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The inner and outer solutions to the inertial flow
over a rolling circular cylinder
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This paper proposes a new approach for evaluating numerically the forces and moments
applied to a circular cylinder that is immersed in a fluid and which translates and rotates
near a plane wall. Under the proposed approach, the flow is decomposed into inner and
outer flows. The inner flow represents the flow in the thin interstice between the cylinder
and the wall, and is obtained as an analytic expression using lubrication theory. The
outer flow represents the flow far from the interstice, which does not depend on the
magnitude of the gap between the cylinder and the wall, when the gap is small. The
outer flow is obtained using numerical simulation as a function of both the Reynolds
number and the slip coefficient. The force and moment coefficients are then obtained, as
functions of the Reynolds number, slip coefficient and gap-to-diameter ratio, by combining
the inner and outer solutions. Importantly, since the outer flow does not depend on the
gap-to-diameter ratio, the parameter space to be explored by numerical simulations is
greatly reduced compared to using finite gap ratio simulations. Moreover, the numerical
difficulties associated with resolving the interstitial flow are avoided. The proposed
approach can be extended to a wide range of rolling bodies, including spherical particles
and wheels, and should significantly reduce the computational expense required to model
the hydrodynamic forces and predict the subsequent motion of such bodies.

Key words: flow-structure interactions, wakes, computational methods

1. Introduction

The problem of a particle or body that moves along or close to a surface is important for a
range of industrial and natural flows, such as particle technology and sediment transport.
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One issue of particular importance is to determine of the hydrodynamic drag force applied
to such a body, and hence predict the subsequent motion of the body.

For elementary particles with simplified geometry, such as a smooth sphere or cylinder
rolling or translating along a plane wall, the hydrodynamic forces depend strongly on the
magnitude of the gap between the particle and the wall (Goldman, Cox & Brenner 1967;
O’Neill & Stewartson 1967; Merlen & Frankiewicz 2011). In particular, the drag force
becomes infinite as the gap approaches zero, therefore a smooth sphere or cylinder would
be unable to move while in contact with a smooth wall. In order for the particle to travel
along the surface, a finite gap between the particle and the wall must be established, by
cavitation (Prokunin 2003; Ashmore, Del Pino & Mullin 2005), surface roughness (Smart,
Beimfohr & Leighton 1993; Galvin, Zhao & Davis 2001; Thompson, Leweke & Hourigan
2021; Houdroge et al. 2023) or compressibility (Terrington, Thompson & Hourigan 2022).

Once the hydrodynamic gap has been determined, the hydrodynamic forces and
moments can be evaluated to predict the resulting motion of the body. For the rolling
sphere, Ashmore et al. (2005) and Kozlov, Prokunin & Slavin (2007) predict the effective
gap induced by cavitation, while Smart et al. (1993), Galvin et al. (2001) and Zhao, Galvin
& Davis (2002) assume an average gap introduced by a sparse distribution of surface
asperities on either the sphere or the wall. Assuming that inertial effects are negligible,
these authors then use the Goldman et al. (1967) formulae for the drag and moment applied
to a sphere in a Stokes flow to predict the motion of the sphere.

For slow-moving particles, the Stokes approximation can be used to predict the forces
and moments applied to the rolling body, and in such cases, explicit expressions for the
hydrodynamic forces and moments can be obtained. Dean & O’Neill (1963) and O’Neill
(1964) use a bispherical coordinate transformation to obtain the forces and moments
applied to spheres that either rotate or translate along a plane wall. However, their series
solution suffers from poor numerical convergence when the gap between the sphere and the
wall is small. For small gaps, asymptotic expressions for the forces and moments have been
determined by Goldman et al. (1967), O’Neill & Stewartson (1967) and Cooley & O’Neill
(1968), using the method of matched asymptotic expansions. Similarly, solutions for the
Stokes flow over the rolling cylinder were obtained using bipolar coordinates by Jeffery
(1922), Wakiya (1975) and Jeffrey & Onishi (1981), while the asymptotic solution for
small gaps was obtained using the method of matched asymptotic expansions by Merlen
& Frankiewicz (2011).

