functions but are absorbed into the parton densities. 
This factorization of long- and short-distance physics is a funda­
mental and very important ingredient of QeD. The parton density 
functions are universal, e.g. the cross-section for Drell-Van pro­
duction of muon pairs in hadron-hadron colliders can be written 
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as a product of two parton density functions (one for each hadron) 
and a hard sub-process cross-section (i.e. q if -7 JL+ JL-). The par­
ton densities are just those which appear in the deep inelastic 
structure functions. Factorization is proven only for the 'leading 
twist' component of the matrix elements (we refer to the review 
by Collins, Soper & Sterman (1989) and references therein for fur­
ther details). In the case of the deep inelastic structure functions 
this means that factorization applies to the cross-section after we 
have thrown away all terms which vanish as Q2 -7 00. 

By way of illustration let us consider the Nth moment of the 
structure function F2,N( Q2). In the lowest order of perturbation 
theory, the gluon coefficient function vanishes (since the gluon car­
ries no electromagnetic charge) and the quark coefficient functions 
are simply unity, i.e. 

nj 

F2(x, Q2) = L e;x[qi(X, Q2) + ifi(X, Q2)]. (6.27) 
i=l 

The quark densities are obtained by solving the DGLAP equations 
with the lowest order splitting functions, i.e. 

N 
Iqq 

N 
Iqg 

N 
Igq 

N 
Igg 

as ( 2 N+l1) 
9 (N + l)(N + 2) - 1 - 4 ~ J ' 
as N 2 + 3N + 4 

12 (N + l)(N + 2)(N + 3)' 

2as N 2 + 3N + 4 

9 N(N + l)(N + 2)' 

as ((N - l)(N + 2) (N - l)(N + 6) 
-2 N(N + 1) + 6(N + 2)(N + 3) 

N+1 2 1 ) 
+ L -;- + -nf . 

j=3 J 9 
(6.28) 

To solve Eq.(6.25), we need to fix the boundary conditions by 
specifying the parton densities at some scale, JL2. The solution 
then gives the parton densities at all other scales. The parton den­
sities which are obtained as the solution to Eq.(6.25), which is ob­
tained using the (lowest order) anomalous dimensions of Eq.( 6.28), 
include all perturbative corrections to the inputs (q( X, JL2) and 
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g(;v,JL2)) which are'" (a s (JL})lnJL}/JL2)n, Le. the corrections are 
computed to leading In Q2 accuracy. At the next order (Le. includ­
ing those terms which are '" a~ in the anomalous dimension matrix 
and '" as in the coefficient functions) the DGLAP equations sum 
the next-to-Ieading logarithms, '" as(JL})( as(JL} )InJL}/ JL2)n. 

Provided we take Q2 large enough (so that the leading twist 
terms dominate) then we expect to be able to factorize the non­
perturbative behaviour of the BFKL amplitude and to re-write it 
in a way which is consistent with the low-z limit of the DGLAP 
formalism. Let us now investigate how this comes about. 

We start with the unintegrated gluon density ofEq.(6.5). It will 
be useful to introduce the variables, and N which are the Mellin 
conjugates to k 2 and z, respectively, Le. 

F N(k) 101 d;v;vN -1 F( Z, k), 

00 (k2) (k2)-1'-1 h d JL2 JL2 FN(k). 

Equation (6.29) can be inverted using 

FN(k) = {1/2+ioo 2d,. (k:)1' FN(!). 
11/2-ioo 7n JL 

With these definitions, we thus have 

1 J d2k' j,1/2+iOO d, FN(k) = -- --~ (k') -
(271")3 7I"k,2 P 1/2-ioo 271"i 

( 
k2 ) l' 1 

X k,2 N - asX(!)" 

(6.29) 

(6.30) 

(6.31) 

As usual, we have kept only the n = 0 term. Also, we substituted 
, for 1/2 + iv and defined X(!) == Xo(v). Using Eq.(4.27) this 
means that 

x(!) = -2,E - .,p(!) - .,p(1- I). 

The k'-integral can be performed (it simply takes the Mellin trans­
form of the proton impact factor). Thus, 

. 1 {1/2+ioo d, _ (k2)1' 1 
FN(k) = (271")311/2_ioo 271"i~p(!,JL) JL2 N - asX(!)" 

