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Abstract: Equational logic is central to reasoning about programs. What is the right
equational setting for reasoning about probabilistic programs? It has been understood
that instead of equivalence relations one should work with (pseudo)metrics in a
probabilistic setting. However, it is not clear how this relates to equational reasoning.
In recent work the notion of a quantitative equational logic was introduced and
developed. This retains many of the features of ordinary logic but fits naturally with
metric reasoning. The present chapter is an elementry introduction to this topic.
In this setting one can define analogues of algebras and free algebras. It turns out
that the Kantorovich (Wasserstein) metric emerges as a free construction from a
simple quantitative equational theory. We give a couple of examples of quantitative
analogues of familiar effects from programming language theory. We do not assume
any background in equational logic or advanced category theory.

10.1 Introduction

Equational reasoning is at the heart of mathematics and theoretical computer science.
In algebra, we define algebraic structures by giving (mostly) equational axioms. In
analysis there are numerous equations linking concepts; of course, inequalities play
a major role too but this just highlights the importance of equality. In programming
language semantics one has equations capturing notions of behavioural equivalence
of programs. The monadic approach, due to Moggi (1991), to incorporating effects
in higher-order functional programming has been understood through the work of

4 From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.
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Plotkin and Power (2004), Hyland et al. (2006), and Hyland and Power (2007) and
others in terms of operations and equations.

With the emergence of probabilistic programming! a new emphasis on quantitative
reasoning has become important. One thinks in terms of “how close are two
programs?” rather than “are they completely indistinguishable?”” This concept is
captured by a metric and was first advocated in Giacalone et al. (1990). The idea
here was that instead of using a behavioural equivalence relation like bisimulation
one should use a pseudometric whose kernel is bisimulation. Such a metric was first
defined in Desharnais et al. (1999). What we aim to do here is show how a version
of equational reasoning, which we call quantitative equational logic, captures such
metric reasoning principles. This work first appeared in Mardare et al. (2016, 2017)
and Bacci et al. (2018).

The most compelling example of a programming language setting where quantita-
tive reasoning is important is probabilistic programming; the subject of this book.
While our work is not specifically adapted to this setting it does provide the general
framework for such reasoning. In particular, one of the most important ways of
comparing probability distributions is the Kantorovich (Wasserstein) metric and, for
example, in machine learning it has recently been a source of much attention. In
our quantitative equational framework this metric emerges naturally from simple
quantitative equations.

The key idea is to introduce equations indexed by positive rational numbers:

s =gt

where s and ¢ are terms of some language and ¢ is a (presumably small) positive
real number. One reads this as “s is within & of #””. Certainly, the relation =, is not
an equivalence relation: transitivity does not hold, if s =; ¢ and ¢ = u then there is
no reason to think s =, u. Indeed, one can only say s =) u.

In the usual notion of equational reasoning one has a trinity of ideas: equations,
Lawvere theories, and monads on Set. The equational presentation of algebras was
systematically worked out by universal algebraists. Lawvere showed how to give a
cateorical presentation of algebraic theories which freed the subject from some of
the awkwardness of dealing with different presentations of the same theory. In the
1950s it was understood that algebras arose as the “algebras of a monad” defined
on the category Set. Essentially, the action of the monad is to construct the free
algebras.

These concepts can be generalized to other settings, see, for example, Robinson
(2002). In the present work we have quantitative equations and it turns out that one
can get monads on Met, for some suitable category of metric spaces.

! To a lesser extent, real-time programming as well.
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10.2 Equational Logic

In this section we review the standard familiar concepts of equational logic; where
we mean equations in the usual sense of the word. The equality concept is one of the
oldest abstract mathematical ideas and is well understood intuitively.

The basic syntax of equational logic starts with a signature of symbols

Q={fj:k|iel},

consisting of a set of function symbols (or operations) f; each having associated
with it a cardinal number (finite or infinite) «; called its arity. The arity specifies
how many arguments the function symbol takes. Some function symbols may have
arity 0; these are the constants of the language. We have not restricted the collection
of operations to be finite or countable, and one of our main examples will indeed
have uncountably many operations. It is possible to consider operations which take
infinitely many arguments and we will consider such an example later.

Terms are constructed inductively starting from a fixed countable set X of
variables, ranged over by x,y,z,.... Then the function symbols are applied to the
appropriate number of previously constructed terms to give new terms. We can
succinctly express the collection of terms through the following grammar:

tie=x| f(t)iexs forxe Xand f: k€ Q

The set of terms constructed this way is denoted by TqgX. When the signature of
operation symbols Q is clear from from the context, the set of terms will be simply
denoted as TX.

A substitution is a function o: X — TX: it defines what it means to substitute a
variable for a term. It can be (homomorphically) extended to a function&: TX — TX
over terms as follows:

o(x) = o(x) for x € X,
T(f(ti)iex) = f(T(1:))iex for f: ke Q.
In what follows we won’t make any distinction between the substitution and its
extension. We will denote by X(X) the set of substitutions on TX.
The basic formulas of equational logic are equations of the form
s=t, fors,r e TX.

There are no quantifiers or logical connectives. We use &(TX) to denote the set of
equations over TX. Conjunction is implicit when one writes a sequence of equations,
but there is no disjunction, nor negation or implication. A judgement is an expression
of the form

I'ro,

https://doi.org/10.1017/9781108770750.011 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.011

336 Bacci et al.: Quantitative Equational Reasoning

where I' € E(TX) is an enumerable set of equations and ¢ € E(TX). The judgment
I' + ¢ is intended to mean that under the assumptions in I" the equation ¢ holds.
We refer to the elements of I" as the hypotheses and to ¢ as the conclusion of the
judgment; J (TX) denotes the collection of judgments on TX.

Judgments are used for reasoning; we now define the important concept of
equational theory.

An equational theory of type Q over X is a set U of judgements on TX such that,
for arbitrary s,7,u € TX and I',® C E(TX)

Refl) Orr=teU,
(Symm) {s=t}rt=s5s€U,
(Trans) {s=uw,u=t}rs=tecU,
(Cong) {s;i =t |i € k}+ f(si)iex = f(ti)iex €U, forany f: k € Q,
(Subst) if ['+s=¢t€ U, then o(I') + o(s) = o(t) € U, for any o € X(X),
(Cut) if@rTelUYand®Ors=reU,thenl'+s=teU,
(Assum) ifs=rel,thenl'+rs=reU,

where we write I' F ® € U to mean that I' + ¢ € U holds for all ¢ € ®; and
o) ={{o(s)=0(t)|s=teT}.

