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BOUNDS ON THE HILBERT-KUNZ MULTIPLICITY

OLGUR CELIKBAS, HAILONG DAO, CRAIG HUNEKE,

and YI ZHANG

Dedicated to Paul Monsky

Abstract. In this paper we give new lower bounds on the Hilbert-Kunz mul-
tiplicity of unmixed nonregular local rings, bounding them uniformly away
from 1. Our results improve previous work of Aberbach and Enescu.

§0. Introduction

Let (R,m) be a d-dimensional Noetherian local ring of positive charac-
teristic p. For every m-primary ideal I in R, one can define an asymptotic
invariant that measures the singularity of R via the Frobenius powers of I .
For q a power of p, we let I [q] be the ideal generated by the qth powers of
all elements of I . In 1983, Monsky [M] proved that there is a real number
eHK(I) ≥ 1 such that for q = pe,

�(R/I [q]) = eHK(I)qd + O(qd−1).

When I = m, we set eHK(m) = eHK(R). We use �(· ) to denote the length of
a module, and μ(· ) to denote the minimal number of generators of a module
throughout this paper.

Later Huneke, McDermott, and Monsky [HMM] extended this result in
the case R is integrally closed and excellent with perfect residue field, to
show that there is a constant β such that

�(R/I [q]) = eHK(I)qd + βqd−1 + O(qd−2).

See [HoY] for further refinements.
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The number eHK(R) is called the Hilbert-Kunz multiplicity of R. If R

is regular, it is easy to see that eHK(R) = 1. The converse is true if R is
unmixed, but this is highly nonobvious. In fact, it was not until 2000 that
Watanabe and Yoshida [WY1] proved this fact. A somewhat simpler proof
can be found in [HY].

In this paper we are interested in giving lower bounds on the Hilbert-
Kunz multiplicity. Let e denote the usual Hilbert-Samuel multiplicity of R.
It is not hard to prove the following bounds:

max
{ e

d!
,1

}
≤ eHK(R) ≤ e.

The last inequality, for example, follows at once from Lech’s lemma (see
[SH, 11.2.10]).

A natural way to think about the Hilbert-Kunz multiplicity is that as it
nears 1, the singularities of the ring should be better. Blickle and Enescu
[BE] were able to prove an explicit version of this principle.

Theorem 0.1 ([BE, Theorems 2.5, 2.7]). Let (R,m, k) be an unmixed
local ring of prime characteristic p > 0.
(1) If eHK(R) < 1 + 1/d!, then R is Cohen-Macaulay and F-rational.
(2) If eHK(R) < 1 + 1/pdd!, then R is regular.

A Noetherian local ring R of prime characteristic p is said to be F-rational
if ideals generated by systems of parameters are tightly closed. For details
concerning the theory of tight closure and its relationship to the Hilbert-
Kunz multiplicity, we refer to [HH] and [H]. We will not be directly using
tight closure in this paper, except at the very end of the paper.

The second result in Theorem 0.1 is unsatisfactory because of its depen-
dence on p. Blickle and Enescu [BE] raised the question of whether the
Hilbert-Kunz multiplicity is uniformly bounded away from 1 for unmixed
local rings which are not regular. Specifically, the following was asked.

Question 0.2 (see [BE]). Is there a constant ε(d), depending only on
the dimension d of R, such that if R is an unmixed local ring which is not
regular, then eHK(R) − 1 ≥ ε(d)?

As a further question, Watanabe and Yoshida asked that if one can deter-
mine the infimum of Hilbert-Kunz multiplicities over all unmixed local Noe-
therian rings of characteristic p and dimension d which are not regular, and
if that infimum is attained, how to classify those rings which have the lowest
value.
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BOUNDS ON THE HILBERT-KUNZ MULTIPLICITY 151

Aberbach and Enescu [AE] gave a positive answer to Question 0.2. Our
main result, Theorem 3.7, improves upon their bound.

One could extend these questions to ask whether the Hilbert-Kunz mul-
tiplicities of rings of fixed characteristic and dimension are discrete within
any bounded region, or are there limit points?