(6.32) 
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(6.33) 

where 

(6.34) 

is the (double Mellin transform of the) unintegrated gluon density 
in the absence of any QCD corrections. 

So far we have merely repeated the work discussed earlier in 
this chapter, albeit in a different notation. The moments of the 
structure functions Fi,N( Q2) also take on simple forms in this 
notation. Concentrating on F2,N( Q2) we have 

F2N(Q2) = 7raS~e2J d-y FNh) r1 dpdT (Q 2)'Y (6.35) 
, 12 ~ q 27ri 10 sin7r, fL2 

[p(1- p)]'Y 1 - 2p(1 - p) - 2T(1 - T) + 12p(1- p)T(l- T) 
X T(l - T) p(1- p) . 

To obtain this result, we needed to use Eq.(6.13) to perform the 
k/2 integral. The p and T integrals can also be done (they are 
standard integrals) and yield 

F2,N(Q2) = J 2d:i h2'~2h) FNh) (~:) 'Y, (6.36) 

where 

h2 N, = 7ras ~ e2~ r(l + ,)r(1 -I) 2 + 3, - 3,2 
, () 24 ~ Qsin7r,r(3/2+,)r(3/2-,) 3-2, 

We are then left with only the integral over, to perform. 
The leading twist behaviour is specified by those contributions 

which do not vanish as Q2 / fL2 -'- 00. Since Q2 > fL2, we need 
to close the ,-plane contour in the left half plane. There are two 
poles which lead to finite contributions as Q2 / fL2 ~C)(): 
(a) the pole t > 0 which satisfies N = asx(t); 
(b) the pole at , = 0 (it is only a simple pole since xh) rv 1 h as 
, - 0). 
All other poles (which occur for negative integer values of ,) lead 
to contributions which are suppressed by powers of fL2 / Q2. The 
pole at , = 0 leads to a scaling (Le. Q2-independent) contribution 
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and can be absorbed into the input quark density. Thus to reveal 
the predicted scaling violations we focus on 8F2,N(Q2)/8lnQ2. 

2,N - 0 -8F (Q2) (Q 2 )i 
8lnQ2 = h2,N(,)RNFNb) JL2 ' (6.37) 

where 
1 

RN = -a/rx'(1)/N' 

In order to obtain the leading behaviour at low :v of F2(:v, Q2) we 
examine this moment equation near N = Wo for which 

and 

. Wo 
hm RN = - ----r=====::~~====~ 

N-+wo v'14as((3)(N - wo) 

1 
lim1=--
N~wo 2 

In this approximation Eq.(6.37) is the Mellin transform of 
Eq.(6.15). It is important to note that the leading :v-WO behaviour 
arises from the singularity in RN and is present for any value of 
Q2. A similar growth at low :v arises from the factor (Q2 / JL2) i but 
this is only important for Q2 ~ JL2. 

Furthermore we see from Eq.(6.37) that deviations from 
Bjorken scaling are present even in the limit of asymptotically 
large Q 2. The size of these 'anomalous' scaling violations is de­
termined by 1. Accordingly, we call this the BFKL anomalous 
dimension and soon we will show that it is equal to the DGLAP 
gluon anomalous dimension,,:' (in the low-:v, i.e. small-N, limit). 
From the fact that x( 1) = N / as and using (for I, I < 1) 

1 00 

xb) = - + 2 L ((2r + 1),2r, 
, r=l 

we can obtain the perturbative expansion of 1: 

1 = ~ + 2((3) (~) 4 + 2((5) (~) 6 + 0 (~) 7 (6.38) 

We are now ready to make the explicit connection with the 
DGLAP result. At low:v, we are not sensitive to the valence quarks 
so the q and if distributions in the proton are equal. Also, in the 
BFKL treatment we ignored intrinsic quark densities, so we must 
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drop all terms ex: ~N(Q2). Finally, the lnQ2 derivative of the co­
efficient functions is sub-leading. Equation (6.26) then becomes 