The rules (Refl), (Symm), and (Trans) capture the idea that equality is indeed an
equivalence relation. The congruence rule (Cong) describes how equality interacts
with the term-forming operations of the underlying term language. Finally, the
substitution rule (Subst) states that substitution preserve equality, while (Cut) and
(Assum) are the usual cut and assumption rules of logical reasoning.

A trivial consequence of the cut rule is that ) + s = ¢t € U implies that
'+t s =t €U, for any set of equations I'. In other words, whatever can be proven
in a theory U without using any hypothesis, can also be proven from any set of
hypothesis. This is the familiar weakening rule.

Given an equational theory U and a set S C U, we say that S is a set of axioms
for U, or S axiomatizes U, if U is the smallest equational theory that contains
S. An equational theory U is inconsistent if O + x = y € U for two distinct
variables x,y € X; U is consistent if it is not inconsistent. From the substitution
rule, inconsistency implies that every equation is derivable.

10.2.1 Algebra

Equational logic is intimately tied to algebra. For most of the familiar algebraic
structures one sees, the basic definition is given in terms of equations (although, there
are a few notable exceptions). To describe the equations characterising algebraic
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structures like a group or monoid, e.g., the associativity equation, one starts with
a set of variables X and signature of operations. This gives the ferm algebra over
which the equational properties are described. For example, for monoids one can
use the signature

{e: 0, -:2}

consisting of a O-arity function symbol e (i.e., a constant) for the identity element
and an 2-arity function symbol “-” (typically used as an infix operator). The terms
for this language look like x - (y - 2), e - x, ... 2.

The properties are spelled out as equations. For monoids, these are
e-x=x, X-e=Xx, (x-y)-z=x-(y-2),

for x,y,z € X variables.

Given a Q-algebra, i.e., an algebraic structure over the signature €, such as a
monoid, we need to explain what it means for it to satisfy an equation, or more
generally a judgement.

A particular instance of an Q-algebra A = (A, Q.#) consists of a set A, called the
carrier, containing the elements of the algebra, and a collection Q # of interpretations
for each function symbol in Q. If f: a € Q is a function symbol of arity «, then its
interpretation is a function f#: A¥ — A, where A* is the k-fold cartesian product
of A; for a constant symbol this corresponds to select a designated element of A.
Thus a particular monoid M will be described by giving a set M of its elements, a
designated element e 4 € M to stand for e, and a binary operation - p(: M XM — M.

Given the notion of algebra we can define a subalgebra. A subalgebra of A is
another algebra with the same signature and whose elements form a subset of A.
Given two algebras A = (A,Q4), B = (B,Qg) of the same signature, we can define
a homomorphism h to be a set-theoretic function from A to B, which preserves the
operations of the signature:

h(fa(ai)iex) = fa(h(ai))iex » forall f: k€ Q,

where the equality symbol appearing in this equation means identity between
elements in B.

If we fix a set of variables X and a signature €, the ferm algebra has the set
of terms TX build over X as carrier and interpretation for the function symbols
f: k € Q canonically given by

(t;)iex € (TX) > f(ti)iex € TX .

We denote as TX for this structure as well as its the underlying set of terms. Consider
a Q-algebra A = (A,Q4) and a assignment function ¢: X — A from X to A,

2 Actually, it is even more common to leave it out altogether and indicate the operation by mere juxtaposition.
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interpreting variables as elements in (A; this extends inductively to a function, also
written ¢, from TX to A:

(x) = o(x) for x € X,
W(f(t)iex) = fa(ti))iex for f: k€ Q.

It is immediate from this definition that ¢ is a homomorphism from TX to A. It
should also be clear that every homomorphism from TX to A arises in this way; we
just have to restrict the homomorphism to X.

Definition 10.1. We say that a judgement I' + s = ¢ in J(TX) is satisfied by A,
written A |= (' + s = 1), if for every assignment ¢: X — A the following implication
holds:

(forall (s" = ") € T, «(s”) = «(¢")) implies «(s) = «(1).

The “term algebra” that we have defined so far is not really a proper algebra of the
type we have in mind because it does not satisfy the equations that define the class
of algebraic structures. We now repair this by an appropriate quotient construction.

Let S be a set of judgements and Us the smallest equational theory that contains
S. We define a relation between terms s, t by

s~st,if(Ors=1)eUs.

Since Uy is closed under the rules of equational logic, in other words, it is closed
under reflexivity, symmetry, transitivity, substitution, and congruence; this gives us a
congruence’ relation on TX. We write [¢] for the equivalence class of # with respect
to the congruence ~g. The quotient set TX /. is the collection of such equivalence
classes. It will be the underlying set of the term algebra. We define an interpretation,
written fs, for an operator f: k € Q of the signature on TX /. as follows:

fS([Zi])iEK = [f(ti)iEK] .

This is well defined precisely because ~g is a congruence. The set TX /¢ is now
a Q-algebra; we denote it by Ts[X], or simply T[X] when S is clear from the
context. It should be clear that by its construction, the algebra Tg[X] satisfies all the
judgements in S (and Us).

Examples of familiar algebras that can be presented purely equationally are
semigroups, monoids, groups, rings, lattices, and boolean algebras. Vector spaces
have two sorts of elements, but the theory described above can readily be extended
to this case and thus we include vector spaces as equationally defined algebras.
Stacks as used in computer science are another familiar example. Some algebraic
structures require a strictly more powerful construct, namely Horn clauses in

3 We always implicitly include the notion of equivalence relation when we say “congruence.”
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their axiomatizations. These are judgements with a nonempty set of hypothesis
representing a condition that must hold. For example, right-cancellative monoids
are required to satisfy the judgement

x-z=y-zdrx=y.

A familiar example of a right-cancellative monoid is the set of words over an alphabet
with the operation being concatenation of words.

Fields are not an example of equationally defined class of algebras. One of the field
axioms says: “if x # 0 then there exist an element x~! such that x - x~!
Here 1 is the multiplicative identity element. It is clearly not an equation because
of the side condition. It is not obvious to see that one cannot replace this with a
bona-fide equation.