Question 0.2 was made even more explicit in [WY2], where the following
conjecture is posed.

Conjecture 0.3 ([WY2, Conjecture 4.2]). Let d ≥ 1 be an integer, and
let p > 2 be a prime number. Set Ap,d := K[[X0,X1, . . . ,Xd]]/(X2

0 + · · · +
X2

d), where K is the algebraic closure of the field with p elements. Let
(R,m,K) be a d-dimensional unmixed local ring. Then the following two
statements hold. (1) If R is not regular, then eHK(R) ≥ eHK(Ap,d) ≥ 1 +
cd/d!. (2) If eHK(R) = eHK(Ap,d), then R̂ ∼= Ap,d.

In this conjecture, cd is defined by the equation

sec(x) + tan(x) =
∞∑

d=0

cd

d!
xd.

Gessel and Monsky [GM, Theorem 3.8] proved that limp→∞ eHK(Ap,d) =
1+ cd/d!. To get a feeling for what the conjecture says for small dimensions,
the coefficients cd/d! are as follows: c2/2! = 1/2, c3/3! = 1/3, c4/4! = 5/24,
and c5/5! = 2/15. Enescu and Shimomoto [ES] prove the conjecture for
complete intersections.

In [WY2] and [WY3] both problems of lower bounds and of classifica-
tion are solved in dimensions at most 4. Moreover, they showed that in low
dimensions there is a minimal value for the Hilbert-Kunz multiplicity for
nonregular rings, and rings which take this value are classified. For exam-
ple, they proved that if (R,m, k) is a two-dimensional Cohen-Macaulay local
ring of prime positive characteristic p, algebraically closed residue field,
and multiplicity e, then eHK(R) ≥ (e + 1)/2 with equality if and only if
the associated graded ring of R is isomorphic to the eth Veronese sub-
ring of k[x, y]. They also proved that if (R,m, k) is a three-dimensional
unmixed local ring of positive prime characteristic p which is not regular,
then eHK(R) ≥ 4/3. Furthermore, if k is algebraically closed of character-
istic not 2, then equality occurs if and only if R is analytically isomorphic
with k[[x, y, z,w]]/(x2 + y2 + z2 + w2).
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Using an intricate and beautiful argument, Aberbach and Enescu solved
the basic problem of bounds independent of the characteristic in all dimen-
sions.

Theorem 0.4 ([AE, Theorem 4.12]). Let (R,m, k) be an unmixed ring of
characteristic p and dimension d ≥ 2. If R is not regular, then

eHK(R) ≥ 1 +
1

d(d!(d − 1) + 1)d
.

Our main results in this paper build from the work of Aberbach and
Enescu.* In the next section we give a bound in the Gorenstein case, which
is often better than bounds in [AE]. Our improvement comes by introducing
the F -signature into the proofs and consideration of a certain dual sequence.
However, our main theorem, in Section 3, is an improvement of Theorem 0.4,
as follows.

Theorem 0.5. Let (R,m, k) be a Noetherian local unmixed ring of prime
characteristic p with infinite perfect residue field and dimension d ≥ 2. Let x

be a minimal reduction of m, and let μ be the maximal number of minimal
generators of any ideal in R/(x). Let t be the largest integer such that mt

is not contained in (x). If R is not regular, then

eHK(R) ≥ 1 +
(

min
{

1
d!

,
( μ

e − μ

)
· 1
(� d

t �)d

})
.

Here and throughout the paper, by J we denote the integral closure of
an ideal J . Though the bound in Theorem 0.5 is a substantial improvement
on Theorem 0.4, our bound is still probably far from best, as suggested by
Conjecture 0.3. However, the method we use has some interest in its own
right and may be useful in other contexts. For instance, in Proposition 2.3,
we use these ideas to give an affirmative answer to an old conjecture of
Watanabe in many cases.

