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Abstract
An exact invariant is found for the one-dimensional oscillator with equation of
motion q + / ( / ) q+(o%t) q = g(t). The method used is that of linear canonical
transformations with time-dependent coefficients. This is a new approach to
the problem and has the advantage of simplicity. When/(/) and g(t) are zero,
the invariant is related to the well-known Lewis invariant. The significance
of extension to higher dimensions of these results is indicated, in particular
for the existence of non-invariance dynamical symmetry groups.

1. Introduction

The study of the time-dependent harmonic oscillator has attracted considerable
attention over the years because of interest in motion through a time-dependent
electromagnetic field and the evolution of coherent states in lasers. Considerable
contributions to this study have been made by Seymour [19], with others [20],
Lewis [10,11,12], with Riesenfeld [13], Symon [22] and Sarlet [17,18]. Lewis used
the method developed by Kruskal [6] to show that the motion described by the
Hamiltonian

H = \p%+\o?(t) qz, (1)

in which p and q are canonically conjugate coordinates, had as an exact invariant

where p(t) was any solution of

p+u>\t)p = p 3. (3)

The physical interpretation of the invariant has received attention from Eliezer
and Gray [3], Gunther and Leach [4] and Sarlet. Eliezer and Gray gave an angular
momentum interpretation by viewing (3) as the radial component of a two-
dimensional oscillator motion. Sarlet followed a similar, but not so precise, line.
In their extension of the discussion to the three-dimensional problem, Gunther and
Leach showed that the angular momentum interpretation was somewhat artificial
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and suggested that the invariant (2) was related to a time-independent Hamiltonian
via a time-dependent linear canonical transformation.

It is the aim of this paper to show that the invariant is in fact a time-independent
Hamiltonian in a different coordinate system. The coordinates are related via a
time-dependent linear transformation. For the sake of completeness, the system
considered has the Newtonian equation of motion

-gQ) (4)
although the extension from

0 (5)

is essentially trivial in classical mechanics.
The use of time-independent transformations is well established. Usually they

are non-linear. This causes considerable difficulty when the corresponding quantum
mechanical problem is considered. Linear canonical transformations present no
difficulty in quantum mechanics.

There is an extensive literature on the use of time-independent linear transforma-
tions in quantum mechanics (cf. [1,2,23]). However, time-dependent linear
transformations have attracted very little attention. Pars [15] noted, in a classical
context, that such may be canonical, but did not elaborate. They do not appear to
have been used in quantum mechanics. In this paper, it will be seen that time-
dependent linear transformations are of some use. Subsequent work [7,8,9] will
show that they have considerable relevance to problems with time-dependent
quadratic Hamiltonians.

2. Hamiltonian formulation

A particle of unit mass moves in one-dimensional space under the influence of the
force field due to a fixed time-dependent oscillator source and is subject to a
damping force linear in the velocity and a forcing term. The equation of motion is

(6)

where q is the displacement from the source. Multiplying (6) by exp{F}, where

Jt.
\f(t')dt', (7)

Jt

(6) may be written as

[F][W(t)F2] = g(t)eF. (8)

A suitable Lagrangian is

L = lqieF-$a>\t)eFq*+qg(t)eF. (9)
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That this is not unique is obvious as the ultimate term could be replaced by
—qj^giO^dt'. However, (9) is sufficient for the present purpose. The momentum
conjugate to q is

(10)

The Hamiltonian of the motion is therefore

(11)

3. Transformation theory

To analyze the formalism of a linear canonical transformation between the
canonical pairs (q,p) and (Q,P) it is convenient to write

Hamilton's equations of motions are then

where e is the 2 x 2 symplectic matrix

0 1

A linear transformation between to and to is given by

to = 5'to+roto = Sc5+r (14)

in which S(S) is a real 2x2 matrix and r(r) a real 2x1 column matrix. The elements
of both are coordinate independent, but may be time dependent. The transforma-
tion is canonical provided

SeSi = e. (15)

In the new coordinate system,

6 = ef£ (16)

The time evolution of to may be studied either through (16) or through (13) and
(14). As both are required to give the same description,

In the particular case where both H and R are quadratic, i.e.
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with A and A being real 2x2 symmetric matrices and B and B real 2x1 column
matrices, (17) becomes

AH $ (19)

Substituting for u> and separating the coordinate dependent and independent
parts, S and r satisfy the systems of first-order linear differential equations

£= eAS-SeA

f = eAr+eB-SeB.

(20)

(21)

The sets of equations (20) and (21) have solutions with continuous first derivatives
provided A, A, B and S are continuous functions of time over the interval of
interest [5]. S depends upon the form of H desired. This is arbitrary within the
constraint of being a quadratic form. For the present discussion the signature of
both <«iTy4t«> and GT Ala is taken to be the same, viz. two. (Thus the essential
nature of the problem remains unchanged. The implications of the removal of this
constraint are currently under investigation.)

4. The transformation matrix

Bearing in mind the remarks at the end of the previous section, the transformed
Hamiltonian is taken as

(22)

which is the simplest quadratic Hamiltonian of signature two. The algebra required
to determine the transformation matrices is simplified if the problem is broken into
several steps. The linear term in (11) does not affect the form of 5. The inter-
mediate form

is introduced. Substitution of (11) and (23) into (20) yields

D

where

(23)

y\

y*

y*

0

-e~F

-p-2

0

co2eF

0

-P-2

P~2

0

0

-e~F

0

P~2

a>2eF

0 74

(24)

Cf _ _ y?, (25)

and D is the operator d\dt. A suitable solution set of (24) is found by setting y2 at
zero, solving three of the equations in (24) to give yv y3 and j>4 in terms of p and then
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using the remaining equation to connect p with cv2(t) and F(t). This procedure gives

0
(26)S =

(-p+ipf)e*F

and p is any twice differentiable solution of

pe

The matrix S in (26) satisfies the condition for canonicity, viz.

