SMOOTH DERIVATIONS ON
ABELIAN C*-DYNAMICAL SYSTEMS

DEREK W. ROBINSON

(Received 29 April 1985; revised 5 July 1985)

Communicated by J. F. Price

Abstract

Let \((A, \mathbb{R}, \sigma)\) be an abelian C*-dynamical system. Denote the generator of \(\sigma\) by \(\delta_0\) and define \(A_\infty = \bigcap_{n \geq 1} D(\delta_0^n)\). Further define the Lipschitz algebra

\[A_{1/2} = \left\{ f \in A; \sup_{|t| > 0} \| (\sigma_t f - f) / t \| < +\infty \right\}. \]

If \(\delta\) is a \(*\)-derivation from \(A_\infty\) into \(A_{1/2}\), then it follows that \(\delta\) is closable, and its closure generates a strongly continuous one-parameter group of \(*\)-automorphisms of \(A\). Related results for local dissipations are also discussed.

1. Introduction

Let \(A = C_0(X)\) be an abelian C*-algebra, let \(t \in \mathbb{R} \rightarrow \sigma_t\) be a strongly continuous one-parameter group of \(*\)-automorphisms of \(A\) with generator \(\delta_0\), and set \(A_n = D(\delta_0^n), A_\infty = \bigcap_{n \geq 1} D(\delta_0^n)\). Our aim is to continue the investigation [1], [2], [3] of the structure of \(*\)-derivations from \(A_\infty\) into \(A\). To describe the elements of this investigation, it is necessary to introduce a number of additional concepts.

First let \(S\) denote the group of homeomorphisms of \(X\) associated with \(\sigma\) by

\[(\sigma_t f)(\omega) = f(S_t \omega), \]

where \(f \in C_0(X), t \in \mathbb{R}\), and \(\omega \in X\). Next define the fixed point set \(X_0\) by

\[X_0 = \{ \omega \in X; S_t \omega = \omega \text{ for all } t \in \mathbb{R} \}. \]
Further, introduce the period p of each $\omega \in X$ by

$$p(\omega) = \inf\{ t > 0; S_t \omega = \omega \},$$

and the frequency ν by $\nu(\omega) = 1/p(\omega)$. Thus X_0 corresponds to the set of points with period zero.

Now in [1] it was established that δ is a $*$-derivation from A_∞ into A if, and only if, $\delta = \lambda \delta_0$, where λ denotes multiplication by a real function which vanishes on X_0, is continuous over $X \setminus X_0$, and is polynomially bounded in the frequency, i.e.

$$|\lambda(\omega)| \leq c \left(1 + \nu(\omega)^k \right)$$

for some $c > 0$ and $k \geq 0$, and for all $\omega \in X \setminus X_0$. (For an earlier partial result see [4], and for an alternative derivation of the polynomial bounds see [2].) Note that the representation $\delta = \lambda \delta_0$ implies that both $\pm \delta$ are dissipative, and in particular that δ is closable. Let $\overline{\delta}$ denote its closure.

It was also established in [1] that δ maps A_∞ into A_n if, and only if, $\lambda \in D(\delta_0^n)$ and $\delta_0^n \lambda$ is polynomially bounded in the frequency for all $0 \leq m \leq n$. Note that here δ_0 is defined as the derivative at the origin of σ extended to $C(X)$ by the definition $(\sigma f)(\omega) = f(S_\omega \omega)$.

Finally, in [3] it was proved that if σ maps A_∞ into A_1, then $\overline{\delta}$ is automatically the generator of a strongly continuous one-parameter group of $*$-automorphisms. The principal aim of this paper is to generalize and optimize this last statement. A key feature of this generalization is the Lipschitz algebra

$$A_{1/2} = \left\{ f \in A; \sup_{|t| > 0} \| (\sigma f - f)/t \| < +\infty \right\}.$$

It is easily established that $A_{1/2}$ is a $*$-algebra and that $A_1 \subseteq A_{1/2}$. In particular, $A_{1/2}$ is norm dense. Our first result, in Section 2, shows that the $*$-derivation δ maps A_∞ into $A_{1/2}$ if, and only if, $\delta = \lambda \delta_0$, where λ and $(\sigma \lambda - \lambda)/t$ are polynomially bounded in the frequency, with the latter bound uniform in t. In Section 3 we prove that these conditions are sufficient to ensure that $\overline{\delta}$ is a generator. The proof of this result is based upon a version of the Trotter-Kato theorem on semigroup convergence which is given in an appendix. In Section 4 related results for dissipations are discussed.

2. Smooth derivations

In this section we derive a characterization of derivations from A_∞ into $A_{1/2}$. But first note that since $\|(\sigma f - f)/t\| \leq 2\|f\|/|t|$, one can equally well define $A_{1/2}$ by

$$A_{1/2} = \left\{ f \in A; \sup_{0 < |t| \leq 1} \| (\sigma f - f)/t \| < +\infty \right\}.$$
In fact since
\[(\sigma_t - 1)f = \sum_{m=0}^{n-1} \sigma_{mt/n}(\sigma_{t/n} - 1)f,\]
one has
\[\|(\sigma_t - 1)f/t\| \leq \|(\sigma_{t/n} - 1)f/(t/n)\|,\]
and hence
\[A_{1/2} = \left\{ f \in A; \limsup_{t \to 0} \|(\sigma_t f - f)/t\| < +\infty \right\}.\]

Theorem 2.1. Let \(\sigma\) be a strongly continuous one-parameter group of \(*\)-automorphisms of an abelian \(C^*\)-algebra \(A = C_0(X)\) with generator \(\delta_0\) and associated flow \(S\) on \(X\). Let \(X_0 \subseteq X\) denote the fixed points of \(S\) and \(\nu(\omega)\) the frequency of the point \(\omega \in X\) under the group \(S\). Define \(A_\infty = \bigcap_{n \geq 1} D(\delta_0^n)\) and
\[\chi = \left\{ f \in A; \sup_{0 < |r| \leq 1} \|(\sigma_r f - f)/r\| < +\infty \right\}.\]

If \(\delta\) is a \(*\)-derivation from \(A_\infty\) into \(A\), then the following conditions are equivalent:

1. \(\delta(A_\infty) \subseteq A_{1/2}\).
2. \(\delta = \lambda \delta_0|_{A_{\infty}}\), where \(\lambda\) vanishes on \(X_0\), \(\lambda\) is continuous on \(X \setminus X_0\), and there exist positive constants \(c_1, c_2\) and non-negative integers \(k_1, k_2\) such that

\[|\lambda(\omega)| \leq c_1(1 + \nu(\omega)^{k_1}),\]
\[|\lambda(S_t \omega) - \lambda(\omega)| \leq c_2(1 + \nu(\omega)^{k_2})|t|\]

for all \(\omega \in X \setminus X_0\) and \(t \in \mathbb{R}\).

Proof. The proof is an elaboration of arguments given in [1].