§1. New estimates

In this section we give new bounds on the Hilbert-Kunz multiplicity which
depend upon the F -signature. We first recall that a Noetherian ring R of

*As this paper was being completed, Aberbach and Enescu posted on the ArXiv a new
paper with better bounds than their previous work. We will compare these bounds to ours
in Section 3; our bounds given in Theorem 0.5 are better in general. (See Remark 3.9).
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prime characteristic p is said to be F-finite if R is a finitely generated R-
module via the Frobenius.

Definition 1.1. Let (R,m, k) be a Noetherian local ring of prime char-
acteristic p and dimension d. Assume that R is F -finite and reduced. For
q = pe, write R1/q ∼= Raq ⊕ M , where M has no free summands. Set α(R) =
logp[k : kp]. Consider the sequence {aq/(qd+α(R))}. We denote by s−(R) and
s+(R) the liminf and limsup, respectively, of the above sequence as q → ∞.
If s−(R) = s+(R), then the limit, denoted by s(R), is called the F-signature
of R.

Throughout the rest of the paper we will write s for s(R) if there is no
ambiguity about the ring R.

In very recent and striking work, Kevin Tucker [T] has shown that the
F-signature exists in general. In our main technical results the ring will be
Gorenstein; in such a case the existence of the F -signature is known and
easy to prove. For the statement of our first result, Theorem 1.2, it is worth
noting that the F -signature is always at most 1 and is equal to 1 if and only
if the ring is regular (see [HL, Corollary 16]). Thus, the fraction appearing
in this theorem is always at least 1 and is only exactly 1 when the ring is
regular.

Theorem 1.2. Suppose that (R,m, k) is a reduced F-finite Gorenstein
local ring of prime characteristic p with infinite perfect residue field. Let e

denote the multiplicity of R, and let s denote the F-signature of R. We
choose a minimal reduction x of the maximal ideal. For any ideal I of R

such that I ⊇ (x), let μ = μ(I/(x)); then

eHK(R) ≥ e − sμ

e − μ
= 1 +

μ

e − μ
(1 − s).

Proof. We write eHK for eHK(R). Let F = Rμ(R1/q). In the proof of this
theorem we use the notation M ∗ = HomR(M,R). Note that (R1/q)∗ ∼= R1/q

since R is Gorenstein: the dual of R1/q is isomorphic to the canonical module
of R1/q, and since R1/q is also Gorenstein, this canonical module is isomor-
phic to the ring. Hence, there is a short exact sequence 0 → N → F →
(R1/q)∗ → 0. Its dual is exact since (R1/q)∗ is maximal Cohen-Macaulay
and R is Gorenstein:

0 → R1/q → F ∗ → N ∗ → 0
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(see [BH, Theorem 3.3.10(c)]). We now write R1/q ∼= Raq ⊕ M , where M has
no free summand. Note that this means that aq copies of R split from the
above short exact sequence, giving rise to an exact sequence

0 → M → G∗ → N ∗ → 0,

where G = Rμ(R1/q)−aq . Observe that the image of M is contained in mG∗

since M has no free summand (if not, then dualizing would give a free
summand of M ∗, and hence of M ∗∗ ∼= M ).

Since μ(F ) = �(R/m[q]) = eHKqd + O(qd−1), we can write G∗ =
ReHKqd −aq+dq , where dq = O(qd−1). Since N is a maximal Cohen-Macaulay
module (MCM), so is N ∗ by [BH, Theorem 3.3.10(d)]. Then TorR

1 (N ∗,R/

(x)) = 0. Therefore, we have an injection

M

xM
↪→ G∗

xG∗ .

Then
IR1/q

xR1/q
=

IRaq

xRaq
⊕ IM

xM
↪→ IRaq

xRaq
⊕ (mI + x)G

xG
.

Computing the length, we see that

�(IR1/q/xR1/q) = �(I [q]R/x[q]R)

= �(R/x[q]R) − �(R/I [q])

≤ aq�
(
I/(x)

)
+ �

(
(mI + (x))/(x)

)
(eHKqd − aq + dq).