For moderate and high Reynolds number flows, however, numerical simulations are
required to predict the hydrodynamic forces and moments applied to the rolling body.
Numerical simulations of the flow over a translating or rolling cylinder have been presented
by Stewart et al. (2006, 2010b), Rao et al. (2011) and Houdroge et al. (2017, 2020), while
numerical simulations of the flow over a rolling sphere are presented by Zeng et al. (2009),
Stewart et al. (2010a) and Houdroge et al. (2016, 2023).

The forces and moments applied to a given body (either a cylinder or a sphere) depend
on three parameters: the gap–diameter ratio G/d, the Reynolds number Re = Ud/ν, and
the slip coefficient k = Ωd/(2U), where d is the diameter of the body, U and Ω are the
linear and angular velocities, respectively, G is the gap between the body and the wall, and
ν is the kinematic viscosity of the fluid. Existing numerical studies have not considered
the entirety of this parameter space. Stewart et al. (2006, 2010a,b), Rao et al. (2011) and
Houdroge et al. (2017) consider only a single gap ratio, noting that the flow far from the
gap is approximately independent of the gap ratio. While the gap ratio effect is considered
by Houdroge et al. (2020, 2023), these studies are restricted to cylinders and spheres that
roll without slipping (k = 1). Slip has been observed experimentally, for both spheres
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(Smart et al. 1993; Yang et al. 2006) and cylinders (Seddon & Mullin 2006), for certain
ranges of the governing parameters, therefore a complete dynamical model for the motion
of the particle requires the dependence of the force and moment coefficients against all
three parameters: G/d, k and Re. To cover this entire parameter space directly requires
significant computational expense.

The small gap ratios that occur in many experiments pose further difficulty in simulating
numerically the flow over a rolling body. As the gap ratio is reduced, a progressively
finer numerical mesh is needed to capture adequately the interstitial flow, therefore
numerical simulations become impractical for a sufficiently small gap ratio. For example,
Houdroge et al. (2023) perform simulations of the rolling sphere to a minimum gap ratio
2 × 10−4, which is substantially larger than the gap ratios of order 10−6 required to match
their experimental measurements. Therefore, numerical simulation of the entire flow,
including both the outer flow and the interstitial flow, is impractical for many experimental
conditions.

To avoid these numerical difficulties, the present paper applies the method of matched
asymptotic expansions, which has been used to solve the Stokes flow over rolling bodies
(Goldman et al. 1967; O’Neill & Stewartson 1967; Merlen & Frankiewicz 2011), to the
inertial flow over a rolling body. Under this approach, the flow is separated conceptually
into inner and outer domains. The inner flow describes the flow in the narrow interstice
between the rolling body and the wall, and is given by an analytical solution obtained
using lubrication theory. The outer flow is the flow far from the interstice, which is
independent of G/d. Since an analytical solution is obtained for the inner flow, numerical
simulations are performed only for the outer flow, thereby avoiding the numerical
difficulties associated with a small gap ratio. Moreover, since the outer flow depends only
weakly on G/d, the parameter space that must be covered by numerical simulations is
reduced to only two variables, Re and k, significantly reducing the computational work
required to model the dynamics of the particle.

In the present work, this framework is applied to the two-dimensional flow over an
infinite circular cylinder translating and rolling near a plane wall. The solution for the outer
flow is obtained numerically as a function of Re and k. By combining the outer solution
with the lubrication solution for the inner flow, the total force and moment coefficients are
evaluated as functions of the three parameters G/d, Re and k. We introduce the wake force
and moment coefficients – defined as the difference in the force and moment coefficients
between inertial and Stokes flow – to characterise the effects of inertia on the forces and
moments applied to the cylinder. The wake drag and moment coefficients are found to be
insensitive to G/d, and can therefore be determined directly from the outer-flow solution.
The wake lift coefficient decreases linearly with

√
G/d, and an upper limit for the wake

lift coefficient can be determined directly from the outer solution.
While the present paper considers only the two-dimensional flow over a circular

cylinder, we anticipate that the approach used can be applied to other rolling body flows,
such as rolling spheres or finite cylinders (wheels). For example, Goldman et al. (1967),
O’Neill & Stewartson (1967) and Cooley & O’Neill (1968) decompose the Stokes flow
over a sphere near a wall into inner and outer solutions. Therefore, a similar decomposition
likely exists for inertial flows, and the method proposed in this paper should allow for
efficient numerical computation of the forces and moments applied to the sphere.