A very interesting example of an algebra that we will extensively discuss in the
quantitative setting are barycentric algebras. The signature of barycentric algebras
has uncountably many binary operations

=xl.x=1"

{+¢:2]ec]0,1]}
satisfying the following equations, due to Stone,

Bl) Orx+y=x,
B2) OF x+.x
(SC) Orx+,y=y+1-cx,

(SA) OF (x+4e, ¥) +e, 2= X +epe, (¥ +€12—ﬁ z), for ey, e; € (0,1),
-ejep

X,

axiomatizing the notion of convex combination of a pair of elements. Any convex
subset of a real vector space satisfies these axioms. Barycentric algebras can be
axiomatized in other ways. For example, instead of binary convex combinations one
can introduce n-ary convex combinations for all n € N. One of the most important
examples of a barycentric algebra is the set of probability measures on a finite set or
indeed on more complicated spaces. In Section 10.3.1 we review some probability
theory on metric spaces.

10.2.2 General Results

Given an equational theory U and an algebra A over the same signature, we write
A | U to mean that A satisfies all the judgements in U. As is usual in model
theory, we write U |= (I' + ¢) to mean that the judgement I" ¢ is satisfied by any
algebra A for which A = U holds.

The celebrated Birkhoff completeness theorem relates the semantic notion of
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satisfiability to deducibility (see, for example p. 95 of Burris and Sankappanavar,
1981).

Theorem 10.2 (Completeness). U |= (I' + ¢), if and only if, (T + ¢) € U.

The proof is by construction of a suitable universal model: the algebra Tq¢/[ X]
over the quotient TX /.., introduced in Section 10.2.1. We will see that an analogous
result holds in the quantitative case.

Let K(Q, U) denote the collection of Q-algebras satisfying all the judgements
inU,ie, Ac KQU) it A |= U; K(Q,U) becomes a category if we take the
morphisms to be Q2-homomorphisms. If we don’t need to emphasize which signature
we use will simply write K(U/).

Let X be a set of variables. We have seen that T¢,[X] is an algebra in K(U).
There is a map nx : X — Tq[X] given by nx(x) = [x], which is universal in the
following sense:

in Set in K(U)

X —5 TylX] Tq/[X]
\ lh '
\V
A A

for any algebra A € K(U) and function « from X to the underlying set A of ‘A,
there exists a unique algebra homomorphism h: Tq[X] — A such that h o nx = a.
In other words any set theoretic function can be uniquely extended to an algebra
homomorphism. This makes Tq;[X] the free algebra in K(U) generated from X.

The construction of T¢;[X] from the set X is functorial and such a functor is left
adjoint to the forgetful functor from K(2f) to Set. As usual with an adjunction, one
gets a monad: the term monad (Tq,n, 1) on the category Set, with unit n7: Id = Tqy
assigning a variable x to the equivalence class [x] of terms provably equal in U,
and multiplication u: T%M = Tq expressing term composition up to provable
equivalence in U.

Moreover, the (Eilenberg-Moore) algebras for the monad T¢; are in one-to-one
correspondence with the algebras in K({); actually this correspondence is and
isomorphism of categories.

The collection of algebras defined by a set of equations is called a variety of
algebras4. A famous theorem, also due to Birkhoff (1935) gives conditions under
which a collection of algebras can be a variety.

Theorem 10.3. A collection of algebras is a variety of algebras if and only if it is
closed under homomorphic images, subalgebras, and products.

4 Please do not confuse this with the notion of algebraic variety which means something completely different.
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There are analogous results for algebras defined by Horn clauses: these are
called quasi-variety theorems. Consider Z; X Z,. It is not a field because, e.g.
(1,0) x (0,1) = (0,0); fields are not supposed to have zero-divisors. Hence fields
cannot be described by equations.

There is a quantitative analogue of this theorem (see Mardare et al., 2017) but we
will not discuss it in this article as it is rather more technical than is appropriate for
the present chapter.

10.3 Background

We assume that basic concepts of metric and topological spaces are well-known to
the reader.

Definition 10.4. Apseudometric on a set X is a function d: X X X — [0, 0)

satisfying
Vx e X, d(x,x) =0,
Vx,y e X, d(x,y) =d(y,x),
any’ZEXe d(X,y)Sd(xyz)"'d(Zyy)

Note that we do not require d(x,y) = 0 implies that x = y; if we impose this
condition we get what is usually called a metric. In a pseudometric one can have
distinct points at 0 distance. The relation of being at zero distance is easily seen
to be an equivalence relation called the kernel of the pseudometric. If we take the
quotient of the underlying space by the kernel there is a natural metric defined on
the equivalence classes which will satisfy the additional axiom above. The concepts
of induced topology, convergence, continuity, completeness all work equally well
with pseudometrics as with metrics.

Let (X, dx), (Y, dy) be two (pseudo)metric spaces. A function f from to X to Y is
non-expansive if for all x,x” € X, dx(x,x’) > dy(f(x), f(x")).

Metric spaces with the non-expansive maps between them form a category, usually
called Met. Although Met has finite products and, more generally, finite limits, it
does not have countable products nor binary coproducts. A simple way to recover
completeness of the category, is to work with extended metric spaces: these are
spaces where the metric may take on infinite values.

We define EMet to be the category where the objects are extended metric spaces
and the morphisms are non-expansiveness maps. In EMet the product of a collection
of spaces, {(X;,d;)}ier as the cartesian product of the individual spaces [];<; X; and
the metric between two points (x;);er, (Vi)ier is sup;¢; di(xi, y;). This supremum may,
of course, be infinite; this is fine in EMet but not in Met. Coproducts is EMet are
defined by taking the coproduct as sets, i.e., the disjoint union; the distance between
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two points in the same component is just whatever it is in the original space, while
the distance between two points in different components is co. Whenever one has an
extended metric space (X, d), one can define an equivalence relation ~ by x ~ y iff
d(x,y) < co. The equivalence classes are called components and in fact the original
space is just the coproduct of the components. One can extend many standard results
about ordinary metric spaces by using this decomposition. However, some things
require extra caution: for example, Banach’s fixed point theorem requires some care.

10.3.1 Measure Theory

Excellent sources for background on measure theory and probability are Billingsley
(1995) or Dudley (1989). A quicker introduction is in Panangaden (2009).