Since R is Cohen-Macaulay, we obtain that

�(R/x[q]R) = eqd

≤ �(R/I [q]) + aq�
(
I/(x)

)
+ �

(
(mI + (x))/(x)

)
(eHKqd − aq + dq).

Let I ⊂ J1 ⊂ J2 ⊂ · · · ⊂ R be a cyclic filtration of ideals of R such that
Ji+1 = Ji + (si) and such that Ji+1/Ji

∼= k. Since there are surjections
R/m[q] � J

[q]
i+1/J

[q]
i , we see that �(R/I [q]) ≤ �(R/m[q]) · �(R/I). Therefore,

taking the qth Frobenius of the filtration of I ⊂ R, we get

eqd ≤ �(R/I [q]) + aq�
(
I/(x)

)
+ �

(
mI + (x)

(x)

)
(eHKqd − aq + dq)

≤ �(R/m[q])�(R/I) + aqμ + eHKqd�
(mI + (x)

(x)

)
+ dq�

(mI + (x)
(x)

)
.
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(Note that aqμ = aq�(I/(mI + (x))).) Dividing by qd and taking limits as
q → ∞, and observing that lim(aq/q

d) = s and �(R/(x)) = e, we see that
e ≤ eHK(e − μ) + sμ; hence,

e − sμ

e − μ
≤ eHK .

This result can be used to recover and sometimes improve estimates
in [AE]. For example, compare the following to [AE, Corollary 3.7].

Corollary 1.3. Let (R,m, k) be a reduced F-finite Gorenstein local ring
of prime characteristic p with infinite perfect residue field. Then

eHK(R) ≥ e − s(v − d)
e − v + d

,

where v is the embedding dimension of R, that is, the number of minimal
generators of m. If R is not F-regular, then

eHK(R) ≥ e

e − v + d
.

Proof. The proof of the first statement follows immediately from Theo-
rem 1.2 by applying this theorem to the ideal I = m. The second statement
holds since if R is not F -regular, then s = 0 [HL]. (The converse is also true;
see [AL].)

Remark 1.4. If R is not F -rational (or even not strongly F -regular),
then s(R) = 0, and Corollary 1.3, already in [AE] in this case, gives a very
good uniform bound away from 1 for the Hilbert-Kunz multiplicity. In fact,
when R is Gorenstein, s(R) > 0 if and only if R is F -rational (equivalently
in this case, strongly F -regular, weakly F -regular, or F -regular).

In general, even in the F -rational case, we would have a very good esti-
mate bounding the Hilbert-Kunz multiplicity away from 1, if we could bound
s below 1 uniformly. In fact, the problem of bounding the F -signature
below 1 and that of bounding the Hilbert-Kunz multiplicity above 1 are
in some sense the same problem. In [HL, Proposition 14], the following
upper bound is given:

(e − 1)(1 − s) ≥ eHK(R) − 1.

Combining this with Theorem 1.2 and rewriting gives

μ

e − μ
≤ eHK(R) − 1

1 − s
≤ e − 1.
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This means that the ratio in the middle of the two terms we are interested in
is trapped between numbers depending on the usual multiplicity of the ring
and the number μ. Note that equality holds between the top and bottom
terms in the inequality if and only if μ = e − 1 if and only if R has minimal
multiplicity.

§2. Chains of integrally closed ideals

We begin this section with a seemingly unrelated result. The idea behind
this is found in the dissertation of Choi [Ch]. Note that we do not assume
R to be of prime characteristic.

Proposition 2.1. Let (R,m) be a local Noetherian domain, and let I =
(J,u), where J is an integrally closed m-primary ideal of R and u ∈ J : m.
If M is a finitely generated torsion-free R-module, then

�(IM/JM) ≥ rankM.

Proof. Set N = (JM :M u). Since M/N ∼= ((J,u)M)/JM and mM ⊆ N ,
we can write M = N +N ′ with μ(N ′) = �((IM)/(JM)). Thus, it suffices to
prove that μ(N ′) ≥ rank(M). Since u(M/N ′) ⊆ J(M/N ′), it follows from
the determinantal trick (see [SH, Lemma 2.1.8]) that there is an element
r = un + j1 · un−1 + · · · + jn with ji ∈ J i for all i such that rM ⊆ N ′. Observe
that r �= 0 since J is integrally closed and u /∈ J . Since Mr = N ′

r, this implies
that μ(N ′) ≥ rank(N ′) = rank(M).