8F2,N( Q2) (( 2) N CN( ))G (Q2) (6.39) 8lnQ2 = eq 2nrfqg + 9 1, as N , 

where 
8GN(Q2) N 2 

8lnQ2 = 'ggGN(Q ). (6.40) 

For fixed coupling this means that 

GN(Q') ~ GN(P.') (~:)"i: (6.41) 

Thus, for consistency with Eq.(6.37), ,.:0 = 1. Note that the equiv­
alence of the first term in the expansions (in iis/N) of ,.:0 and 1 
can be seen explicitly by comparing Eq.(6.38) with the N -+ 0 
limit of Eq.(6.28). In addition, we also require that 

((e;)2nn:n + C: (1, as))GN(JL2) = h2,NRNF'iv(1, JL). (6.42) 
To summarize, we have shown that the leading twist part of 

the BFKL solution for the structure function factorizes in a man­
ner consistent with the DGLAP approach. The equivalence of the 
(leading-twist) BFKL solution and the N -+ 0 limit ofthe DGLAP 
solution allows us to identify the DGLAP gluon anomalous dimen­
sion, ,.:0, with the BFKL anomalous dimension, 1 (calculated to 
all orders in iis/N). The equivalence also allows us to identify the 
DGLAP coefficient functions with the BFKL 'coefficient function' 
as in Eq.(6.42). However, there is an ambiguity in extracting the 
coefficient function which we shall now examine. 

In the lowest order of perturbation theory, 1 = iis/N, RN = 1, 
h2,N = iis(e~)nf/9 and ,~ = iis/18. To this order, Eq.(6.39) 
reduces to 

8F2,N(Q2) = ~ 2iisG (Q2) 
8lnQ2 ~eq9 N . (6.43) 

Comparing with Eq.(6.9), we see that (at this lowest order) the 
BFKL gluon density defined by Eq.(6.6) is precisely the DGLAP 
gluon density. Also, comparison with Eq.(6.37) forces us to iden­
tify 

https://doi.org/10.1017/9781009290111.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290111.008


162 Applications in deep inelastic scattering 

However, beyond the lowest order RN starts to deviate from 
unity. Since we do not know the scale at which to evaluate as we 
have the freedom to either: absorb all or part of RN into the input 
density, GN(JL2 ), or absorb all or part of RN into the definition of 
(e~)2nn~ + Ct"(l, as). This ambiguity is a factorization scheme 
ambiguity and is a direct result of the leading logarithmic nature 
of the calculation. 

We know, from the standard renormalization group approach, 
that it is appropriate to evaluate the anomalous dimensions at the 
scale Q2 in the DGLAP evolution. This then forces us to make the 
replacement, 

(6.44) 

and we have made explicit the fact that t should be evaluated at 
as (q2) on the right hand side. Similarly, we evaluate the coeffi­
cient function at a s ( Q2), i.e. h2,N( Q2). The scheme ambiguity is 
still present in RN, so we have no guidance as to what scale to 
evaluate it at. The replacement of Eq.(6.44) arises as a result of 
the radiative corrections which cause the QCD coupling to run. As 
such it is formally beyond the leading BFKL approximation. For 
a more detailed investigation of factorization in the high energy 
regime see the paper by Catani & Hautmann (1994). 

6.5 Exclusive distributions and coherence 

The derivation of the BFKL equation presented in Chapters 3 
and 4 relies upon the validity of the Regge kinematics (i.e. strong 
ordering in the Sudakov variables). It turns out that this kinematic 
regime is generally only applicable for the calculation of elastic­
scattering cross-sections (and hence total cross-sections), which is 
where we have been using it hitherto. 

In this section we would like to generalize the multi-Regge kine­
matics so as to allow the calculation of more exclusive quantities, 
e.g. the number of gluons emitted in deep inelastic scattering. This 
generalization is made by accounting for QCD coherence effects. 
Here we present only a brief outline of the motivation for coher­
ence in QCD but refer the reader to the wealth of literature (see 
e.g. Dokshitzer, Khoze, Troyan & Mueller (1991) and references 
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(1) (1) 

Fig. 6.6. The amplitude for gluon (0) to decay into two gluons (1) 
and (2) with opening angle (h and for gluon (3) to be radiated 
off either gluon (1) or gluon (2) (as shown) with opening angle 
82 • where 82 > 81, is equivalent to the amplitude for gluon (0) to 
radiate gluon (3) with opening angle 82 and then to decay into 
gluons (1) and (2). 