It is a fact that on many familiar spaces, like R, one cannot define a sensible
measure on all the sets. For example, on the real line one would like a measure
that that co-incides with the concept of length on intervals; but there is no such
measure defined on all subsets of the real line. Accordingly, we have to choose “nice”
families of sets on which one can hope to do measure theory properly. Being able to
take countable unions and sums is the key.

Definition 10.5. A o-algebra on a set X is a family of subsets of X which includes
X itself and which is closed under complementation and countable unions.

A set equipped with a o-algebra is called a measurable space. Given a topological
space, we can define the o-algebra generated by the open sets (or, equivalently, by
the closed sets). Here, when we say that a o--algebra is generated by some family of
sets, say ¥, we mean the smallest o-algebra containing ¥ ; which always exists and
is unique. When the o-algebra is generated by a topology it is usually referred to as
Borel o-algebra.

Definition 10.6. Given a o-algebra (X, %), a (subprobability) measure on X is a
([0, 1]-valued) [0, oo]-valued set function, u, defined on ¥ such that

e u(@) =0,
e for a countable collection of pairwise disjoint sets, {A; | i € I}, in X, we require

wu(JAan =" ua.
iel iel
In addition, for probability measures we require u(X) = 1, while for subprobability
measures we require pu(X) < 1.

There is a unique measure that one can construct defined on the Borel algebra of
the real line which coincides with the notion of length of an interval: this is called
Lebesgue measure.

https://doi.org/10.1017/9781108770750.011 Published online by Cambridge University Press


https://doi.org/10.1017/9781108770750.011

10.3 Background 343

It is worth clarifying how the word “measurable” is used in the literature. Given a
o-field X on a set X one says “measurable set” for a member of X. Suppose that one
has a measure y. One can have the following situation. There can be sets of measure
zero which contain non-measurable subsets. Because these sets are not measurable
one cannot say that they have measure zero. This happens with Lebesgue measure
on the Borel sets in the real line, for example. There is a “completion” procedure’
which produces a larger o--algebra and an extension of the original measure in such
a way that all subsets of sets of measure zero are measurable and have measure zero.
The completion works by adding to the o-algebra all sets X such that there exist
Y, Z measurable sets with Y € X C Z and with Y and Z having the same measure.
When applied to the Borel subsets of the real line we get a much bigger o-algebra
called the Lebesgue measurable sets. One often uses the phrase “measurable set” to
mean a set which belongs to the completed o -field rather than the original o-field.

Definition 10.7. A function f: (X,Xx) — (¥, Xy) between measurable spaces is
said to be measurable if VB € Zy. f~1(B) € .

A very important class of spaces are the ones that come from metrics.

Definition 10.8. A Polish space is the topological space underlying a complete,
separable metric space; i.e., it has a countable dense subset.

Note that completeness is a metric concept but being Polish is a topological
concept. A space like (0,1) is not complete in its usual metric, however, it is
homeomorphic to the whole real line which is complete in its usual metric; thus,
(0,1) is a Polish space.

10.3.2 The Giry Monad

A very important monad that arises in probabilistic semantics is the Giry monad
described in Giry (1981). The idea was originally due to Lawvere (1962), who
described a category of probabilistic mappings. Later Giry described the monad
from which Lawvere’s category emerges as the Kleisli category.

The underlying category is Mes: the objects are measurable spaces (X, X) and
the morphisms f: (X,X) — (Y,A) are measurable functions. The monad is an
endofunctor: G: Mes — Mes. The explicit definition is, on objects

G(X,X) = {p | pis a probability measure on X} .

We need to equip the set G(X,X) with a o-algebra structure. For each A € X,
define es: G(X,X) — [0,1] by ea(p) = p(A). We equip G(X,X) with the smallest
o -algebra making all the e4 measurable.

5 This is an unfortunate name because it gives the mistaken impression that the result cannot be further extended.
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The action of G on morphisms f: (X,X) — (Y, A) is given by
G(f): GX.2) = G(V.A) : GUNP)B € A) =p(f~(B)).

Here p is a probability measure on (X, X). The effect of the functor is to push forward
measures through the measurable function f.

Now we can define the monad structure as follows: 7x : X — G(X) is given by
nx(x) = 8y, where 0,(A) = 1 if x € A and 0 if x ¢ A. The monad multiplication is

1x(Q € G2(X))(A) = / ead0.

One can think of this as an “averaging” over all the measures in G(X) where we use
Q as the weight for the averaging process.

Now we can present the Kleisli category as follows. The objects are the same as
Mes; the morphisms from (X, X) to (¥, A) are measurable functions from (X, X) to
G(¥,A). Kleisli composition of h: X — G(Y) and k: Y — G(Z) is given by the
formula:

(k& h)=puzoG(k)oh,

where & denotes the Kleisli composition and o is composition in Mes.

If we curry the definition of Kleisli morphism from (X,X)to (Y,A)as h: X XA —
[0, 1] we get what are called Markov kernels. We call this category Ker. One can
think of these as the probabilistic analogue of relations just as ordinary relations are
the Kleisli category of the powerset monad. Kleisli composition can be written in
terms of kernels:

(k 3 h)(x,C) = / k(y,C)dh(x,-),

yey

for x € X and C a measurable subset in Z. In this form the analogy with relational
composition is much clearer. One can also see this as the analogue of matrix
multiplication; if the spaces were finite sets the kernels would be matrices and this
composition formula would be matrix multiplication.

10.3.3 Metrics between Probability Distributions

Let p, g be probability distributions on a metric space (X, d) equipped with its Borel
o-algebra X. There are a number of important metrics one can place on the space of
probability distributions G(X, X).

The most basic is the fotal variation metric

TV(p.q) = sup Ip(E) = q(E)| .

This measures how much p and ¢ disagree on particular measurable sets.
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A more subtle metric is the Kantorovich metric which measures how different are
the integrals defined by the two measures being compared. The definition is

K(p,q) = s;p|/fdp— [ raa.

with supremum ranging over bounded and non-expansive (which implies continuous)
[0, 1]-valued functions f on X. If we allowed any measurable functions then we could
exaggerate the value of the function being integrated on sets where the measures
disagree and obtain an infinite sup every time. One can think of the total variation
metric as a variant of the Kantorovich metric by considering only indicator functions.
However, this is not quite right, as indicator functions are far from non-expansive.