Given two ideals I and J with J ⊆ I , �(I/J) will denote the length of the
longest chain of integrally closed ideals between J and I .

Corollary 2.2. Let (R,m) be a Noetherian local domain. Let J be an
integrally closed m-primary ideal of R, and let I be an ideal containing J .
If M is a finitely generated torsion-free R-module, then

�(IM/JM) ≥ �(I/J) · rank(M).

Proof. Set n = �(I/J). Then there is a chain of ideals

J = K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 ⊂ Kn ⊂ I

with Ki = Ki for all i. Then

�(IM/JM) ≥
n∑

j=0

�(Kj+1M/KjM) ≥
n∑

j=0

�
(
(Kj , uj)M/KjM

)
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for some uj ∈ Kj+1 ∩ Soc(Kj). Thus, the result follows from Proposition 2.1.

In [WY1, Conjecture 2.17], the following conjecture was raised.
Let A be a Cohen-Macaulay local ring of characteristic p > 0. Then for

any m-primary ideal I, we have (1) eHK(I) ≥ �(A/I); (2) if pdA(A/I) < ∞,
then eHK(I) = �(A/I).

Although this conjecture has turned out to not be true (see, e.g., [Ku]),
our next result shows that (1) is true for many m-primary ideals.

Proposition 2.3. Assume that (R,m) is an excellent normal ring of
prime characteristic p with an algebraically closed residue field.
(i) If I is an integrally closed m-primary ideal of R, then

eHK(I) ≥ �(R/I) + eHK(R) − 1.

(ii) If I is an m-primary ideal such that there is an integrally closed ideal
K ⊂ I with �(I/K) = 1, then

eHK(I) ≥ �(R/I).

Proof. (i) From [W, Theorem 2.1], we obtain that there is a composition
series I = I0 ⊂ I1 ⊂ · · · ⊂ Il−1 = m ⊂ R such that I i = Ii for all i. It follows
from Corollary 2.2 that

�
(

mR1/q

IR1/q

)
≥ �(m/I) · rank(R1/q).

Therefore,

�
( R1/q

IR1/q

)
≥ �(m/I) · rank(R1/q) + �

( R1/q

mR1/q

)
.

Dividing by qd, we get

eHK(I) ≥ �(R/I) + eHK(R) − 1.

(ii) Note that �(R/K [q]) = �(R/I [q]) + �(I [q]/K [q]). On the other hand,
�(I [q]/K [q]) ≤ �(R/m[q]). Hence, �(R/I [q])+ �(R/m[q]) ≥ �(R/K [q]). Dividing
by qd and taking limits, we obtain that

eHK(I) + eHK(R) ≥ eHK(K) ≥ �(R/K) + eHK(R) − 1

by the first part of the theorem. The result follows.
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Watanabe and Yoshida [WY1, Theorem 2.7] raised the following ques-
tion: if (R,m) is an unmixed local ring of prime characteristic p, then is it
true that for every m-primary integrally closed ideal I , eHK(I) ≥ �(R/I)?
Furthermore, if equality holds for some I , does it force R to be regular?

Obviously, the first part of this question is answered in the positive by
Proposition 2.3 above, provided that R is in addition excellent normal with
algebraically closed residue field. We are grateful to the referee for providing
the following extension, which also answers positively the second question.

Corollary 2.4. Let (R,m) be an excellent local analytically irreducible
domain of prime characteristic p with an algebraically closed residue field.
If I is an integrally closed m-primary ideal, then eHK(I) ≥ �(R/I), with
equality if and only if R is regular.