For the rolling sphere, many relevant physical effects, such as cavitation (Prokunin
2003), compressibility and surface roughness (Smart et al. 1993), are relevant only in
the inner region (Terrington et al. 2022), and one might expect the same to be true of
the rolling cylinder flow. Assuming that this is the case, the present study separates these
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d DU

Ω = 2kU/d M

G

L

Wall

Cylinder

Fluid
density ρ

dynamic viscosity μ

kinematic viscosity ν

Figure 1. Problem considered in this work. A cylinder of diameter d travels along a plane wall with
translational and angular velocities U and Ω , respectively, while maintaining a gap G between the cylinder
and the wall. The hydrodynamic lift, drag and moment are given by L, D and M, respectively. Finally, k is the
slip coefficient.

effects from those of inertia, which are significant only in the outer region. For example,
this would allow the forces and moments applied to a cylinder in an inertial and cavitating
flow to be determined by combining the inertial, but non-cavitating, outer solution, with a
cavitating, but non-inertial, inner solution.

The structure of this paper is as follows. First, in § 2, we present the theoretical analysis
that justifies the decomposition into inner and outer solutions. Next, in § 3, we discuss the
numerical approach used to obtain the outer-flow solution. Finally, the force and moment
coefficients are computed using the inner and outer solutions, in § 4. Concluding remarks
are made in § 5.

2. Inner and outer solutions for the rolling cylinder

Merlen & Frankiewicz (2011) compute the forces and moments applied to a rolling circular
cylinder in a Stokes flow by using the method of matched asymptotic expansions, where
the flow is decomposed conceptually into inner and outer flows. This section extends their
analysis to inertial flows. The structure of this section is as follows. First, in § 2.1, we
present the geometry and problem description. Next, in § 2.2, we discuss the computation
of the outer flow. Then, in § 2.3, we review the lubrication solution for the inner flow.
Finally, in § 2.4, we show that the inner and outer solutions are matched asymptotically
when G/d is small.

2.1. Problem description
As shown in figure 1, we consider the flow over a circular cylinder of diameter d, which
travels along a plane wall with linear velocity U and angular velocity Ω . Due to surface
roughness, cavitation or compressibility, the cylinder is separated from the wall by an
effective hydrodynamic gap G. The density of the fluid is denoted by ρ, while the dynamic
and kinematic viscosities are denoted by μ and ν, respectively. The fluid exerts a drag
force D, lift force L and moment M on the cylinder.

Three dimensionless parameters are required to characterise the flow: the Reynolds
number Re = Ud/ν, the slip coefficient k = Ωd/2U, and the gap-to-diameter ratio
G/d. This study aims to determine the functional dependence of the force and
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P
(x, y)

x x
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(r, φ)
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(r2, θ)
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h = G + x2/d
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(b)(a)

Figure 2. Geometry and coordinate systems for (a) the outer flow, and (b) the inner flow.

moment coefficients

CL = L/
(

1
2 dρU2

)
, (2.1)

CD = D/
(

1
2 dρU2

)
, (2.2)

CM = M/
(

1
4 d2ρU2

)
, (2.3)

against Re, k and G/d. As indicated previously, this is achieved by separating the flow into
inner and outer regions. The outer flow depends only on Re and k, while the inner flow is
determined analytically using lubrication theory.

2.2. Outer flow
When G/d is small, the flow far from the interstice is approximately independent of the
gap ratio (Houdroge et al. 2020). This suggests that a gap-ratio-independent outer flow can
be obtained by assuming G/d = 0, as is done by Merlen & Frankiewicz (2011) for Stokes
flow.

The geometry and coordinate systems for the outer flow are presented in figure 2(a).
The outer flow is made non-dimensional by the cylinder diameter, translational velocity
and fluid density, so that in non-dimensional units, the cylinder has diameter 1, linear
velocity 1 and angular velocity k. Three different coordinate systems are used for the outer
flow: a Cartesian coordinate system (x, y) centred at the contact point, polar coordinates
(r, φ) also centred at the contact point, and a second polar coordinate system (r2, θ) with
its origin at the centre of the cylinder.