There is an entirely different way of thinking of the Kantorovich metric in terms
of transport theory. One thinks of the probability distribution as a “pile of sand” on
the space X. Then one needs to move some sand around to change the shape of
the pile from p to g. Moving a certain amount of sand has a cost associated with
it: this cost is measured by the distance that one has to move the sand. In order to
describe a specific “plan” for moving sand we introduce a measure on the product
space X X X. A coupling m between p, g is a probability distribution on X X X such
that the marginals of & are p, ¢; in other words we have

(A X X) = p(A) and (X X B) = q(B).

Such a coupling describes a transport plan: (A X B) describes how much of the
probability mass was moved from A to B.

We write C(p, g) for the space of couplings. Then we have the following theorem
called Kantorovich—Rubinstein duality

K(p,q) = inf )/d(x,y)dﬂ(x,y).

neC(p.q
In other words the same metric is given by the cost of the minimum-cost transport
plan. The right hand side can also be taken to be the definition of the metric. This is
usually incorrectly called the Wasserstein metric®
A small variation of the Kantorovich metric can be obtained as follows:

W) = int [ [ dCey)anteon

If we take m = 1 we get the usual Kantorovich metric. A fundamental fact is that
W (6y,68y) = d(x,y).

6 Both versions of the metric were invented by Kantorovich. Years later Wasserstein used it in a minor way.
Perhaps the fact that Kantorovich used the letter W in his paper added to the confusion. It is also called the
“earth movers’ distance” by people in the computer vision community and the Hutchinson metric by researchers
working on fractals.
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This says that the original space is isometrically embedded in the space of probability
measures.

10.3.4 Markov Processes

Markov processes provide the basic operational semantics for probabilistic pro-
gramming languages. A L-labelled Markov process (see Panangaden, 2009) is a
quadruple:

(X72’L’ (Ta: X X 2 - [091])MEL)9

where the 7, are Markov kernels. One thinks of a labelled Markov process as a
probabilistic labelled transition system with a state space that may be a general
measurable space or a Polish space.

One can define a notion of bisimulation as was done by Larsen and Skou (1991)
and later extended to the continuous case in Desharnais et al. (2002).

Definition 10.9. An equivalence relation R € X X X on the state space of a Markov
Process as above is a bisimulation if whenever x R y, then

forallae L, 7,(x,C)=14(y,C)
where C is a measurable union of R-equivalence classes.

Two states x, y are bisimilar if there is some bisimulation relation relating them.
There is a maximum bisimulation relation which we call simply bisimulation. There
is a logical characterization of bisimulation proved in Desharnais et al. (1998, 2002,
2003).

Giacalone et al. (1990) suggested that one move from equality between processes
to distances between processes. In Desharnais et al. (1999, 2004) a pseudometric
was defined whose kernel was bisimulation. If two states are not bisimilar then
some formula distinguishes them. The idea of the metric is: if the smallest formula
separating two states is “big” the states are “close.” Later Worrell and van Breugel
(2001) developed a fixed-point definition of the metric and showed how ideas from
transport theory could be used to compute the metric more efficiently.

10.4 Quantitative Equational Logic

As we mentioned in the introduction, the basic idea is to introduce approximate
equations of the form: s =; ¢, which we understand to mean that s is within ¢
of t. Clearly, the phrase “within £” is redolent of a metric but the theory has to be
developed to the point where it becomes clear that it is indeed a metric in the precise
technical sense.
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At the outset it should be clear that, whatever else it might be, the binary relation
denoted by =, is not an equivalence relation. If we have s =, ¢ and ¢ =, u there is
no reason to expect s = u; indeed one might expect something more like s =, u.
The family of relations {=.| & € [0, c0]} defines a structure called a uniformity but
we will not stress this aspect here. We need to formalize what it means to reason
with the symbol =, and see that it really corresponds to a quantitative analogue of
equational reasoning. In order to do this we will state analogues of the results one
has for ordinary equational logic: completeness results, universality of free algebras,
Birkhoft-like variety theorem and monads arising from free algebras.

10.4.1 Quantitative Equations

We begin by following as closely as possible the presentation of ordinary equational
logic. We have a signature Q and a set of variables X; in the usual inductive way we
get terms denoted by TX. A quantitative equation over these terms is of the form:

s=gt, fors,t e TX and € € Q, .

We use 7 (TX) to denote the set of quantitative equations over TX. Note that =¢
represents ordinary equality =, and consequently, &(TX) C 7 (TX).

Let Q(TX) be the class of quantitative judgments on TX, which are expressions
of the form

I'ro,

with as hypotheses is an enumerable set I' C 7 (TX) of quantitative equations and a
quantitative equation ¢ € 7 (TX) as conclusion. Since we are identifying = with =,
we observe that 7 (TX) € Q(TX).

Quantitative equations and quantitative judgments are used for reasoning, and to
this end we define the concept of quantitative equational theory, which, as might
be expected, will generalize the classical equational theory, in the sense that =g is
ordinary term equality. However, for € # 0, = is not an equivalence: the transitivity
rule has to be replaced by a rule, (Triang) encoding the triangle inequality. We will
also have an infinitary rule, (Cont), that reflects the density of rational numbers
within the reals.

A quantitative equational theory of type Q over X is a set U of quantitative
judgements on TX such that for arbitrary terms s,7,u € TX, set of quantitative
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judgements I',® C 7(TX), and positive rationals g,&’ € Q.

(Refl) Ort=pteU,

(Symm) {s=st}rt=,5€U,

(Triang) {s = uu=g t}+s=gert €U,
(Max) {s=t}Fs=get €U,

(NExp) {si=gcti|i€k}t f(Si)iex = f(ti)iex €U, forany f: k € Q,
(Cont) {s=gt|&'>e}rs=,1€eU,

(Subst) if 'Fs=,1€ U, then o(') + 0(s) =¢ o(t) € U, for any o € Z(X),
(Cut) if@rTelUUandO®O+rs=,r€ U, thenT'+s=,1€U,

(Assum) ifs=,tel,thenl'+s=,1€U,

Given a quantitative equational theory U and a set S € U, we say, as in the
classical case, that S is a set of axioms for U, or S axiomatizes U, if U is the
smallest quantitative equational theory that contains S. A quantitative equational
theory U over TX is inconsistent if 0 + x =9 y € U, where x,y € X are two distinct
variables; U is consistent if it is not inconsistent.

10.4.2 Quantitative Algebras

Now that we have quantitative equations we can turn to defining quantitative
analogues of the concept of algebra. Essentially, one combines the algebraic structure
from Section 10.2.1 with the concept of a metric space.