therein) for a more detailed treatment. We will show that, when 
accounted for, coherence leads to terms which have additional log­
arithms (in s) compared to the naive BFKL expectations. These 
extra logarithms cancel for fully inclusive quantities but not for 
more exclusive ones (where they provide the dominant contribu­
tion). For more details regarding coherence in low-x physics we 
refer to the work of Ciafaloni (1988), Catani, Fiorani & March­
esini (1990a,b), Catani, Fiorani, Marchesini & Oriani (1991) and 
Marchesini (1995). 

If we consider a time-like (off-shell) parent gluon decaying into 
two daughter gluons with opening angle (}l, followed by a fur­
ther emission of a grand-daughter gluon from one of the daughter 
gluons with opening angle (}2, where (}2 > (}l, then at the time of 
emission the transverse component of the wavelength ofthe grand­
daughter gluon is larger than the transverse spatial separation of 
the two daughter gluons. In that case the grand-daughter gluon 
cannot resolve the colours of the individual daughter gluons, but 
only that of the parent, so that the amplitude for the process is 
equivalent to the amplitude for the· process in which the grand­
daughter gluon is emitted directly off the parent, see Fig. 6.6. This 
is the phenomenon of colour coherence and it leads to the an­
gular ordering of sequential gluon emissions in a cascade, i.e. if 
the opening angle of the ith gluon is (}i then (}i < (}i-l' 
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In the case of deep inelastic scattering it is convenient to con­
sider successive gluon emission from the target proton, which has 
zero transverse momentum, up towards the virtual photon, which 
has momentum k transverse to the electron-proton system given 
by 

k 2 = Q2(1 _ y). 

Suppose the (i - 1 )th emitted gluon (from the proton) has energy 
Ei-l and that it emits a gluon with a fraction (1 - Zi) of this 
energy and a transverse momentum of magnitude qi. The (small) 
opening angle Oi of this emitted gluon is given approximately by 

qi 
(}i ~ , 

(1- ZdEi-l 

where Zi is the fraction of the energy of the (i - 1 )th gluon carried 
off by the ith gluon, i.e. 

Ei 
Zi = --. 

Ei-l 

Colour coherence leads to angular ordering with increasing open­
ing angles towards the hard scale (the photon) so in this case we 
have 0i+l > Oi, which may be expressed as 

~+l > ~~ ( ) 
(1 - Zi+l) (1 - zd' 6.45 

In the multi-Regge limit where Zi, Zi+l ~ 1 this reduces to 

qi+1 > Ziqi· (6.46) 

For the first emission, we take qozo == JL. The kinematics of the 
virtual graphs (which reggeize the t-channel gluons) is similarly 
modified and ensures the cancellation of the collinear singularities 
in inclusive quantities. 

In Chapters 2 and 3 we assumed that the transverse momenta 
of the gluons in the ladder were all of the same order of magni­
tude so that the requirement Zi~ 1 meant that the inequality 
Eq.(6.46) was automatically satisfied. However, we know that we 
must integrate over all transverse momenta of the gluons so that 
we sample 'corners' of transverse momentum space for which the 
inequality is violated. As we shall show below, these 'corners' can 
give rise to super-leading logarithms. These super-leading loga­
rithms cancel when we consider inclusive processes for which we 
may apply dispersion techniques discussed in Chapter 3, but for 
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certain exclusive processes they do not cancel and furnish the lead­
ing behaviour as s - 00. 