We assume that flow is governed by the incompressible continuity and Navier–Stokes
equations, which are expressed in non-dimensional form as

∇ · u = 0, (2.4)

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, (2.5)

where u = u∗/U is the dimensionless velocity, and p = ( p∗ − p∗∞)/ρU2 is the
dimensionless pressure. Here, asterisks (∗) denote dimensional quantities, and p∗∞ is the
free-stream pressure.

The boundary conditions for (2.4) and (2.5) are as follows: we assume that there is no
slip between the fluid and the cylinder (ux = k cos θ and uy = k sin θ on the cylinder), as
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well as between the fluid and the lower wall (ux = 1 and uy = 0 on the wall). Finally, the
free-stream conditions far from the cylinder are ux = 1, uy = 0 and p = 0.

Merlen & Frankiewicz (2011) consider the solution to the outer flow under the
Stokes flow approximation (Re = 0), and for steady flow (∂u/∂t = 0). Under these
approximations, (2.5) reduces to

∇p2 = ∇2u, (2.6)

where p2 = ( p∗ − p∗∞)/(μU/d) is a non-dimensional pressure defined for Stokes flow,
which is related to the non-dimensionalisation for inertial flows as p2 = limRe→0(Re p).
Using the (r, φ, z) coordinates, the analytic solution to this problem is (Merlen &
Frankiewicz 2011)

ur = cos φ

[
1 − 2(2 + k)

ξ
+ 3(k + 1)

ξ2

]
, (2.7)

uφ = sin φ

[
1 − k + 1

ξ2

]
, (2.8)

p = 1
Re

cos φ

[
8(k + 1)

rξ2 − 4(k + 2)

rξ
− 2(k + 1)

r3

]
, (2.9)

where ξ = r/ sin φ. To allow for comparisons between the inertial and Stokes flow
solutions at finite Re, the pressure in (2.9) is expressed in the non-dimensional form
corresponding to inertial flow. While this results in an infinite pressure p at Re = 0, the
corresponding Stokes flow pressure p2 = limRe→0(Re p) remains finite.

On the surface of the cylinder (ξ = 1), the pressure distribution is given by (Merlen &
Frankiewicz 2011)

p = 2
Re

cos φ

sin3 φ
[2k sin2 φ − (k + 1)], (2.10)

while the wall shear stress distribution on the cylinder is

τx = τ ∗
x

ρU2 = − 1
Re

2(2k + 1) cos(2φ)

sin2 φ
, (2.11)

τy = τ ∗
y

ρU2 = − 1
Re

2(2k + 1) sin(2φ)

sin2 φ
, (2.12)

which are also non-dimensionalised according to the inertial flow variables. Importantly,
both the pressure and wall stress distributions are singular at the contact point (φ = 0), so
that the drag and moment applied to the cylinder are infinite when G/d = 0 (Merlen &
Frankiewicz 2011). For finite gap ratios, however, the outer-flow solution is invalid near
the contact point. Lubrication theory is used to obtain the inner-flow solution, which is
matched asymptotically to the outer-flow solution (Merlen & Frankiewicz 2011), and the
resulting drag and moment are finite.

Equations (2.7)–(2.12) are valid for Stokes flow, and do not apply when Re is non-zero.
Instead, the solution to (2.4) and (2.5) must be obtained numerically. However, the
inertial solution should approach the Stokes flow solution near the contact point (φ = 0).
The characteristic length scale associated with the flow near the contact point is the

962 A31-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.296


Forces and moments on a rolling cylinder

film thickness

h∗ = d
2

(
1 − cos

(
φ

2

))
≈ 1

16
dφ2. (2.13)

The corresponding film thickness Reynolds number,

Reh ≈ 1
16

Udφ2/ν ≈ φ2

16
Re, (2.14)

approaches zero as φ → 0, therefore the solution to the finite Re outer flow is expected to
approach the Stokes flow solution (2.7)–(2.9) as the contact point is approached. This is
validated using numerical simulations in § 3.