A quantitative Q-algebra A = (A, d,Q ) consists of an extended metric space
(A,d) and a collection Q4 of non-expansive interpretations for each operation
symbol in Q. If f: a € Q is a function symbol of arity «, then its interpretation is a
non-expansive function f#: AX — A, where A is the «-fold cartesian product’ of
the metric space A.

An homomorphism from A = (A, da,Qz) to B = (B,dp,Qg) is a non-expansive
homomorphism of Q-algebras from (A, Q) to (B,Qg).

Fixed a set of variables X and a signature Q, we would like to define the quantitative
analogue of the term algebra, but to do so we don’t yet have a metric on TX. To do
that, we need to explain what it means for an algebra to satisfy a judgement.

Definition 10.10. We say that a quantitative Q-algebra A satisfies a quantitative
judgement I' + s =, t in Q(TX), written A |= (I' + s =, t), if for every assignment
t: X — A the following implication holds:

(forall (s" =¢ 1) € T, d(u(s"),(¢")) < &) implies d(u(s),u(r)) < €.

7 Note that extended metric spaces have all small products; this is not the case for metric spaces.
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For a quantitative equational theory U, we write A |= U to mean that A satisfies
all the judgements in U. We write K(U, Q) for the collection of Q-algebras satisfying
U, or simply K(Q) when the signature is clear.

We can now define a metric on TX over the quantitative theory U:

dU(s,0)=inf{e |OFs=,t € U}.

The idea is that we look at the equations we can derive with the smallest possible &.
We allow only special judgements with empty set of hypotheses. Why not using the
following?

dY(s,t) = inf{e [V C I(X), T+ s =, 1t € U}.

It turns out that it defines exactly the same metric. Two things are to be noted: first
we only have a pseudometric and second, the metric can take on infinite values. To
get a proper quantitative algebra on T¢,[X], we have to do the analogue of what we
did in the case of ordinary equations: quotient by a suitable equivalence relation.
The kernel of the pseudometric is a congruence for Q. If we take the quotient we get
an extended metric space.

We call the resulting quantitative algebra on Tq/[X], the quantitative term algebra
generated from X; by construction is in K(2/).

10.4.3 General Results

In this section we describe the quantitative analogues of the results mentioned in
Section 10.2.2. The first is completeness which was proved in Mardare et al. (2016).

Theorem 10.11 (Completeness). U |= (' + @), if and only if, (T + ¢) € U.

This is the analogue of the usual completeness theorem for equational logic. From
the right to the left is by definition. The reverse direction is also a model construction
argument as in the ordinary case but the proof needs to deal with quantitative aspects
and uses the infinitary limit rule (Cont) in a crucial way.

Just as in the ordinary case the construction of the term algebra provides us
with free algebra. The difference this time is that we start from an extended metric
space instead of just a set. Starting from an extended metric space (M,d) and a
quantitative theory U, we can construct the free quantitative Q-algebra Tq,[X]
generated from (M, d), by adding constants for each m € M and the judgements
0 + m = n to the generating quantitative theory U, for every rational € € Q. such
that d(m,n) < e. Call this extended signature Q) and the extended theory Uy, .
Clearly, any algebra in K(Qys, Uys) can be viewed as an algebra in K(Q, U) by
forgetting the interpretations of the additional constants from M.
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Again, we have a non-expansive map 1y : (M, d) — (T [M],dY™), defined as
ny (m) = [m], which is universal in the following sense:

in EMet in K(Q,U)
M s Ty [M] Ty[M]
\ h '
\V
A A

for any quantitative algebra A € K(Q, U) and function @ from M to the underlying set
A of A, there exists a unique quantitative algebra homomorphism 4: Tq/[M] — A
such that / o n7py = a. In other words, T¢/[M] is the free algebra in K(Q,U)
generated from the space M.

The construction of T¢;[M] from the space (M, d) is functorial and gives the
left adjoint to the forgetful functor from K(Z{/) to EMet, the category of extended
metric spaces and non-expansive maps. As usual, this gives rise to a monad on
EMet, namely, the quantitative term monad (T ;,n, 1) with unit and multiplication
defined as in the equational case.

Differently from the equational case, the (Eilenberg-Moore) algebras for the
monad Tq, are not always in one-to-one correspondence with the algebras in K(/).
However, the isomorphism of categories is recovered in the case the quantitative
theory U is basic, i.e., generated by judgements of the form

{xi:(s,tyiliEI}"Szat

where x;, y; are variables in X (see Bacci et al., 2018).

10.5 Examples

The subject as we have presented it so far may seem like generalization for its own
sake. In fact there are compelling examples that drove this investigation and these
examples come from the world of probabilistic programming.

10.5.1 Axiomatizing the Total Variation Metric

First we return to the example of barycentric algebras from the end of Section 10.2.1.
This time we present it as a quantitative algebra. Recall that the signature of
barycentric algebras has uncountably many binary operations

{+¢:2 ] e€[0,1]},
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satisfying the equations below (here given in the form of quantitative judgements)
expressing that +, is the convex combination of pair of elements

(Bl) Q)I—x+1y=0x,
(B2) OF x+,x=0x,
(SC) OFx+ey =0y +i1-ex,

(SA) OF (x+e, ¥) +er 2=0 X +epe, (¥ teeie z), forej,e; €(0,1),

To the above equations, which just use ordinary equality =¢, we add a new quantitative
equation schema

LD Orx+ez2=cy+e2, foralle <e e QN[0,1],

called the left-invariant axiom schema. Here we are using a nontrivial instance of a
quantitative equation.

The barycentric algebras that satisfy (LI) are called left-invariant barycentric
algebras or LIB algebras for short. Denote by Uy ; the quantitative equational theory
generated form the axioms above. Clearly, the objects in K(Z{y ) are exactly the
LIB algebras.

If one were to draw a picture of what this means it would violate one’s geometric
intuition; it is not meant to be understood in terms of euclidean distance in the
plane. What does this axiomatize? Remarkably, this axiomatizes the total variation
metric on probability distributions. This is striking because no mention was made of
probability in the above axiomatization and of all the metrics that one can imagine
there is nothing in the (LLI) axiom schema that suggests the total variation metric.
Here we sketch the ideas, a detailed proof can be found in Mardare et al. (2016).