2 \implies 1. Observation 6 in Section 3 of [1] establishes that if \(f \in A_\infty\) and \(k\) is a positive integer, then the function
\[\omega \in X \setminus X_0 \rightarrow \nu(\omega)^k(\delta_0 f)(\omega)\]
vanishes at infinity on \(X \setminus X_0\). Consequently, \(\delta f = \lambda \delta_0 f\) is continuous on \(X\) and vanishes at infinity on \(X \setminus X_0\). Thus \(\delta(A_\infty) \subseteq A\). But
\[t^{-1}(\sigma_t - 1)\delta f = (\sigma_t \lambda) t^{-1}(\sigma_t - 1)\delta_0 f + (t^{-1}(\sigma_t - 1)\lambda) \delta_0 f\]
\[= (\sigma_t \lambda) t^{-1} \int_0^t ds \frac{d}{ds} \sigma_t \delta_0 f + (t^{-1}(\sigma_t - 1)\lambda) \delta_0 f,\]
and hence
\[
|t^{-1}(\sigma f - \delta f)(\omega)| \leq c_1|t|^{-1} \int_0^{|t|} ds \left| \sigma_1 \left((1 + \nu)^k \delta^2 f\right)(\omega) \right|
\]
\[+ c_2 \left|(1 + \nu)^k \delta f f(\omega)\right|.
\]
Consequently the above observation implies that \(\delta \) maps \(A_{\infty} \) into \(A_{1/2} \).

By the above observation implies that \(\delta \) maps \(A_{\infty} \) into \(A_{1/2} \).

1 \(\Rightarrow \) 2. Since \(\delta(A_{\infty}) \subset A \), it follows from [1], Theorem 1.2 that Condition 2 is verified with the possible exception of the uniform polynomial bound on \(|(\lambda(S, \omega) - \lambda(\omega))/t| \). But this bound follows from the hypothesis \(\delta(A_{\infty}) \subset A_{1/2} \). We will prove this in two stages. First we prove that \(\omega \rightarrow (\lambda(S, \omega) - \lambda(\omega))/t \) is uniformly bounded on sets of bounded frequencies.

Suppose \(\nu(\omega) \leq N/2 \). Then the map \(t \in (-1/N, 1/N) \mapsto S_t \omega \) is injective. Now let \(F_N \in C^\infty_c(-1/N, 1/N) \) be an infinitely differentiable function with compact support in \((-1/N, 1/N)\) such that \(F_N = 1 \) on \([-1/2N, 1/2N]\) and define \(G_N \) by setting \(G_N(t) = tF_N(t) \). Hence \(G_N(t) = 1 \) for \(t \in [-1/2N, 1/2N] \). But it then follows that there exists a \(g_N \in A_\infty \), with compact support, such that \(g_N(S_t \omega) = G_N(t) \) for \(t \in (-1/N, 1/N) \) (see, for example, the argument used in the proof of Observation 5.2 of [2]). Consequently,
\[
(\sigma, \delta g_N - \delta g_N)(\omega)/t = (\lambda(S, \omega)G_N'(t) - \lambda(\omega)G_N(0))/t
\]
\[= (\lambda(S, \omega) - \lambda(\omega))/t.
\]
for \(t \in [-1/2N, 1/2N] \). Combining this with the estimate given at the beginning of the section, one concludes that
\[
\sup_{0 < |t| \leq 1} \left| (\lambda(S, \omega) - \lambda(\omega))/t \right| \leq \sup_{0 < |t| \leq 1/2N} \left| (\lambda(S, \omega) - \lambda(\omega))/t \right|
\]
\[\leq \sup_{0 < |t| \leq 1} \left| (\sigma, \delta g_N - \delta g_N)/t \right|,\]
i.e. one has boundedness on sets of bounded frequency.

Now consider polynomial boundedness on sets of large frequency. We establish this property by adapting the argument used to prove Observation 5 in Section 3 of [1]. We argue by contradiction.

Assume there exist sequences \(\omega_i \in X \setminus X_0 \) and \(0 < |t_i| \leq 1 \) such that \((\lambda(S, \omega_i) - \lambda(\omega_i))/t_i \) is not polynomially bounded in the frequency. One may assume that \(\nu(\omega_i) \geq 1/2 \) because of the boundedness property proved above. Proceeding as in Section 3 of [1], one constructs functions \(f_i \in A_\infty \) with compact support \(O_i \) such that
\[
\|f_i\| \leq 2(2\pi \nu(\omega_i))^{j}, \quad j = 1, 2, \ldots, i,
\]
\(S_{[-1,1]} \omega_i \subseteq O_i \),
\(f_i(S_t \omega) = \exp\{2\pi i \nu(\omega_i) t\} \), \(t \in [-1, 1] \).
and the O_i are mutually disjoint. Then if ρ_i is any sequence in C which is rapidly decreasing in the sense that
\[
\lim_{i \to \infty} \nu(\omega_i)^j \rho_i = 0
\]
for $j = 1, 2, \ldots$, it follows that
\[
f = \sum_{i \geq 1} \rho_i f_i
\]
converges with respect to the C_ν-seminorms to an $f \in A_\infty$, and $f = \rho_i f_i$ on O_i. Hence $(\delta f)(\omega) = \rho_i (\delta f_i)(\omega)$ for all $\omega \in O_i$. Consequently,
\[
(\sigma_i \delta f - \delta f)(\omega_i)/t_i = \rho_i (\sigma_i \delta f_i - \delta f_i)(\omega_i)/t_i
\]
\[
= \rho_i \left(\lambda(S_i \omega_i) e^{2\pi i \nu(\omega_i)/t_i} - \lambda(\omega_i) \right) \nu(\omega_i) 2\pi i / t_i.
\]
Since $\| (\sigma_i \delta f - \delta f) / t \|$ is bounded uniformly in t, it follows that the coefficient of ρ_i must be bounded by a polynomial in the frequencies $\nu(\omega_i)$. But
\[
\left(\lambda(S_i \omega_i) e^{2\pi i \nu(\omega_i)/t_i} - \lambda(\omega_i) \right) / t_i = \left(\lambda(S_i \omega_i) - \lambda(\omega_i) \right) / t_i + \lambda(S_i \omega_i) (e^{2\pi i \nu(\omega_i)/t_i} - 1) / t_i,
\]
and the second term on the right hand side is bounded by a polynomial in the frequencies $\nu(\omega_i)$. Hence the first term is also polynomially bounded, which is inconsistent with the initial hypothesis. This completes the proof that
\[
| (\lambda(S_i \omega) - \lambda(\omega)) / t | \leq c_2 \left(1 + \nu(\omega)^k \right)
\]
for all $\omega \in X \setminus X_0$ and $t \in \mathbb{R}$, and completes the proof of the theorem.

3. Generators

In this section we establish that the condition $\delta(A_\infty) \subseteq A_{1/2}$ is sufficient to ensure that δ is a generator. The proof uses the Lipschitz criterion derived in Theorem 2.1 and semigroup convergence techniques.

The major part of the proof consists of a generator result for derivations $\delta = \lambda \delta_0$, where λ is a real continuous function over $X \setminus X_0$ which satisfies slightly more general bounds than those derived in Theorem 2.1. Note that the Lipschitz bounds automatically imply that λ is continuous along orbits, and the continuity across orbits plays practically no part in our proof. It is only used to ensure that δ is densely defined. (The domain $D(\delta)$ of $\delta = \lambda \delta_0$ is, by definition, those $f \in D(\delta_0)$ such that $\lambda \delta_0(f) \in A$.)