Before imposing the constraints of angular ordering, it is nec­
essary first to re-write the t = 0 BFKL equation in a form which 
will be suitable for the study of the more exclusive quantities. We 
can rewrite the t = 0 BFKL equation of Eq.( 4.13) in the form 

fw(k) = fSO)(k) 

+ as J d2; r1 dz ZW ~R(Z, k)0(q - J1)fw(q + k), (6.47) 
7rq io Z 

where q = k' - k is the transverse momentum of the emitted gluon 
and the gluon Regge factor is 

/
1 dz' J d2q 

In~R(z,k)=-as -, -20(q-J1)0(k-q). 
z z 7rq 

(6.48) 

Equation (6.47) is easy to derive from Eq.(4.13) once we notice 
that 

(6.49) 

where l+EG( _k2) is the gluon Regge trajectory derived in Chapter 
3. In addition we used the fact that 

1 101 dz 
( k2) = -zW~R(z,k). 

w - 2EG - ° z 
(6.50) 

The driving term, fSO)(k), includes the virtual corrections which 
reggeize the bare gluon. This form of the BFKL equation has a 
kernel which, under iteration, generates real gluon emissions with 
all the virtual corrections summed to all orders. As such, it is 
suitable for the study of the final state. Of course fw includes the 
sum over all final states and as such the J1-dependence cancels 
between the real and virtual contributions. However, we intend 
to investigate more exclusive quantities which are no longer infra­
red finite. The scale J1 should then be regarded as the scale above 
which we can resolve real gluon emission. 

Let us now take a specific example. We will look at the con­
tributions to the structure function of an on-shell gluon which 
come from the emission of either one or two gluons which are 
constrained to have their transverse momentum less than some 
scale Q. The energy of the bare on-shell gluon is fixed, thus our 
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boundary condition is 

p(O)(x, k) = 5(x - 1) 52(k), 

f~O)(k) = 52 (k). 

I.e. 

(6.51) 

Since the gluon is on shell it does not pick up any corrections due 
to the reggeization (i.e. we used EG(O) = 0). 

The structure function ( defined by integrating over all 
qj 2 :::; Q 2) thus satisfies the equation, 

0(Q - j1) + f IT {as J dZi d2~ 
j=l i=l Z, 7rqj 

x ~R(Zi' ki)zi 0(qi - j1)0(Q - qi)}. (6.52) 

and we have isolated the contributions from i real gluon emissions 
by iterating the kernel explicitly. Again non-boldface means the 
modulus of the two-vector. 

Ignoring the coherence effects for the moment, the contribution 
to the structure function from the emission of a single gluon is 
thus 

(1) 2 2 _ - JQ2 d2ql 101 dZ1 w Pw (Q ,j1) - as -2- --Zl ~R(Zl,k1) 
/1-2 ql 0 Zl 

(6.53) 

and kl = -ql (since the initial gluon is on shell). The Regge 
factor can then be integrated and yields, 

In ~R(Zb ql) = -asln (1/ zI)lnqU j12. (6.54) 

Let us compute our result as a power series in as, i.e. we expand 
the Regge exponential. Thus 

Q2 d 2 1 d 
P (l) (Q 2 2) - - J ~ 1 ~ w w ,j1 - as 2 Zl 

/1-2 q1 0 Zl 

X [1- asln~ln q~ + ~ (asln~ln q~)2 + o(a~)l.(6.55) 
Zl j1 2 Zl j1 

The Zl -integral can be done by parts and yields 

p2)(Q2,j12) = a Sln Q2 _~ (a s ln Q2)2 +~ (as ln Q2)3 +O(a4). 
W j12 2 W j12 3 W j12 s 

(6.56) 
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Similarly, the contribution from two-gluon emission is 

F~2)( Q2, JL2) = a; rQ2 d2ql d2q2 r1 dZ1 zr dZ2 z~[l + O( as)] 
iJ..L2 7rq1 2 7rq2 2 io Zl Z2 

(;In ~:) \ 0(,,;). (6.57) 

In fact, a more detailed treatment (Marchesini (1995)) reveals 
that the inclusive structure function satisfies 

Fw(Q2) == f:F~i)(Q) = (Q:)'Y, 
i=O JL 

(6.58) 

where t is the BFKL anomalous dimension. 
As we alluded to at the start of this section - these results (with 

the exception ofEq.(6.58)) are wrong. We must modify Eqs.(6.47) 
and (6.48) to account for coherence, so that Eq.(6.52) becomes 

Fw(Q',p.') ~ 0(Q - 1') + t, il {a.f~; ~.=: 
x .6.(Zi' ki)zi 0(qi+l - ziqi)0(Q - qi)}, (6.59) 

where the coherence improved Regge factor is 

In.6.(zi, ki' qi) = - r1 dz J d2;as 0(q - ziqd0(k i - q). (6.60) iz; z 7rq 

Let us now re-compute the single gluon emission cross-section. 
The Regge factor now becomes (because kl = ql) 