We know from the general theory that there is a freely generated LIB algebra
from an extended metric space (M, d). What is it concretely? Let us return to this
question after constructing a specific LIB algebra.

We recall the definition of the total variation metric from Section 10.3.3:

TV(p,q) = Issug Ip(E) = q(E)|.

Here p and ¢ are probability distributions on (M, d) with Borel o-algebra . There
is a beautiful duality theorem for the total variation metric just as there is for the
Kantorovich metric (see Lindvall, 2002) which is based on the notion of coupling
(see Section 10.3.3 for the definition):

TV(p,q) = min{n(#) | 7 € C(p,q)} .

where C(p, g) denote the space of couplings and # is the inequality relation on M.
Implicit in this statement is the claim that the minimum is attained.
It is easy to see that a convex combination of couplings is a coupling, hence
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C(p,q) can be turned into a barycentric algebra. Moreover, one can prove (see
Mardare et al., 2016) that the following splitting lemma holds:

Lemma 10.12. If p, g are Borel probability distributions and e = TV(p, q), then
there are Borel probability distributions p’,q’,r such that

p=ep +(1-e)r and g=eq +(1-e)r.

With these tools in hand we investigate the space of Borel probability distributions
on (M,d).

Let I1[M] be the barycentric algebra obtained by taking the finitely-supported
probability distributions on M and interpreting +. as convex combination; it is
easy to verify that the barycentric axioms hold. Then we endow this algebra of
distributions with the total-variation metric to make it a quantitative algebra. Using
the convexity property of C(p, g) one can prove the following theorem.

Theorem 10.13. TI[M] € K(Uy;).
Moreover, by using the splitting lemma we can prove:
Theorem 10.14. TI[M] is the free algebra generated from M in K(Uyr).

Since free algebras are unique up to isomorphism, [1[M] and the term algebra
Tq, ,[M] generated over the left-invariant barycentric axioms are essentially the
same algebra. In this sense, we say that the axioms of LIB algebras give rise to the
total-variation metric.

10.5.2 Interpolative Barycentric Algebras

We consider a (seemingly) slight variation of the above construction. We have the
same signature as barycentric algebras: we keep the axioms (B1), (B2), (SC), (SA)
but we drop (LI). Instead we add the following quantitative equation schema

(IBn) {x =g ¥, x’ =& Virx+ex =sy+ey,
for all 6 € Q. such that
(e + (1 - e)s?)l/m <é.

Note that now we have assumptions in the equation so this axiom is a judgment with
a nonempty left-hand side. We call this axiom (IB,,), which stands for interpolative
barycentric and the m is a numerical parameter. The barycentric algebras satisfying
(IB,,,) are called interpolative barycentric algebras or IB algebras for short.
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To better understand the axiom (IB,,,), it is more illuminating to look at the special
case where m = 1:

{x=g »x =, YV}t x+ex' =5 y+ey’, whereee; +(1-e)ey <6.

We can illustrate this with the picture shown in Figure 10.1.

X +e x’

Figure 10.1 The interpolative axiom

We can ask the same questions as we asked for the LIB algebras. What are free
IB algebras? We start with an extended metric space (M, d) and consider finitely-
supported Borel distributions on it, and interpret them as a barycentric algebra as
before. We endow it with the m-Kantorovich metric (see Section 10.3.3) and show
that we get an IB algebra. This uses the definition of the W™ metrics as an inf and
convexity of couplings. Again, we can prove a splitting lemma for this case and show
that the space of finitely-supported probability distributions with the m-Kantorovich
metric is the free IB algebra. The arguments are similar to, but more involved than,
the total variation case (see Mardare et al., 2016 for more details).

In fact one can do more. The finitely-supported measures are weakly dense in the
space of all Borel probability measures. One can show that the space of all Borel
probability measures on an extended metric space (M, d), call it G,,,(M), endowed
with the W™ metric gives an IB algebra. One can show that if one constructs
the free algebra from (M,d) and then performs Cauchy completion one gets a
quantitative algebra isomorphic to G,,(M) by exploiting the weak denseness of the
finitely-supported measures.
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10.5.3 Quantitative Exceptions

In this and the next two subsections we discuss quantitative analogues of the
well-known work by Plotkin and Power (2001, 2002, 2003, 2004).

The simplest example of an equational theory of effects is given by the algebraic
theory of exceptions. We fix a set E of exceptions. For a given set of exception E,
the signature is given by a nullary operation symbol raise, : 0 for each exception
eckE:

Qp = {raise, : 0| e € E}.

The theory is simply the trivial one, that is the one that contains only identities ¢ = ¢
between terms constructed over the signature.

The induced monad on Set, called the exception monad, maps a set A to the set
A + E, the disjoint union of sets A and E.

In the quantitative case one is allowed to view the set of exceptions as an
extended metric space with metric measuring the distance between exceptions. This
interpretation can be useful, for example, in scenarios where exceptions carry the
time-stamps of the moment they have been thrown. In this way one can compare
program implementations by measuring the frequency of which exception are
thrown.

For (E, dEg), an extended metric space of exceptions, we define the quantitative
equational theory of exceptions over E by taking the same signature as above, namely
QF, and adding to the theory the quantitative equations

O + raise,, =, raise,, , for £ > dg(ey,er)

for any pair of exceptions e, e, € E and positive rational €. The role of this axiom
is to lift to the set of terms the underlying metric of E.

The monad 7 on EMet induced by this quantitative equational theory is the one
that maps an extended metric space M to the extended metric space M + E, i.e., the
disjoint sum of the extended metric spaces M and E. This example is, admittedly, a
trivial extension of the non-metric case.

10.5.4 Quantitative Interactive Input/Output

For representing interactive input and output using equational theories of effects,
we typically assume a countable alphabet / of inputs and a set O of outputs; for
a signature we take an operation symbol input of arity |/| and a unary operation
symbol output,,, for each output symbol o € O

Qj0 = {input : |1} U {output, : 1 | 0 € O}.
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The meaning behind the operation symbols is that input(z); represents a computation
that waits for user’s input and proceeds as ¢, if the user’s entered input is i; while
output, (7) represents a computation that outputs o and proceeds as ¢. For example,
given a mapping f: I — O from inputs to outputs, the term

input(output ;) (output +;(1)))i » foralli € I

represents a computation that waits for the user’s input i, repeats the output f(i)
twice, and then proceeds as ¢. Above, the term input(z;); abbreviates the countably
branching term

input(t;,, ti,, ... ),

where i1,i,... is an enumeration of input alphabet /.