Proof. If R is normal, the inequality is given in Proposition 2.3. The
normalization S of R is an excellent normal local domain, and it is a finitely
generated R-module. Let n be the maximal ideal of S. Then S/n = R/m. In
particular, the length of an S-module is the same as the length of the same
module viewed as an R-module, so in computing length we don’t need to
specify which ring we are working over. Set L = IS. Then L is an integrally
closed ideal of S, and L ∩ R = I . Thus, we have that eHK(I) = eHK(IS) ≥
eHK(L) ≥ �(S/L) by Proposition 2.3, and �(S/L) ≥ �(R/I), since R/I ⊂
S/L.

For the last claim, suppose first that R is normal but not regular. Then
eHK(I) > �(R/I) by Proposition 2.3. If R is not normal and we have equal-
ity, then equality must occur in all the inequalities in the paragraph above.
Then S is regular, and eHK(IS) = eHK(L). By basic facts of tight closure
theory (see [HH]), it follows that IS = L. Moreover, from the same set of
inequalities, we must have that R/I = S/L. Thus, S = R + IS is an R-
module, and Nakayama’s lemma gives that R = S is regular.

§3. Main result

Aberbach and Enescu improved the Blickle-Enescu Theorem 0.1(2) by
proving the following.

Theorem 3.1 ([AE]). Let (R,m, k) be an unmixed ring of prime charac-
teristic p and dimension d ≥ 2. If eHK(R) ≤ 1 + max{1/d!,1/e}, then R is
Gorenstein and F-regular.
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In particular, for the purposes of bounding the Hilbert-Kunz multiplicity
away from 1, we may assume that R is Gorenstein and F -regular. Recall
that F -regular means that every ideal in every localization of R is tightly
closed. (For the definition of tight closure and basic properties, see [H]. We
will use that F -regular rings are Cohen-Macaulay and normal.)

We will use the following fact, which appears in [WY1, Theorem 2.7], for
example.

Theorem 3.2. Let (R,m) → (S,n) be a module-finite extension of Noe-
therian local domains. Then for every m-primary ideal I of R,

eHK(I) · [Q(S) : Q(R)] = eHK(IS) · [S/n : R/m],

where Q(· ) denotes the field of fractions of a domain.

We also need the following discussion, which is found in [AE, Remark 4.3].

Discussion 3.3. Let (R,m) be a local domain. Let z ∈ m, and let n be a
positive integer. Let y ∈ R+ be any root of f(X) = Xn − z. We call S = R[y]
a radical extension for the pair R and z.

Whenever S is radical for R and z, then b := [Q(S) : Q(R)] ≤ n. Assume
also that R is normal and that z is a minimal generator of m. Then, in fact,
b = n. Moreover, S = R[y] ∼= R[X]/(Xn − z), so that if R is Cohen-Macaulay
(resp., Gorenstein), then so is S. Also, S is local with maximal ideal (m, y),
because m is certainly in the Jacobson radical of S as S is a finite extension
of R, and S/mS ∼= k[X]/(Xn), where k is the residue field of R.

Proposition 3.4. Assume that (R,m) is Cohen-Macaulay and normal,
and let x ∈ m − m2 be part of a minimal reduction of m. Let S = R[y] with
yn = x. Then mS + (yi) is integrally closed for any nonnegative integer i.

Proof. Assume that the claim is wrong. We may assume that i ≤ n. Since
S/mS ∼= k[X]/(Xn), the ideals in S/mS are linearly ordered, and thus yi−1 ∈
mS + (yi). By the valuative criterion (see [SH, Theorem 6.8.3]), mS + (yi) =⋂

(mS +(yi))V ∩ R, where (V, v) runs over all discrete valuation domains of
the field of fractions of R centered on the maximal ideal of R. Therefore,

v(yi−1) ≥ v
(
mS + (yi)

)
≥ min

{
v(mS), v(yi)

}
,

which is equivalent to

(i − 1)v(y) ≥ min
{
v(mS), iv(y)

}
.
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Hence, (i − 1)v(y) ≥ v(mS); that is, yi−1 ∈ mS. By [SH, Corollary 6.8.12],
this is equivalent to

c · (yi−1)nl = c · (xi−1)l ∈ mnlS

for some c ∈ R and for all l � 0. Since R is normal, Discussion 3.3 shows
that S is a free R-module. Therefore,

c · (xi−1)l ∈ mnl.