In.6.(Zl' kl' ql) = -asln 2(1/ z). (6.61) 

Expanding as a power series in as we now obtain 

F~1)(Q2,JL2) = as rQ2 d~i rQ
/
k dZ1 zr [1- asln2~ + O(a;)]. 

i J..L2 ql io Zl Z 

(6.62) 
The z-integrals can again be performed using 

IoQ / k dzzw 1 - + 0(1), 
o z W 

Io Q / k dz 2 
-zwln 2z 3 + 0(1), 

o z W 
(6.63) 
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and we neglect those terms which are not singular in the limit 
w -+ 0 (which corresponds to keeping those terms which are lead­
ing in the Regge limit and beyond). Our final answer for the co­
herence improved calculation of the single gluon emission rate is 
therefore 

[ 
- Q2 -2 Q2 1 1 2 2 as as F( )(Q ,J.L ) = -In- - 2-ln- +.00 . 

w W J.L2 w3 J.L2 
(6.64) 

Inverting the Mellin transform, we therefore see that the cross­
section for single gluon emission is enhanced over the naive BFKL 
expectation by a factor of In s. This logarithm (and those that oc­
cur at higher orders in as) must be cancelled in the inclusive sum. 
We can therefore write the cross-section for two-gluon emission, 
I.e. 

F(2)(Q2,J.L2) = [~ (asln Q2)2 + 2a;ln Q2 +.0 oj. 
w 2 W J.L2 w3 J.L2 

(6.65) 

Although we expect coherence to affect the details of the final 
state dramatically, it also generates sub-leading corrections to the 
inclusive BFKL cross-section. These corrections are embodied in 
the solution to Eq.(6.59) and have been studied in the work of 
Kwiecinski, Martin & Sutton (1995). 

Before finishing this chapter, a few words are in order regarding 
other processes that allow a study of the BFKL (hard) Pomeron 
in the t = 0 limit. In Section 6.3 we considered the associated jet 
production in deep inelastic scattering. By now, it should be clear 
that a similar process can be studied in hadron collider experi­
ments (or in ,-p collisions with nearly on-shell photons), namely, 
events containing two jets which are produced so that they are 
separated by a large interval in rapidity (Le. double associated 
jet production) (Mueller & Navalet (1987), Del Duca & Schmidt 
(1994a,b), Stirling (1994)). The hadron impact factors ofEq.(6.16) 
and Eq.(6.17) are then applied to each hadron-jet vertex. Simi­
larly, rather than insisting on the production of a forward jet (or 
forward and backward jet pair) we could look for heavy quark pro­
duction in these rapidity regions. The quark mass then provides 
the large scale in the impact factor( s) (see e.g. Catani, Ciafaloni & 
Hautmann (1990,1991), Collins & Ellis (1991) and Levin, Ryskin, 
Shabelskii & Shuvaev (1991)). 

https://doi.org/10.1017/9781009290111.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290111.008


6.6 Summary 169 

6.6 Summary 

• The high energy limit of deep inelastic scattering corresponds 
to the limit oflow Bjorken-x. The leading log 1jx approximation 
leads to the low-x behaviour which is characterized by the leading 
eigenvalue of the BFKL kernel, i.e. F2( x, Q2) rv x-wo (Q2)1/2. 

• The diffusion properties of the BFKL equation mean that a 
large contribution to the total deep inelastic cross-section can arise 
from the non-perturbative domain where the typical transverse 
momenta are not large. 

• A process which is better suited to the application of perturb­
ative QCD is that of associated jet production. The observation 
of an additional jet, travelling close to the direction defined by 
the incoming hadron, ensures the clean factorization of the non­
perturbative dynamics into known parton distribution functions. 

• The more conventional DGLAP formalism of deep inelastic scat­
tering can be related to the BFKL approach. The leading twist 
contribution can be extracted from the BFKL calculation and can 
be shown to be equivalent to the soft gluon limit of the DGLAP 
equations (i.e. the limit in which only the singular parts of the 
all-orders DGLAP splitting functions are kept). 