SeST = e.

(27)

(28)

The transformation of (23) to (22) is accomplished by the matrix R whose
elements satisfy the set of equations

D

0

-p-2

- 1

0

p-2

o

0

- 1

1

0

0

-p-2

0

1

p-2

0

(29)

The solution of this set of equations is accomplished by combining the constituent
equations in pairs. The general solution is

R =
j C-^cosW^

where

i= i\p-2-l)dt', W2= [\p~*+\)dt'.

The transformation is canonical provided

C f - C | = l .

The column matrix, r, may now be found. Writing

U3

and substituting (11), (22) and (33) in (21), r satisfies

D - 1

1 D
=

U2 ge*

Ut ge*

(30)

(31)

(32)

(33)

(34)
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The general solution is

fi =

P. G. L. Leach [6]

in<+ [C/2cos(<
Jt,

, = -Asint+Bcost+ [-U2sin(t-t') + Uicos(t-t')]geFdt>.
Jt,

The explicit expressions for Ut and J74 are

C/2 = ( - d sin Wx- C2 sin
C/4 = (Q cos Ŵ  - C2 cos

(35)

(36)

It should be noted that the generating function for the transformation from H (11)
to H (22) will be of the form

(37),9, t) = a{t) Q

in the case of a type one transformation.

5. The invariant

In the coordinate system (Q,P), the Hamiltonian, H, is an invariant, indeed the
only non-trivial time-independent quadratic invariant, for the one-dimensional
oscillator. Writing H as /, the Hamiltonian (11) has the invariant

Q
p

+rTRS (38)

where S, R and r are given by (26), (30) and (35) respectively. The explicit expression
for the invariant is rather lengthy and is omitted for the general case. The invariance
of / may be checked directly using

l=[I,H]PS+jt, (39)

the definition of H and the differential equations governing the time-explicit parts
of/.

6. Comment

The method used to derive the invariant (38) differs from that used by earlier
writers and has certain attractive features. The method is placed firmly within the
context of the central principles of Hamiltonian mechanics. The time-dependent
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Hamiltonian (11) is seen to be related via linear canonical transformations to the
Hamiltonian of the simplest oscillator of all,

(22)

Expressed in terms of the original coordinates #(23) is the invariant /. This
confirms the physical interpretation of the invariant suggested by Giinther and
Leach. The effect of the transformation has been to remove the time dependence
from the Hamiltonian to the frame of reference. It is the exact analogue to the use
of non-inertial frames in Newtonian mechanics.

In the particular case in which there is no forcing term (g(t) = 0),

1=

+ [p e~*Fp ~(p- \pf) e*FqT (cosh 2C- sinh 2Ccos 2 W)

-2(p-1e*iP?) [Pe-*Fp-(p- ipf)eiFq]sinh2Csm2W}. (40)
where

W= f p~2dt', C,=coshC, C2 = sinhC. (41)

Setting C = 0, (40) is essentially the invariant given by Eliezer and Gray. With the
same value of C and F = 0, (40) is exactly the invariant which Lewis derived using
Kruskal's method.

More generally, for undamped and unforced motion,

1= Mp-V(cosh2C+sinh2Ccos2H0

+ (PP ~ M)2 (cosh 2 C - sinh 2Ccos 2 W)

-2p-1^(pj7-/Jg)sinh2Csin2W]. (42)

Lewis' invariant is

/ = * [ T - V + (T/>-T<7)2], (43)

where T has been written instead of the usual p. At first sight (42) appears to be
different from (43) since it is a three-parameter homogeneous quadratic in q and p.
As Lewis noted [11], (43) is a two-parameter form since r(t) belongs to a two-
parameter family of functions (see also Pinney [16] and Eliezer and Gray). That
this is not the case is easily demonstrated. The expression (43) is (42) with C = 0.
Suppose that C is given some arbitrary non-zero value. Requiring the value of I to
remain constant implies that

(p+a)2
 P - p~3) {p cosh 2C+sinh 2C(p~1 sin 2 W- p cos 2 W)} = 0 (44)

which is satisfied identically. Thus r and p satisfy the same differential equation.
However, for C ^ 0, p ^ T. The relaxation of the requirement /(C) = 7(0) naturally
increases the number of parameters from two to three. This point was previously
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appreciated by Eliezer and Gray where they point out that the Lewis invariant is
subject to a scaling constant.

7. Applications

The use of invariants in the solution and discussion of problems in quantum
mechanics has been well established (cf. [12], [14], [21]). Lewis has shown that an
invariant may be used to solve the time-dependent Schrodinger equation for the
problem. The employment of time-dependent transformations to obtain the wave
function directly from that of the corresponding time-independent problem is an
attractive proposition. In a subsequent paper [8], the work of Wolf [23] and Boon
and Seligman [1] on time-independent problems will be extended to the present
class of problems.

The existence of the invariant is of direct relevance to the question of the
existence of dynamical symmetry groups. Under linear canonical transformations
the dynamical symmetries of H (22) are preserved in the invariant 7(38). As /does
not commute with H (11), the symmetry group of / constitutes a non-invariance
dynamical symmetry group [14,21]. The existence of this symmetry group is of
more interest for problems of higher dimension. In a later work [7,9] the existence
of an invariant for any Hamiltonian of quadratic form will be further investigated.
It will be shown that, for all such Hamiltonians, there are sufficient quadratic
constants of the motion which commute with the invariant to form a basis for the
generators of the Lie group SU(ri) (for w-dimensional motion).
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