Thus, xi−1 ∈ mn. Now set j = i − 1, and choose a minimal reduction (x,x2,

. . . , xd) of m. Then xj ∈ (x,x2, . . . , xd)n, and hence xjl ∈ (x,x2, . . . , xd)n(l−t)

for some t and for all l � 0. Since x,x2, . . . , xd is a system of parameters,
this is not possible.

Corollary 3.5. Assume that (R,m, k) is a Cohen-Macaulay normal
local ring of prime characteristic p which is F-finite with infinite perfect
residue field. Let x ∈ m − m2 be part of a minimal reduction of m, and let
S = R[y] with yn = x. Then

eHK(R) − 1 ≥ eHK(S) − 1
n

.

Proof. We use Proposition 3.4 and Corollary 2.2. By Proposition 3.4,
there is a chain of integrally closed ideals, mS ⊂ (mS + (yn−1)) ⊂ · · · ⊂
(mS +(y)), and so using the torsion-free S-module S1/q and applying Corol-
lary 2.2 to the pair of integrally closed ideals mS ⊂ (mS,y) yields that
�(S1/q/mS1/q) ≥ (n − 1) rank(S1/q) + �(S1/q/(mS,y)S1/q). Dividing by qd

and taking limits give that

eHK(mS) ≥ n + eHK(S) − 1.

Moreover, eHK(mS) = n · eHK(R) by Theorem 3.2. Therefore,

n · eHK(R) ≥ n + eHK(S) − 1,

and hence the result follows.

The last corollary is in some sense our main improvement upon the meth-
ods used by Aberbach and Enescu. We use their strategy of adjoining roots
of a minimal reduction until we obtain a non-F -regular ring; at this point
previous estimates are good. The new work of Aberbach and Enescu [AE1],
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which appeared as we were finishing this paper, gives the following result,
among other estimates in lower dimensions. Their method of comparing the
Hilbert-Kunz multiplicities of radical extensions seems much different from
the one we developed above. The new result of Aberbach and Enescu [AE1]
is as follows.

Theorem 3.6 ([AE1]). Let (R,m, k) be a local Gorenstein F-regular ring
of dimension d ≥ 2 and Hilbert-Samuel multiplicity e ≥ 6. Let k = μ(m) −
dim(R). Assume further that R is not a complete intersection. Then if e ≥
d! + 1, then eHK(R) ≥ 1 + 1/d!. Otherwise, if k = e − 2, then

eHK(R) ≥ 1 + 3
( 4

6(� d
2 �) − 2

)d
,

while if k �= e − 2, then

eHK(R) ≥ 1 +
( 4

(� d
3 �)d! + 4

)d( 4
(6d − 16)

)
.

Our main result is the following.

Theorem 3.7. Let (R,m, k) be a Noetherian local unmixed ring of prime
characteristic p which is F-finite with infinite perfect residue field and dimen-
sion d ≥ 2. Let (x) be a minimal reduction of m, and let μ be the maximal
number of minimal generators of any ideal in R/(x). Let t be the largest
integer such that mt is not contained in (x). If R is not regular, then

eHK(R) ≥ 1 +
(

min
{ 1

d!
,
( μ

e − μ

)
· 1
(� d

t �)d

})
.

Proof. If eHK(R) ≥ 1 + 1/d!, there is nothing to prove. Hence, we may
assume that eHK(R) < 1+1/d!, and then R is F -regular and Gorenstein by
[AE, Corollary 3.6]. Thus, we may assume that R is F -regular and Goren-
stein.