Although the following result could be partly deduced from Theorems 2.6 and 2.10 of [3], we give an almost independent proof based on resolvent convergence arguments. But to apply this technique it is convenient to use a density result from [3] which essentially allows one to avoid high frequencies.
First, for each $N \geq 0$, introduce the closed set $X^{(N)} = \{ \omega \in X; \nu(\omega) \geq N \}$. Second define $A^{(N)} \subseteq A$ by

$$A^{(N)} = \{ f \in A; f(S_t \omega) = f(\omega) \text{ for all } t \in \mathbb{R}, \omega \in X^{(N)} \}.$$

It follows immediately that each $A^{(N)}$ is a C^*-subalgebra of A, and if $N \leq M$, then $A^{(N)} \subseteq A^{(M)}$. But one deduces from Lemma 2.7 of [3] that

$$A = \bigcup_{N \geq 0} A^{(N)},$$

where the bar denotes norm closure. Finally each $A^{(N)}$ is σ-invariant, and hence one can deduce information about the system (A, R, σ) by examining the subsystems $(A^{(N)}, R, \sigma)$.

Theorem 3.1. Let σ be a strongly continuous one-parameter group of $*$-automorphisms of an abelian C^*-algebra $A = C_0(X)$ with generator δ_0 and associated flow S on X. Let $X_0 \subseteq X$ denote the fixed points of S and $\nu(\omega)$ the frequency of the point $\omega \in X$ under the group S. Define $A_\infty = \bigcap_{n \geq 1} D(\delta_0^n)$.

If λ is a real continuous function over $X \setminus X_0$ satisfying

$$C_{1/2}: \begin{cases} |\lambda(\omega)| \leq K_1(\nu(\omega)), \\ |\lambda(S_t \omega) - \lambda(\omega)| \leq |t|K_2(\nu(\omega)), \end{cases} \quad t \in \mathbb{R},$$

where $K_1: \mathbb{R}^+ \to \mathbb{R}^+$ are positive non-decreasing functions, then the closure $\overline{\delta}$ of the derivation $\delta = \lambda \delta_0$ is the generator of a strongly continuous one-parameter group of $*$-automorphisms of A. Moreover $D(\delta) \cap A_\infty$ is a core of $\overline{\delta}$.

Remark. This result differs from similar statements in [3] in two respects. First the boundedness assumption on λ is much stronger than that of Theorem 2.6 of [3] which established the existence of a unique generator extension of $\lambda \delta_0$. Second the differentiability assumption, $\lambda \in D(\delta_0)$, which was necessary in Theorem 2.12 of [3] in order to identify the unique generator extension of $\lambda \delta_0$ with its closure, is not necessary in the present context. The advantage of the present result is that it suffices for the discussion of derivations from $A_\infty \to A_{1/2}$, it is considerably easier to prove than the analogous results of [3], and it has potential extensions to non-abelian systems.

Proof. Fix $N \geq 0$ and consider the dynamical system $(A^{(N)}, R, \sigma)$. Here $A^{(N)}$ is the C^*-subalgebra of A introduced before the proposition, and we identify σ with its restriction to $A^{(N)}$. We also identify δ_0 and its restriction but explicitly indicate its domain $A^{(N)} \cap D(\delta_0)$.

Now if $f \in A^{(N)} \cap D(\delta_0)$, then $(\delta_0 f)(\omega) = 0$ whenever $\nu(\omega) \geq N$. Hence $A^{(N)} \cap D(\delta_0) \subseteq A^{(N)} \cap D(\delta)$, and one has

$$|((\lambda \delta_0 f)(\omega)| \leq K_1(N)|((\delta_0 f)(\omega)|,$$

$$|((\sigma \lambda - \lambda) \delta_0 f)(\omega)| \leq |t|K_2(N)|((\delta_0 f)(\omega)|.$$
Thus on the range $R(\delta_0)$ of δ_0, restricted to $A^{(N)}$, the function λ is uniformly bounded and satisfies a uniform Lipschitz condition. Alternatively stated, one has
\[
\|\lambda\|_N \leq K_1(N),
\]
\[
\|\sigma_\lambda - \lambda\|_N \leq K_2(N)|\tau|,
\]
where $\|\cdot\|_N$ denotes the usual operator norm calculated on the range $R(\delta_0)$ of δ_0 restricted to $A^{(N)}$. This reduces the proof of the propositions on $A^{(N)}$ to the case that K_1 and K_2 are uniformly bounded. We will handle this by regularizing λ and then using a convergence argument.

First, for $\alpha > 0$, define the regularization λ_α by
\[
\lambda_\alpha = \frac{1}{\alpha^2} \int_0^\alpha ds \int_0^s dt \sigma_{s+\lambda}.\]

Then $\lambda_\alpha \in D(\delta_0^2)$, and
\[
\delta_0 \lambda_\alpha = \frac{1}{\alpha^2} \int_0^\alpha ds \int_0^s dt \sigma_{s+\alpha} \lambda - \sigma_s \lambda.
\]

Therefore,
\[
\|\lambda_\alpha\|_N \leq K_1(N), \quad \|\delta_0 \lambda_\alpha\|_N \leq K_2(N),
\]
and
\[
\|\lambda_\alpha - \lambda\|_N \leq \frac{1}{\alpha^2} \int_0^\alpha ds \int_0^s dt \|\sigma_{s+\lambda} - \lambda\|_N \leq \alpha K_2(N).
\]

In particular, $\lambda_\alpha \rightarrow \lambda$ uniformly on the range of δ_0, as $\alpha \rightarrow 0$.

Second, for $\beta > 0$, define $H_{\alpha,\beta}$ on $A^{(N)} \cap D(\delta_0^2)$ by
\[
H_{\alpha,\beta} = \lambda_\alpha \delta_0 - \beta \delta_0^2.
\]

It follows easily that $H_{\alpha,\beta}$ is the generator of a C_0-semigroup $\tau^{\alpha,\beta}$ of contractions on $A^{(N)}$. To establish this, note that $-\delta_0^2$ is the generator of a contraction semigroup, the Gaussian semigroup associated with σ. Moreover,
\[
\|\delta_0 f\| \leq b\|\delta_0^2 f\| + \|f\|/b
\]
for all $f \in D(\delta_0^2)$ and $b > 0$, by application of Taylor’s theorem and the triangle inequality to the function $t \mapsto \sigma_t f$. Hence
\[
\|\lambda_\alpha \delta_0 f\| \leq b\beta\|\delta_0^2 f\| + \left(K_1(N)^2/\beta b \right) \|f\|
\]
for all $f \in D(\delta_0^2)$ and $b > 0$. But $H_{\alpha,\beta}$ is dissipative (see, for example, Lemma 4.1 of [3]), and hence $H_{\alpha,\beta}$ generates a C_0-semigroup of contractions $\tau^{\alpha,\beta}$ by perturbation theory.