• The multi-Regge kinematics (i.e. the strong ordering of the 
longitudinal momentum fractions) used to compute the elastic­
scattering amplitudes (and hence total inclusive cross-sections) 
via the BFKL equation is inappropriate for the consideration of 
more exclusive quantities. Coherence effects lead to additional log­
arithms in energy which only cancel in the inclusive sum. 

6.7 Appendix A 

In this appendix we compute the virtual photon impact factor 
required to compute the deep inelastic structure functions. In Fig. 
6.7 we show two of the four diagrams which are needed (the other 
two are trivially obtained by reversing the direction of the quark 
line). Our calculation is very much analogous to that of Section 
4.4. 
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(a) (b) 

Fig. 6.7. Two of the four graphs used to compute the photon im­
pact factor. 

For Fig. 6. 7(b), we have the amplitude 
All-A A {3A A A VA A a 

A ll-va{3 __ (4)2 2 Tr(1i (1- klh (1- kl - qh (1- qh ) 
(b) - 7r aaa eq 12(1- kl - q)2 

(A.6.1) 
We use the notation i for ill-lll- and eq is the quark charge in units 
of the proton charge. As in Section 4.4 we have factored out the 
colour factor. We express the four momenta [Il-, ki and qll- in terms 
of the light-like vectors pi and p~ (p~ == pIl- is the incoming proton 
momentum) and their transverse components, i.e. 

Ill- ppi + AP~ + li 
ki = PIPi + AIP~ + ki.L 
qll- = pi - a:p~. 

The denominator factors are also as in Section 4.4, i.e. 

1 1 p(l-p) 

where 

Dl = 12+Q2p(1_p) 

D2 = (1- k 1 )2 + Q2p(1_ p) 

(recall Q2 = _q2 > 0). 

(A.6.2) 

In the high energy limit we are only interested in those terms 
which are proportional to piPl' i.e. 

A ll-va{3 _ (4)2 2 p(l - p) (Aa{3 Il- v ) 
(b) - - 7r aaaeq DID2 (b)PIPl + .... (A.6.3) 
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and the tensor associated with the piP! factor is given by 

(A.6.4) 

We have used the fact that 2q . p ;:::: W 2 in the high energy limit. 
Also, we need to contract with the photon polarization vectors. 

For longitudinal photons we contract with 

L L* _ 4Q2 P2aP2/3 + ... 
Ea E/3 - W2 W2 ' (A.6.5) 

whilst for transverse photons we need to contract with 

'" T T* 4Q2 P2aP2/3 
L.J Ea E/3 = -ga/3 + W2 W2 + .... (A.6.6) 

The dots refer to terms which ultimately vanish since they contain 
factors rv qaq/3 and rv qaP2/3 + Q/3P2a' Such terms vanish since cur­
rent conservation implies that their contraction with the leptonic 
tensor must vanish. Thus, on contracting the relevant components 
of the trace it follows (without too much work) that 

-ga/3A('0 16[1· (1- kd + kip(1- p)] (A.6.7) 

8[DI + D2 - 2Q2p(l- p) - ki(p2 + (1- p)2)] 

and 

4Q2 P2aP2/3 Aa/3 = 32Q2 2(1 _ )2 
W2 W2 (b) P p. (A.6.8) 

Thus, in the same notation as in Eqs.(4.38) and (4.39), we have 
the following contribution to the amplitudes from Fig. 6. 7(b): 

A J1,l/ _ (4)2 2 8p(1 - p) J1, l/ 

( b)~ - - 7r QsQ eq PIPI 
DID2 

X {DI + D2 - 2Q2p(l- p) - kHp2 + (1- p)2]} (A.6.9) 

and 

A J1,l/ - (4)2 2 32p(1 - p) J1, l/ {Q2 2(1 )2} (A 6 10) 
(b)L - - 7r QsQ eq DID2 PIPI P - P . .. 

and A(~~ is defined such that the amplitude for scattering trans­
verse photons is 
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We can now follow the steps of Section 4.4 to deduce the cor­
responding contributions to the impact factors: 

nj 

p~)(kd = -8aas ~ e; / dp d21 
q=l 

X {~+ ~ _ 2Q2p(1 - p) + kHp2 + (1- p)2]} (A.6.U) 
Dl D2 DID2 

and 

p~)(kd = -32aas I:e;/dPd21{Q2P2(1- p)2}. (A.6.12) 
q=l DID2 

A factor of 2 has been included to account for the related graph 
which has the quark line circulating in the opposite direction, and 
we have summed over all nf flavours of quark. 