Let (x) = (x1, . . . , xd) be a minimal reduction of m, and let μ = μ(m/(x)).
Consider the set of overrings S = R[x1/n

1 , . . . , x
1/n
i ] = Ri,n which are not F -

regular. Choose n and i such that we attain min{ni : Ri,n is not F -regular}.
Set S = Ri,n. Then by Theorem 1.2 applied to S, along with the mini-
mal reduction x

1/n
1 , . . . , x

1/n
i , xi+1, . . . , xd and the fact that s(S) = 0 (see

Remark 1.4),

eHK(S) ≥ e(S) − s(S) · μ(S)
e(S) − μ(S)

=
e(S)

e(S) − μ(S)
.
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Here, we define μ(S) to be the maximal number of minimal generators of
any ideal in S/(x1/n

1 , . . . , x
1/n
i , xi+1, . . . , xd).

However, since S/(x1/n
1 , . . . , x

1/n
i , xi+1, . . . , xd) ∼= R/(x), we have e(S) =

e(R), and μ(S) = μ. Therefore,

eHK(S) ≥ 1 +
μ

e − μ
.

Let R0 = R, and for each i ≥ j ≥ 1, let Rj = Rj−1[x
1/n
j ]; then by Corol-

lary 3.5,

eHK(Rj) − 1 ≥ eHK(Rj−1) − 1
n

.

Therefore, we get

eHK(R) − 1 = eHK(R0) − 1 ≥ eHK(S) − 1
ni

≥ μ

e − μ

( 1
ni

)
.

Thus, it remains to prove that

min{ni : Ri,n is not F -regular} ≤
(⌈d

t

⌉)d
.

To do this we note that it suffices to prove that A = R[x
1/� d

t
�

1 , . . . , x
1/� d

t
�

d ]
is not F -regular. Set yi = x

1/�d/t�
i , i = 1, . . . , d. Then a socle representative

of A/(x) is

u · y
� d

t
�−1

1 · · · y� d
t

�−1

d ,

where u generates the socle of (xR). By our assumption on t, we may in
addition assume that u ∈ mt. Let v be any discrete valuation centered on
the maximal ideal of S. Then we claim that

v(u) +
(((⌈d

t

⌉
− 1

)
d
)
/
⌈d

t

⌉)
v(m) ≥ dv(m).

Since v(u) ≥ tv(m), it suffices to prove that

t +
(((⌈d

t

⌉
− 1

)
d
)
/
⌈d

t

⌉)
≥ d.

This simplifies to t(�d/t�) ≥ d, which is true.
It follows that u · y

�d/t�−1
1 · · · y�d/t�−1

d ∈ (mS)d. By the tight closure
Briançon-Skoda theorem (see [HH, Section 5]), this implies that (x1/�d/t�

1 , . . . ,

x
1/�d/t�
d )A is not tightly closed, which gives the desired conclusion.
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Remark 3.8. Aberbach and Enescu [AE, p. 15] also state an inequality
in their text which is closer to the one we give. Let r be the maximum i

such that mi is not contained in (x). (Note that r ≤ t.) Let i0 be the least
integer such that Ri = R[x1/m

1 , . . . , x
1/m
i ] is not F -regular, where m = �d/r�.

(Observe that m ≥ �d/t�.) Then

eHK(R) ≥ 1 +
( 1

e(m − 1) + 1

)i0(1
d

)
.

In this situation, the estimate is closely related to our estimate above, which
we give with a multiple of 1/ni; the main difference now is that the estimate
of Aberbach and Enescu has an extra ei0 in the denominator.

Remark 3.9. To compare this theorem to the new result of Aberbach
and Enescu [AE1], note that since we may assume that R is Gorenstein,
t ≥ 2 unless R is a hypersurface of degree 2, in which case good bounds are
known by [ES]. Moreover, in the notation of Theorem 3.6, if k �= e − 2, then
t ≥ 3, and in this case we have essentially removed a factor of (d!)d from the
denominator of the estimate given in Theorem 3.6.

Remark 3.10. We can also improve the statements by bringing in the
idea of the core of the maximal ideal, which is the intersection of all reduc-
tions of the maximal ideal. The t that we choose in the statement of The-
orem 3.7 can actually be chosen maximal so that mt is not contained in
the core of m; then there will be some minimal reduction which does not
contain mt.
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