It follows from general semigroup theory that $\|(I + \epsilon H_{\alpha,\beta})^{-1}\| \leq 1$ for all $\epsilon > 0$, and we use this to prove the strong convergence of $(I + \epsilon H_{\alpha,\beta})^{-1}$ in the limit $\beta \rightarrow 0$, then $\alpha \rightarrow 0$. For this proof, note that
\[
\left\{(I + \epsilon H_{\alpha,\beta_1})^{-1} - (I + \epsilon H_{\alpha,\beta_2})^{-1}\right\} f
\]
\[
= \epsilon(\beta_1 - \beta_2)(I + \epsilon H_{\alpha,\beta_2})^{-1}\delta_0^2(I + \epsilon H_{\alpha,\beta_1})^{-1} f
\]
and
\[
\left\{(I + \varepsilon H_{\alpha_1, \beta})^{-1} - (I + \varepsilon H_{\alpha_2, \beta})^{-1}\right\}f = \varepsilon \left(I + \varepsilon H_{\alpha_2, \beta}\right)^{-1}(\lambda_{\alpha_1} - \lambda_{\alpha_2}) \delta_0 \left(I + \varepsilon H_{\alpha_1, \beta}\right)^{-1}f
\]
for all \(f \in \mathbb{A}(N)\). Hence
\[
\left\|\left\{(I + \varepsilon H_{\alpha_1, \beta})^{-1} - (I + \varepsilon H_{\alpha_2, \beta})^{-1}\right\}f\right\| \leq \varepsilon |\beta_1 - \beta_2| \left\|\delta_0^2 \left(I + \varepsilon H_{\alpha_1, \beta}\right)^{-1}f\right\|
\]
and
\[
\left\|\left\{(I + \varepsilon H_{\alpha_1, \beta})^{-1} - (I + \varepsilon H_{\alpha_2, \beta})^{-1}\right\}f\right\| \leq \varepsilon \|\lambda_{\alpha_1} - \lambda_{\alpha_2}\|_N \left\|\delta_0 \left(I + \varepsilon H_{\alpha_1, \beta}\right)^{-1}f\right\|
\]
Now since all the resolvents \((I + \varepsilon H_{\alpha, \beta})^{-1}\) are contractions, it suffices to prove the strong convergence on a dense subspace of \(\mathbb{A}(N)\) such as \(\mathbb{A}(N) \cap D(\delta_0^2)\). But it follows from the first of these estimates that one has convergence as \(\beta \to 0\) if
\[
\left\|\delta_0^2 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\| \text{ is bounded uniformly in } \beta \text{ for } f \in \mathbb{A}(N) \cap D(\delta_0^2).
\]
Then it follows from the second estimate that one has convergence as \(\beta \to 0\) and then \(\alpha \to 0\) if, in addition, \(\|\delta_0 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\|\) is bounded uniformly in \(\alpha\) and \(\beta\) for \(f \in \mathbb{A}(N) \cap D(\delta_0^2)\). Hence we next examine these boundedness properties.

First, if \(f \in \mathbb{A}(N) \cap D(\delta_0)\), then
\[
\delta_0 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f = \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}\{\delta_0 f + \left[I + \varepsilon H_{\alpha, \beta}, \delta_0\right] \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\}
\]
\[
= \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}\{\delta_0 f - \varepsilon (\delta_0 \lambda_{\alpha}) \delta_0 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\}.
\]
Hence, setting \(K_2 = K_2(N)\), we obtain
\[
\left\|\delta_0 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\| \leq \|\delta_0 f\| + \varepsilon K_2 \left\|\delta_0 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\|,
\]
and for \(\varepsilon K_2 < 1\), one has the bound
\[
\left\|\delta_0 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\| \leq \|\delta_0 f\| (1 - \varepsilon K_2)^{-1},
\]
which is uniform in \(\alpha\) and \(\beta\). Similarly, if \(f \in \mathbb{A}(N) \cap D(\delta_0^2)\), one finds that
\[
\left\|\delta_0^2 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\| \leq \|\delta_0^2 f\| + 2\varepsilon \|\delta_0 \lambda_{\alpha}\|_N \left\|\delta_0^2 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\|
\]
\[
+ \varepsilon \|\delta_0^2 \lambda_{\alpha}\|_N \left\|\delta_0 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\|.
\]
Thus, if \(2\varepsilon K_2 < 1\), one has the bound
\[
\left\|\delta_0^2 \left(I + \varepsilon H_{\alpha, \beta}\right)^{-1}f\right\| \leq \left[\|\delta_0^2 f\| + \varepsilon \|\delta_0^2 \lambda_{\alpha}\|_N \|\delta_0 f\| (1 - \varepsilon K_2)^{-1}\right] (1 - 2\varepsilon K_2)^{-1},
\]
which is uniform in \(\beta\).
Therefore, if \(0 < \varepsilon < (2K_2)^{-1} \), we have established the existence of the strong limit

\[
R_\varepsilon = \lim_{\alpha \to 0} \lim_{\beta \to 0} (I + \varepsilon H_{\alpha, \beta})^{-1}.
\]

Next consider the convergence of \((I + \varepsilon H_{\alpha, \beta})^{-1}\) as \(\varepsilon \to 0\). Given \(f \in A^{(N)}\) and \(\kappa > 0\), one can choose \(g \in A^{(N)} \cap D(\delta_0^2)\) such that \(\|f - g\| < \kappa\|f\|/2\). Hence, setting \(K_1 = K_1(N)\), we have

\[
\left\| \left(\left(I + \varepsilon H_{\alpha, \beta} \right)^{-1} - I \right) f \right\| \leq \kappa\|f\| + \varepsilon\|H_{\alpha, \beta}g\|
\]

\[
\leq \kappa\|f\| + \varepsilon\|\lambda_\alpha\|_\infty\|\delta_0g\| + \varepsilon\beta\|\delta_0^2g\|
\]

\[
\leq \kappa\|f\| + \varepsilon K_1\|\delta_0g\| + \varepsilon\beta\|\delta_0^2g\|.
\]

Consequently,

\[
\lim_{\varepsilon \to 0} \sup_{0 < \alpha, \beta < 1} \left\| \left(\left(I + \varepsilon H_{\alpha, \beta} \right)^{-1} - I \right) f \right\| \leq \kappa\|f\|.
\]

Since \(\kappa > 0\) was arbitrary, this proves that \((I + \varepsilon H_{\alpha, \beta})^{-1}\) converges strongly to the identity as \(\varepsilon \to 0\), uniformly in \(\alpha\) and \(\beta\).

Therefore it follows from the version of the Trotter-Kato convergence theorem given in the appendix that there exists a \(C_0\)-contraction semigroup \(T\) on \(A^{(N)}\) with generator \(H\) such that \(\tau_{t}^{\alpha, \beta} \to \tau_t\) in the limit \(\beta \to 0\), then \(\alpha \to 0\), uniformly for \(t\) in finite intervals of \(\mathbb{R}^+\), and \((I + \varepsilon H_{\alpha, \beta})^{-1} \to (I + \varepsilon H)^{-1}\) as \(\beta \to 0\) then \(\alpha \to 0\), uniformly for \(\varepsilon > 0\). We will argue that \(H = \lambda \delta_0^{N} A^{(N)} \cap D(\delta_0^2)\).