Fortunately, we do not need to do any more work in order to 
extract the contribution from the graph shown in Fig. 6.7(a).1t is 
related to the above impact factor via 

(A.6.13) 

(A.6.14) 

we can write the complete impact factors for deep inelastic scat­
tering as 

nj 

PE(k1 ) = 8aas ~ e; / dp d21 
q=l 

X {ki[p2;1~2- p)2] - Q2p(1_ p) (~1 -~2r} (A.6.15) 

and 

if>L(k,) d6aa. ~ ,;! dpd'. {Q'P'(l- p)' (~, - ~J}. 
(A.6.16) 

The transverse polarization impact factor, PT, is given by 

1 
<liT = 2 (<liE + <li£). (A.6.17) 
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Using Eq.(6.2), we can now deduce the impact factor for the sum 
of transverse and longitudinal cross-sections: 

<P2(k1) = <PT(k1) + <pL(kt} = <P~(kl) + 3<PL (k1). (A.6.18) 
2 

As in Section 4.4, we can go further and perform the 1 integral at 
the expense of introducing a Feynman parameter, 7. We need to 
use 

(A.6.19) 

and 

J d21 (1 7r 

D1D2 = 10 d7 p(1 - p)Q2 + 7(1 - 7)ki' 
After some simple algebra, we then obtain 

(A.6.20) 

nf 101 k 2 

<pT(kt) = 47rc¥c¥s 2: e~ dpd7 ( ) 2 1 ( ) 2 
q=l 0 P 1 - p Q + 7 1 - 7 kl 

X [72 + (1 - 7)2][p2 + (1- p)2] (A.6.21) 

and 

nf 101 k 2 

327rC¥C¥s 2: e~ dpd7 ( ) 2 1 ( ) 2 
q=l 0 P 1 - p Q + 7 1 - 7 kl 

X [p(1 - p)7(1 - 7)]. (A.6.22) 

6.8 Appendix B 

The saddle point method of integration is a powerful tool for ap­
proximating integrals which may be cast into the form i: dx g(x )e-f(:e). (B.6.1) 

The method is valid provided the function f (x) has a minimum 
at some value x = Xo and that it is 'very convex' in that region. 
This means that the nth derivative, f(n)(x), of f(x) obeys the 
inequality 

jCnl(xo) ~ (t(2)(xo)r/2, 

so that f( x) may be approximated by 

f(x) ~ f(xo) + ~f(2)(xO)(x - xO)2 
2 

(B.6.2) 
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(the first derivative vanishes at :v = :Vo since !(:v) has a minimum 
there). 

Furthermore, the function g(:v) is assumed to be a 'slowly vary­
ing' function at :v = :Vo. This means that it may be approximated 
by its value at :v = :Vo or, in cases where that value vanishes, by 
its first non-vanishing even order derivative at :v = Xo, i.e. if the 
first non-vanishing even order derivative at :v = :Vo is the (2m )th 
derivative then we write 

g(x) ~ -( 1 ),g(2m)(xo) (:v _ xo)2m . 
2m. 

(B.6.3) 

Substituting Eqs.(B.6.2) and (B.6.3) into Eq.(B.6.1) and chang­
ing variables to y = (x - :vo) we obtain the Gaussian integral 

e-f(xo) !'X' dy _1_,g(2m)( xo)y2m exp (_ ~ !(2)(xo)y2) 
-co (2m). 2 

V27r g(2m)(:vo) e - f(xo) 

2mm! (1(2)( xo) )m+l/2 
(B.6.4) 

The corrections to the above approximation are of order 

!(n)(xo) g(2m+2)(:vo) 

(j(2)(xo)r/2 or g(2m)(:vo)!(2)(xo)" 
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