The equational theory for interactive input/output is given by the trivial theory over
the signature Q; /0. The Set-monad 77,0 for interactive I/O corresponding to this
equational theory is the free monad on the signature functor Q;/o(Y) =Y 'y (OxY),
which is given by the least fixed point

Trj0(X) = u¥.(Y' + (0 xY) + X).

Now we consider the situation where the difference between the output symbols
produced is measured by a metric. For example we may produce output streams
and there are natural metrics between streams. We assume that (O, dp) is a metric
space of outputs and we define a quantitative equational theory to capture interactive
input/output effects.

Recall that the general theory for quantitative equations requires every operation
symbol to satisfy the following axiom of non-expansiveness:

{xi =¢ yi | i € I} Finput(x;); =5 input(y;); ,
{x =g y} + output,(x) =, output,(y) forallo € O.

In order to obtain a quantitative theory of interactive input/output effects able to
reflect the difference of two computations producing sequences of outputs symbols,
in addition to the above quantitative equations we require the theory to have the
following axioms:

{x =& y} Foutput, (x) =5 output,, (), for 6 > max(e,dop(01,02)),

for each pair 01,05 € O of outputs symbols and positive rationals &, 6.
As a consequence the theory will also contain the quantitative equation

0 + output,,

.....

a,(X) =s output,,  , (x), for 6 > mreltlx do(ai, b;),
i=
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where output, , (¢) abbreviates the term

.....

output,, (output,, (output,. (...output, (7)),

representing a computation printing the word o1 - - - 0,, and proceeding as ¢. Hence
the difference of printing two words of the same length is quantified as the maximal
point-wise distance between their characters. There are, of course, other variations
one can imagine.

This quantitative equational theory induces a monad 7j,o for interactive in-
put/output determined as the following least fixed point on EMet

Trio(X) = u¥.(Y" + (0 xY) + X).

10.5.5 Quantitative Side-Effects (State Monad)

To describe state with a finite set L of locations and a countable metric space (V, dy )
of data values, we take a signature containing an operation symbol lookup; of arity
|V for each location / € L, and a unary operation symbol update; , for each location
[ € L and data valuev € V.

Qstate = {lookup; : [V| |l € L} U {update; , : 1 |/ € Landv € V}.

The term lookup,(¢), represents a computation that looks up the contents of
location [ and proceeds as ¢ if the stored value is v. The term update; ,,(t) represents
a computation that updates the location / with v and proceeds as ¢. For example, the
term

lookup;, (update;, (1)), forallv e V

represents a computation that copies the contents of /; into the location /, and
proceeds as ¢. Note that, as for the case of the input operation in Section 10.5.4, the
term lookup, (t,, ),, is an abbreviation for the countably branching term

lookup; (ty,, tvys - - - )

where vy, Vs, ... is an enumeration of the data values in V.
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The quantitative theory of side-effects is given by the following axioms

0 + lookup,(update; ,,(x)), =o x,

O + lookup; (lookup;(x)y, )y, =0 lookup;(y)y, ,

0r updatel’Vl(Iookup,(x)VZ) =0 update; ,, ),

0 + update; ,, (update; ,,(x)) =¢ update, ,,(x),

0 + lookupy, (lookupy, (x)y,)v, =0 lookup, (lookup;, (x)y; )y, »

0 + update;, ,, (lookup;,(x)y,) =o lookup,, (update; ,, (x))y,
0 + update,, ,, (update;, ,,(x)) =o update;, ,, (update;, ,, (x)),

{x =¢ y} + update, ,, (x) =5 update; ,,(y), for 6 > max(e, dy(v1,v2)),

where in the above, the locations [, [, are assumed to be distinct: /| # b.

The first four equations describe the behaviour of operations on a single location:
the first one says that updating a location with its current contents has no effect; the
second one that the state does not change between two consecutive lookups; the
third one that the state is determined immediately after an update; and the fourth one
that the second update overwrites the first one. The next three ordinary equations
state that operations on different locations commute. The last equation, which is also
the only truly quantitative one in the above list, states that the difference between
side-effects depends on the distance of the values observed point-wise in each
location.

The monad on EMet induced by the above axioms maps an extended metric space
M to (S x M)S, where S = VL.

Remark 10.15. If we took an infinite set L of locations, the induced monad would
not be the standard one for state. Since the elements of the free model are built
inductively from operations and represent computations that only update a finite
number of locations at a time. In contrast, the elements of the standard monad
represent computations that can perform an arbitrary modification of the state.

10.6 Conclusions

This chapter introduces a new approach to approximate reasoning. Metrics for
probabilistic processes have been investigated for nearly twenty years by Desharnais
etal. (1999, 2004) and van Breugel and Worrell (2001b,a) and of course the deBakker
school has emphasized metric ideas in semantics for decades. Logics for reasoning
quantitatively have essentially been modal logics that were particularly crafted for
probabilistic systems but a generic way of capturing the notion of approximate
equality has been missing.
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The approach described in this chapter is just a beginning. We hope that the
striking emergence of the Kantorovich metric as a free algebra from a fairly simple
equational theory is a foretaste of what might be expected in the future. From the
programming point of view we have just presented very simple obvious extensions to
quantitative theories of effects. We are actively investigating a more comprehensive
theory of effects specifically for probabilistic programming languages. In recent
work (Bacci et al., 2018) we have shown how one can combine different monads to
obtain, for example, an equational characterization of Markov processes.

The theory presented here has a number of restrictions introduced for ease of
exposition. For example, nonexpansiveness can certainly be weakened. We know
that we only require nonexpansiveness in each argument separately. However, we
expect that yet weaker conditions are possible, perhaps at the price of complicating
the underlying theory.

A number of other directions for future research are: (i) developing a quanti-
tative term rewriting theory that meshes with quantitative equational logic, (ii)
understanding better how much the bounds degrade as one manipulates sequences
of equations and (iii) algorithms based on quantitative equations. To elaborate
point (ii): in ordinary equational logic, a long series of equations comes without
cost but in quantitative equational logic a long series of quantitative equational
manipulations may well cause the £’s appearing to get larger and larger to the point
of being uninformative. It would be useful to get a handle on the “ergonomics”® of
quantitative equational reasoning.
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