Let \(f \in D(H)\) and set \(g = (I + \varepsilon H)f\). Now choose \(g_\gamma \in A^{(N)}\) such that \(\|g_\gamma - g\| \to 0\) as \(\gamma \to 0\). Next set \(f_{\alpha, \beta, \gamma} = (I + \varepsilon H_{\alpha, \beta})^{-1}g_\gamma\). Since \(D(H_{\alpha, \beta}) = D(\delta_0^2)\), one has \(f_{\alpha, \beta, \gamma} \in A^{(N)} \cap D(\delta_0^2)\). But

\[
\lim_{\gamma \to 0} \lim_{\alpha \to 0} \lim_{\beta \to 0} f_{\alpha, \beta, \gamma} = f.
\]

Moreover,

\[
(I + \varepsilon \lambda \delta_0)f_{\alpha, \beta, \gamma} - g_\gamma = \{ e(\lambda - \lambda_\alpha)\delta_0 - \varepsilon \beta \delta_0^2 \} f_{\alpha, \beta, \gamma}
\]

and

\[
\left\| \left\{ \left(\lambda - \lambda_\alpha \right)\delta_0 - \beta \delta_0^2 \right\} f_{\alpha, \beta, \gamma} \right\| \leq \left\| \lambda - \lambda_\alpha \right\|_\infty \left\| \delta_0 \left(I + \varepsilon H_{\alpha, \beta} \right)^{-1} g_\gamma \right\|
\]

\[
+ \beta \left\| \delta_0^2 \left(I + \varepsilon H_{\alpha, \beta} \right)^{-1} g_\gamma \right\|.
\]

Therefore, using the estimates derived above, one finds that

\[
\lim_{\gamma \to 0} \lim_{\alpha \to 0} \lim_{\beta \to 0} (I + \varepsilon \lambda \delta_0)f_{\alpha, \beta, \gamma} = g = (I + \varepsilon H)f.
\]
This establishes that the closure \(\tilde{\delta} \) of \(\lambda \delta_0 \mid_{A^{(N)} \cap D(\delta_0^2)} \) is an extension of \(H \). But since \(H \) is a generator, it has no proper dissipative extensions, and hence \(H = \tilde{\delta} \).

The foregoing argument applies equally well to \(-\lambda \), and consequently both \(\pm \delta \) are generators of \(C_0 \)-contraction semigroups. Hence, by a simple standard argument, \(\tilde{\delta} \) in fact generates a \(C_0 \)-group of isometries \(\tau \). Finally, as \(\lambda \) is real, \(\delta \) is a \(* \)-derivation, and \(\tau \) must be a group of \(* \)-automorphisms of \(A^{(N)} \). Next we extend \(\tau \) from \(A^{(N)} \) to \(A \).

For each \(N \geq 0 \), we have constructed a group of \(* \)-automorphisms, which we now denote by \(\tau^{(N)} \), of \(A^{(N)} \) and the generator of \(\tau^{(N)} \) is \(H^{(N)} = \lambda \delta_0 \mid_{A^{(N)} \cap D(\delta_0^2)} \).

But if \(N \leq M \), then \(A^{(N)} \subseteq A^{(M)} \), and \(\tau^{(N)} \subseteq \tau^{(M)} \) because \(H^{(N)} \subseteq H^{(M)} \). Thus, defining \(\tau \) on \(\bigcup_{N \geq 0} A^{(N)} \) by setting \(\tau = \tau^{(N)} \) on \(A^{(N)} \), one can then extend \(\tau \) to a \(C_0 \)-group of \(* \)-automorphisms of \(A \) by continuity, because

\[
A = \bigcup_{N \geq 0} A^{(N)}. \]

The generator \(H \) of \(\tau \) is by construction a closed extension of \(\lambda \delta_0 \) restricted to \(D = \bigcup_{N \geq 0} A^{(N)} \cap D(\delta_0^2) \), but in fact \(H = \lambda \delta_0 \mid_D \). To prove this, let \(f \in D(H) \) and set \(g = (1 + \varepsilon H) f \).

By density there exists a sequence \(g_\varepsilon \in A^{(N)} \) such that \(\| g_\varepsilon - g \| \to 0 \), and, since \(H^{(N)} = H \mid_{A^{(N)}} \) is a generator, there exists a sequence \(f_\varepsilon \in D(H^{(N)}) \) such that \(g_\varepsilon = (1 + \varepsilon H^{(N)}) f_\varepsilon \). Then it follows that \(f_\varepsilon = (1 + \varepsilon H)^{-1} g_\varepsilon \to f \).

But as \(A^{(N)} \cap D(\delta_0^2) \) is a core of \(H^{(N)} \), one concludes that \(\bigcup_{N \geq 0} A^{(N)} \cap D(\delta_0^2) \) is a core of \(H \).

Finally, if \(f \in A^{(N)} \cap D(\delta_0^2) \), and if \(h \in C_0(R) \) is a positive, infinitely differentiable function with support in \([-1, 1]\) and total integral one, then, defining

\[
f_n = n \int dt h(nt) \sigma_t f,
\]

one has \(f_n \in A^{(N)} \cap A_\infty \). But \(f_n \rightarrow f \) and \(\delta_0 f_n \rightarrow \delta_0 f \) by strong continuity of \(\sigma \). Moreover, \(\lambda \) is bounded on the range of \(\delta_0 \) restricted to \(A^{(N)} \), so \(\delta f_n = \lambda \delta_0 f_n \rightarrow \lambda \delta_0 f = \delta f \). Therefore \(\bigcup_{N \geq 0} A^{(N)} \cap A_\infty \) is a core of \(H \).

Combining Theorems 2.1 and 3.1, one obtains the result stated in the abstract.

Corollary 3.2. Let \(\sigma \) be a strongly continuous one-parameter group of \(* \)-automorphisms of an abelian \(C^* \)-algebra \(A \) with generator \(\delta_0 \). Define \(A_\infty = \bigcap_{n \geq 1} D(\delta_0^n) \) and

\[
A_{1/2} = \left\{ f \in A; \sup_{0 < |t| < 1} \| (\sigma_t f - f) / t \| < +\infty \right\}.
\]

If \(\delta \) is a \(* \)-derivation from \(A_\infty \) into \(A_{1/2} \), then \(\delta \) is closable, and its closure \(\tilde{\delta} \) is the generator of a strongly continuous one-parameter group of \(* \)-automorphisms of \(A \).
PROOF. It follows from Theorem 2.1 that \(\delta = \lambda \delta_0 \), where \(\lambda \) satisfies the condition \(C_{1/2} \) of Theorem 3.1 with \(K_1 \) and \(K_2 \) polynomials, thereby ensuring that \(A_\infty \subseteq D(\delta) \). The corollary is then a direct consequence of Theorem 3.1.

4. Local dissipations

An operator \(H: A_\infty \to A \) is defined to be local if \(\text{supp}(Hf) \subseteq \text{supp}(f) \) for all \(f \in A_\infty \), and to be a dissipation if

\[
H(\hat{ff}) \leq H(\hat{f})f + \hat{f}H(f)
\]

for all \(f \in A_\infty \). In [1] it was demonstrated that \(H \) is a local dissipation if, and only if, it has the form

\[
Hf = \lambda_0 f + \lambda_1 \delta_0 f - \lambda_2 \delta_0^2 f,
\]

where \(\lambda_0 \) is bounded and continuous on \(X \), where \(\lambda_1, \lambda_2 \) vanish on \(X_0 \) and are polynomially bounded and continuous on \(X \setminus X_0 \), and where \(\delta_0, \delta_1, \delta_2 \geq 0 \). Moreover, if \(H \) maps \(A_\infty \) into \(A_n \), then the \(\lambda_i \in A_n \), \(\delta_0 \lambda_0 \) is bounded, and \(\delta_0 \lambda_1, \delta_0 \lambda_2 \) are polynomially bounded, for \(j \leq n \).

In [3] it was conjectured, in analogy with results for derivations, that if \(H: A_\infty \to A_2 \) is a local dissipation, then its closure generates a \(C_0 \)-semigroup of positive contractions. This conjecture was verified in the special case that \(\lambda_1 \) is bounded by \(\lambda_2^{1/2} \). The general conjecture is, however, false, as we next demonstrate with a specific example. Subsequently we extend the positive results on dissipations obtained in [3] to local dissipations \(H: A_\infty \to A_{3/2} \), where \(A_{3/2} \) is defined by

\[
A_{3/2} = \{ f \in A_1; \delta_0 f \in A_{1/2} \}.
\]

Then we discuss some other possible characterizations of \(A_{3/2} \).

First consider the example \(A = C_0(\mathbb{R}) \) and \(\sigma \) the group of translations. (I am indebted to Charles Batty for help in constructing this example.) Thus \(\delta_0 = d/dx \) and \(A_\infty = C_0^\infty(\mathbb{R}) \). Now let \(C_0^\infty(\mathbb{R}) \) denote the infinitely differentiable functions with compact support and \(H: C_c^\infty(\mathbb{R}) \to C_0(\mathbb{R}) \) the operator defined by

\[
H = -x^2 \frac{d^2}{dx^2} - (1 - x^2) \frac{d}{dx}.
\]

Then \(H \) is a dissipation, but if \(g \) is defined by

\[
g(x) = x^{-2} \exp\{-x^{-1}\}, \quad x > 0,
\]

\[
= 0, \quad x \leq 0,
\]

one readily computes that

\[
\int dx \, g(x) ((1 + H)f)(x) = 0
\]
for all \(f \in C_c^\infty(\mathbb{R}) \). Thus the closure of \(H \) is definitely not the generator of a contraction semigroup on \(C_0(\mathbb{R}) \).

This example is almost a counterexample to the conjecture in [3]. It fails only because the coefficients of \(H \) are unbounded at infinity, and hence \(H \) is not defined on all of \(A_\infty \). One can, however, convert this example into a genuine counterexample on \(C(\mathbb{T}) \) by the change of variable \(x \in \mathbb{R} \mapsto y \in \mathbb{T} \), where \(y = \tan^{-1} x \). One then obtains the more complicated expression

\[
H = \frac{1}{4} \left(-\sin^2 2y \frac{d^2}{dy^2} + 2(\sin 2y(1 - \cos 2y) - 2 \cos 2y) \frac{d}{dy} \right),
\]

which has bounded continuous coefficients and can be defined on all of \(C^\infty(\mathbb{T}) \). But by the above calculation \(R(1 + H) \neq C(\mathbb{T}) \), and hence \(H \) is not a generator.

Next we turn to the examination of local dissipations \(H : A_\infty \to A_{3/2} \), and we begin by remarking that, by an extension of the proof of Theorem 2.1, one can establish that the coefficients \(\lambda_0, \lambda_1, \lambda_2 \in D(\delta_0) \) satisfy the condition

\[
C_{3/2} : \left\{ \begin{array}{l}
|\lambda(\omega)| \leq L_1(\nu(\omega)) \\
|\delta_0 \lambda(\omega)| \leq L_2(\nu(\omega)) \\
|\delta_0 \lambda(\sigma_\omega) - (\delta_0 \lambda)(\omega)| \leq t|L_3(\nu(\omega))|
\end{array} \right.
\]

where the \(L_i \) are polynomials. Hence the basic problem is to show that the closure of \(H = \lambda_1 \delta_0 - \lambda_2 \delta_0^2 \) on \(A_\infty \), where \(\lambda_2 \geq 0 \), and where \(\lambda_1, \lambda_2 \) satisfy \(C_{3/2} \) on \(X \setminus X_0 \), is a generator. (The term \(\lambda_0 \) causes no problems, since it is positive and bounded, and \(H \) is closable because it is automatically dissipative [3].)

Now the closure of \(\lambda_1 \delta_0 \) generates a group of \(*\)-automorphisms by Theorem 3.1, or Theorem 3.1 of [3], and we next argue that the closure of \(-\lambda_2 \delta_0^2 \) generates a positive contraction semigroup. Then if \(\lambda_1 \) is bounded by \(\lambda_2^{1/2} \), the generator result follows for the sum \(H = \lambda_1 \delta_0 - \lambda_2 \delta_0^2 \) by perturbation theory.

Proposition 4.1. Let \((A, \mathcal{R}, \sigma)\) be an abelian \(C^*\)-dynamical system. Denote the generator of \(\sigma \) by \(\sigma_0 \) and set \(A_\infty = \cap_{n \geq 1} D(\delta_0^n) \).

If \(\lambda \) is a non-negative continuous function over the spectrum \(X \) of \(A \) which satisfies condition \(C_{3/2} \) above, then the closure \(\overline{H} \) of \(H = -\lambda \delta_0 \) generates a positive \(C^0\)-contraction semigroup. Moreover, \(A_\infty \cap D(H) \) is a core of \(\overline{H} \).

Remarks. 1. For this result it suffices that the functions \(L_i \) which occur in Condition \(C_{3/2} \) are positive, and finite-valued. If the \(L_i \) are polynomials, then \(A_\infty \subseteq D(H) \); and hence \(A_\infty \) is a core of \(\overline{H} \).

2. It follows from the first part of the proof that, since \(\lambda \) is non-negative, the bound on \(\delta_0 \lambda \) in Condition \(C_{3/2} \) follows from the other two bounds, and in fact one can assume that \(L_2^2 \leq 2 L_1 L_3 \).
Proof. The key to the proof is the observation that

\[0 \leq \sigma \lambda = \lambda + t(\delta_0 \lambda) + \int_0^t ds (\sigma - 1)(\delta_0 \lambda). \]

Therefore

\[0 \leq \lambda (\omega) + t(\delta_0 \lambda)(\omega) + (t^2/2) L_3(\nu(\omega)) \]

for all \(t \in \mathbb{R} \), and hence

\[|(\delta_0 \lambda)(\omega)|^2 \leq 2 \lambda (\omega) L_3(\nu(\omega)). \]

But this implies that \(\lambda^{1/2} \in D(\delta_0) \), and so

\[|(\delta_0 \lambda^{1/2})(\omega)|^2 = |(\delta_0 \lambda)(\omega)|^2/2 \lambda (\omega) \leq L_3(\nu(\omega))/2. \]

Hence by Theorem 3.1 of [3], or Theorem 3.1 in the previous section, the closure \(\bar{\delta} \) of \(\delta = \lambda^{1/2} \delta_0 \) generates a \(C_0 \)-group of \(*\)-automorphisms \(\tau \) of \(A \). Consequently, \(-\bar{\delta}^2 \) generates a positive \(C_0 \)-contraction semigroup \(\rho \), the convolution semigroup associated with \(\tau \), defined by

\[\rho_t f = (\pi t)^{-1/2} \int_{-\infty}^{\infty} ds e^{-s^2/\tau_s} f. \]

Next let \(A^{(N)} \) denote the \(C^* \)-subalgebra of \(A \) spanned by those \(f \in A \) which satisfy \(f(S_t \omega) = f(\omega) \) for all \(t \in \mathbb{R} \) and all \(\omega \) in the closed set \(X^{(N)} = \{ \omega : \nu(\omega) \geq N \} \). The groups \(\sigma \) and \(\tau \) leave each \(A^{(N)} \) invariant, and hence \(\rho \) also leaves the \(A^{(N)} \) invariant. Next, following [3], we observe that

\[H = -\lambda \delta_0^2 = -(\lambda^{1/2} \delta_0)^2 + (\delta_0 \lambda^{1/2})(\lambda^{1/2} \delta_0), \]

and if \(f \in A^{(N)} \cap D((\lambda^{1/2} \delta_0)^2) \), then

\[\| (\delta_0 \lambda^{1/2}) \lambda^{1/2} \delta_0 f \| \leq L_3(N)^{1/2} \| \lambda^{1/2} \delta_0 f \|^{2^{1/2}} \]

\[\leq b \| (\lambda^{1/2} \delta_0)^2 f \| + (L_3(N)/2) \| f \|/b \]

for all \(b > 0 \). Now \(H \) is dissipative, and hence \(H \) generates a \(C_0 \)-semigroup \(\kappa \) of contractions by perturbation theory. Since \(H \) is a dissipation, \(\kappa \) is also positive by [3], Proposition 4.3. Now \(\kappa \) is defined on each \(A^{(N)} \) consistently, i.e. if \(N \leq M \), then the restriction of \(\kappa \) from \(A^{(M)} \) to \(A^{(N)} \) agrees with the direct definition of \(\kappa \) on \(A^{(N)} \). Finally, \(A = \bigcup_{N \geq 1} A^{(N)} \), and hence \(\kappa \) extends to a positive \(C_0 \)-contraction semigroup on \(A \) by continuity.

The core property follows by the same arguments used to derive the analogous property in Theorem 3.1.

We conclude with some comments on the definition of \(A^{3/2} \). There are various alternatives to the choice that we have used. But the following propositions show that the obvious ones coincide, even for non-abelian \(A \).
PROPOSITION 4.2. Let \((A, \mathbb{R}, \sigma)\) be a C*-dynamical system and let \(\delta\) denote the generator of \(\sigma\). Then, for each \(A \in A\), the following conditions are equivalent:

1. \[\sup_{|t| > 0} \|(\sigma_t - 1)^2 A / t^2\| < +\infty,\]
2. \[\sup_{|t| > 0} \sup_{|s| > 0} \|(\sigma_t - 1) (\sigma_s - 1) A / ts\| < +\infty,\]
3. \(A \in D(\delta)\) and \[\sup_{|t| > 0} \|(\sigma_t - 1) \delta(A) / t\| < +\infty.\]

Moreover, if these conditions are satisfied, then the three suprema are equal.

PROOF. 3 \(\Rightarrow\) 2. This follows from the triangle inequality once one observes that

\[
\frac{(\sigma_t - 1) A}{s} = -\frac{1}{2} \int_0^s \sigma_r \delta(A) \, dr.
\]

2 \(\Rightarrow\) 1. This is obvious.

1 \(\Rightarrow\) 3. First we prove that \(A \in D(\delta)\). Set

\[a = \sup_{|t| > 0} \|(\sigma_t - 1)^2 A / t^2\|.
\]

Then note that

\[
\left(\frac{\sigma_t - 1}{t} - \frac{\sigma_{t/2} - 1}{t/2} \right) A = \left(\frac{\sigma_{t/2} - 1}{t/2} \right) \left(\frac{\sigma_{t/2} + 1}{2} - 1 \right) A
\]

\[= \frac{(\sigma_{t/2} - 1)^2}{t/2} A / 2.
\]

Replacing \(t\) by \(t_m = t/2^m\) and summing from \(m = 0\) to \(m = n - 1\), one finds that

\[
\left(\frac{\sigma_t - 1}{t} - \frac{\sigma_{t_n} - 1}{t_n} \right) A = \sum_{m=0}^{n-1} \frac{(\sigma_{t_{m+1}} - 1)^2}{t_{m+1}} A/2.
\]

Therefore

\[
(*) \quad \left\| \left(\frac{\sigma_t - 1}{t} - \frac{\sigma_{t_n} - 1}{t_n} \right) A \right\| \leq (a/2) \sum_{m=0}^{\infty} |t_{m+1}|
\]

\[\leq (a/2) |t| \sum_{m=0}^{\infty} \frac{1}{2^{m+1}}
\]

\[= (a/2) |t|.
\]

Consequently, for all \(m, n \geq 0\), one has

\[
\left\| \left(\frac{\sigma_{t_n} - 1}{t_n} - \frac{\sigma_{t_{m+1}} - 1}{t_{m+1}} \right) A \right\| \leq a |t|,
\]

and, replacing \(t\) by \(t_p\), one concludes that

\[
\left\| \left(\frac{\sigma_{t_n} - 1}{t_n} - \frac{\sigma_{t_{m+1}} - 1}{t_{m+1}} \right) A \right\| \leq a |t| / 2^p
\]
for all \(m, n \geq p \). This proves that
\[
\lim_{n \to \infty} \frac{(\sigma_n - 1)}{t_n} A = A_t
\]
exists, but in principle it could depend upon \(t \). Nevertheless,
\[
\frac{(\sigma_n + t - 1)}{s_n + t} A = \frac{t_n}{s_n + t} \frac{(\sigma_n - 1)}{t_n} A + \frac{s_n}{s_n + t} \frac{(\sigma_n - 1)}{s_n} A,
\]
and hence
\[
(s + t) A_{s+t} = sA_s + tA_t,
\]
i.e. the function \(t \in \mathbb{R} \mapsto tA_t \in A \) is additive. But \((*)\) implies that
\[
\|tA_t\| \leq 2\|A\| + (a/2)t^2,
\]
and consequently, by classical reasoning, the function \(t \in \mathbb{R} \mapsto tA_t \in A \) must be linear, i.e. \(A_t = A_1 \) is independent of \(t \). Now referring to \((*)\) once again, one sees that
\[
\lim_{t \to 0} \|(a, - 1)^t A/t - A_1\| = 0,
\]
i.e. \(A \in D(\delta) \) and \(\delta(A) = A_1 \).

Finally, using the foregoing identification and the estimate \((*)\), one has
\[
\|(a, - 1)^2 A/t^2 - (a, - 1)\delta(A)/t\| \leq a.
\]
Hence the supremum in Condition 3 is finite. This establishes that 1 \(\Rightarrow \) 3.

Now consider the last statement of the proposition. Let \(a_1, a_2, a_3 \) denote the values of the suprema occurring in Conditions 1, 2, and 3 respectively. Then by elementary reasoning \(a_1 \leq a_2 \leq a_3 \). But using \((\sigma, - 1) = (\sigma/2 - 1)(\sigma/2 + 1)\), one deduces that
\[
\|(\sigma, - 1)^2 A/t^2\| \leq \|(\sigma, - 1)(\sigma, - 1) A/t_n\| \leq \|(\sigma, - 1)^2 A/t^2\| \leq a_1,
\]
where we have once again used the notation \(t_n = t/2^n \). Therefore, taking the limit as \(n \to \infty \), one finds that
\[
\|(\sigma, - 1)^2 A/t^2\| \leq \|(\sigma, - 1)\delta(A)/t\| \leq a_1.
\]
Finally, taking the supremum over \(t \) gives \(a_1 \leq a_3 \leq a_1 \), and hence \(a_1 = a_2 = a_3 \).

Appendix-semigroup convergence

In Section 3 we make several applications of a version of the Trotter-Kato theorem on semigroup convergence. The resolvent formulation of this result is given in [5, Chapter IV], but it can also be stated in terms of the semigroup. The complete result, for contraction semigroups, is summarized in the following proposition.
PROPOSITION. Let S^a be a net of C_0-contraction semigroups on a Banach space B and denote the generator of S^a by H_a. The following conditions are equivalent.

1. The strong limit of S^a_t exists for all small $t > 0$, and for each $a \in B$,
 $$\lim_{t \to 0^+} \| (S^a_t - I) a \| = 0$$
 uniformly in a.

2. The strong limit of $(I + \varepsilon H_a)^{-1}$ exists for all small $\varepsilon > 0$, and for each $a \in B$,
 $$\lim_{\varepsilon \to 0^+} \| (I + \varepsilon H_a)^{-1} - I \| a \| = 0$$
 uniformly in a.

Moreover, these conditions imply that there exists a C_0-contraction semigroup S, with generator H, such that $S^a_t \to S$ uniformly for t in any finite interval of \mathbb{R}_+, and such that $(I + \varepsilon H_a)^{-1} \to (I + \varepsilon H)^{-1}$ uniformly for $\varepsilon > 0$.

PROOF. Assume that Condition 1 holds and let S_t denote the strong limit of S^a_t. Since $\| S^a_t \| \leq 1$ for all $t \geq 0$, it readily follows that the strong limit exists for all $t \geq 0$ and that $S_t S_{t'} = S_{t+t'}$ for all $s, t \geq 0$. But $S_0 = I$, and one automatically has $\| S_t \| \leq 1$. Therefore, to conclude that S is a C_0-contraction semigroup, it remains to prove continuity at the origin. But given $a \in B$ and $\varepsilon > 0$, one can choose t_0 such that
 $$\|(S^a_t - I) a\| < \varepsilon/2$$
 for all $0 \leq t \leq t_0$, uniformly in a. Then for $0 < t \leq t_0$ fixed, one can choose a_0 such that
 $$\|(S^a_t - S_t) a\| < \varepsilon/2$$
 for $a > a_0$. Therefore, by the triangle inequality,
 $$\|(S_t - I) a\| < \varepsilon,$$
 and this is valid for any $0 \leq t \leq t_0$.

Now since S^a converges to the C_0-contraction semigroup S, it follows from the usual Trotter-Kato theorem (see, for example, [7], Theorem 3.1.26) that $(I + \varepsilon H_a)^{-1}$ converges strongly to $(I + \varepsilon H)^{-1}$, where H is the generator of S, and the convergence is uniform in ε. But
 $$\left[(I + \varepsilon H_a)^{-1} - I \right] a = \int_0^\infty dt \varepsilon^{-1} \left(S^a_t - I \right) a,$$
 and hence, for any $M > 0$, one estimates that
 $$\| \left[(I + \varepsilon H_a)^{-1} - I \right] a \| \leq 2\varepsilon^{-M} \| a \| + \sup_{|t| < M} \| (S^a_t - I) a \|.$$

It follows immediately that $(I + \varepsilon H_a)^{-1} \to I$ as $\varepsilon \to 0$ uniformly in a.

This establishes that Condition 2, and also the last statement of the proposition, follow from Condition 1.

Next assume that Condition 2 holds. Then the existence of S and H and the identification

$$(I + \epsilon H)^{-1} = \lim_{\alpha} (I + \epsilon H_{\alpha})^{-1}$$

follow from [5, Chapter IX, Theorem 2.17]. The proof can be summarized as follows.

Let R_{ϵ} denote the strong limit of $(I + \epsilon H_{\alpha})^{-1}$. Since $\|(I + \epsilon H_{\alpha})^{-1}\| \leq 1$, and since the resolvent relation

$$\epsilon_{1}(I + \epsilon_{1}H_{\alpha})^{-1} - \epsilon_{2}(I + \epsilon_{2}H_{\alpha})^{-1} = (\epsilon_{1} - \epsilon_{2})(I + \epsilon_{1}H_{\alpha})^{-1}(I + \epsilon_{2}H_{\alpha})^{-1}$$

is valid, it follows that

$$\|R_{\epsilon}\| \leq 1$$

and that

$$\epsilon_{1}R_{\epsilon_{1}} - \epsilon_{2}R_{\epsilon_{2}} = (\epsilon_{1} - \epsilon_{2})R_{\epsilon_{1}}R_{\epsilon_{2}}.$$

But given $a \in \mathcal{B}$ and $\kappa > 0$, one can choose $\epsilon_{0} \geq 0$ such that

$$\|(I + \epsilon H_{\alpha})^{-1} - I)a\| < \kappa/2$$

for $0 < \epsilon \leq \epsilon_{0}$ uniformly in α. Then, for $0 < \epsilon \leq \epsilon_{0}$ fixed, one can choose α_{0} such that

$$\|(I + \epsilon H_{\alpha})^{-1} - R_{\epsilon})a\| < \kappa/2$$

for $\alpha > \alpha_{0}$. Hence, by the triangle inequality,

$$\|(R_{\epsilon} - I)a\| < \kappa,$$

and this is valid for any $0 \leq \epsilon \leq \epsilon_{0}$. Consequently,

$$\lim_{\epsilon \to 0} R_{\epsilon} = I.$$

It immediately follows that $R_{\epsilon} = (I + \epsilon H)^{-1}$, where H is the generator of a C_{0}-contraction semigroup S. Then $S^{\alpha} \to S$ by the usual Trotter-Kato convergence theorem, and this implies the last statement of the proposition.

It remains to prove that $S_{\epsilon}^{\alpha} \to I$ as $t \to 0$ uniformly in α. Now given $a \in \mathcal{B}$, set $a_{\alpha} = (I + \kappa H_{\alpha})a^{-2}$. Then $a_{\alpha} \in D(H_{\alpha}^{2})$,

$$a_{\alpha} - a = ((I + \kappa H_{\alpha})^{-1} + I)((I + \kappa H_{\alpha})^{-1} - I)a,$$

and

$$H_{\alpha}^{2}a_{\alpha} = \frac{1}{\kappa^{2}}((I + \kappa H_{\alpha})^{-1} - I)^{2}a.$$
In particular, \(\|a_{\alpha} - a\| \leq 2\|((I + \kappa H_a)^{-1} - I) a\| \), and \(\|H_a^2 a_\alpha\| \leq 4\|a\|/\kappa^2 \). But by a standard estimate (see, for example, [5, Chapter IX, Section 1.2]), we have
\[
\left\| \left(S_t^\alpha - \left(I + \frac{t}{n} H_a \right)^{-n} \right) a_\alpha \right\| \leq \frac{t^2}{2n} \| H_a^2 a_\alpha \| \leq 2t^2 \|a\|/n\kappa^2.
\]
Therefore
\[
\| (S_t^\alpha - I) a \| \leq \left\| \left(I + \frac{t}{n} H_a \right)^{-n} - I \right\| a_\alpha \| + \| S_t^\alpha - \left(I + \frac{t}{n} H_a \right)^{-n} \right\| a_\alpha \| + 2\|a - a_\alpha\|
\leq n\left\| \left(I + \frac{t}{n} H_a \right)^{-1} - I \right\| a \| + 2t^2 \|a\|/n\kappa^2
+ 4\| (I + \kappa H_a)^{-1} - I \right\| a \|.
\]
Hence, by first choosing \(\kappa \) and then \(t \), one deduces that \(S_t^\alpha \to I \) uniformly in \(\alpha \) as \(t \to 0 \). This completes the proof.

References

Department of Mathematics,
Institute of Advanced Studies
Australian National University
Canberra
Australia