2.3. Inner flow
We now turn our attention to the lubrication flow in the narrow gap between the cylinder
and the wall. The geometry for the inner flow is shown in figure 2(b). Assuming that G/d
is small, the cylinder can be approximated by a parabolic shape, so that the film thickness
h is given by

h∗ = G + x∗2

d
. (2.15)

Additionally, the velocity of the lower wall is approximated by U1 = U, and the velocity
of the upper wall (cylinder) is approximated as U2 = kU.

Since the film thickness is small, the standard assumptions of lubrication theory apply
(Ghosh, Majumdar & Sarangi 2014): flow is laminar; inertial effects are negligible;
pressure gradients across the film thickness are negligible; and velocity gradients along
the film are negligible compared to velocity gradients across the film thickness. We also
assume that the interstitial flow is two-dimensional, so that there are no velocity or pressure
gradients in the z-direction, and the inner flow is steady in time.

Under these assumptions, the streamwise velocity profile is given by

u∗
x(x, y) = 1

2μ

∂p∗

∂x∗ (y∗2 − y∗h∗) +
(

1 − y∗

h∗

)
U + k

y∗

h∗ U, (2.16)

which gives a volume flow rate

q∗(x) =
∫ h

0
u∗

x(x, y) dy∗ = − h∗3

12μ

∂p∗

∂x∗ + 1
2

(1 + k)Uh∗. (2.17)

The interstitial pressure distribution is obtained by solving the Reynolds equation,

∂q∗

∂x∗ = 0. (2.18)

For the present case, this equation is written as

∂

∂x∗

[
h∗3

12μ

∂p∗

∂x

]
= 1

2
(1 + k)U

∂h∗

∂x∗ . (2.19)
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For the inner flow, we introduce a new set of non-dimensional parameters:

x̂ = x∗/
√

Gd, (2.20a)

H = h∗/G = 1 + x̂2, (2.20b)

p̂(x̂) = ( p∗(x) − p∗
∞)/

(
2μ(1 + k)U
d(G/d)3/2

)
. (2.20c)

Note that the non-dimensional position x̂ and pressure p̂ in the inner region differ from
the corresponding non-dimensional forms x and p used in the outer flow. Using this
non-dimensionalisation, (2.19) becomes

∂

∂ x̂

[
H3 ∂ p̂

∂ x̂

]
= 3

∂H
∂ x̂

, (2.21)

and using the boundary conditions p̂(∞) = p̂(−∞) = 0, the solution of (2.21) is

p̂ = −x̂
(1 + x̂2)2 , (2.22)

in agreement with Merlen & Frankiewicz (2011). When non-dimensionalised by outer flow
variables, the pressure is written as

p = p∗ − p∗∞
ρU2 = −2(1 + k)

Re (G/d)3/2
x̂

(1 + x̂2)2 . (2.23)

Finally, the wall shear stress on the cylinder is given by

τ ∗
x = −μ

∂u∗
x

∂y

∣∣∣∣
y=h

= −h
2

∂p∗

∂x
+ μ(1 − k)U

h∗ , (2.24)

which is written in non-dimensional form, using outer-flow variables, as

τx = τ ∗
x

ρU2 = 1
Re (G/d)

[
(2k + 1)

−2x̂2

(1 + x̂2)2 + 2
(1 + x̂2)2

]
. (2.25)

2.4. Asymptotic matching of the inner and outer flows
In order for the decomposition into inner and outer solutions to be valid, the inner and
outer solutions must be asymptotically matched. This requires there to be an overlap
region where both the inner and outer solutions are in agreement. In this subsection, we
demonstrate that the Stokes flow solution to the outer flow is matched asymptotically to
the inner lubrication solution. Since the inertial solution to the outer flow is expected to
approach the Stokes flow solution near the contact point (φ = 0), we expect the inner and
outer flow solutions to also be matched for inertial flows. This assumption is validated
using numerical simulations in § 3.

We first estimate the domains where the inner and outer solutions are valid. Consider
terms of up to fourth order in the Maclaurin series expansion for the film thickness near
the interstice:

h∗ = G + x∗2

d
+ x∗4

d3 + · · · . (2.26)

In computing the outer solution, we assume G = 0, which is valid when |x∗| � √
Gd.

The inner solution was evaluated assuming a parabolic profile, which requires x∗2 	 d2.
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Therefore, the inner and outer solutions can be simultaneously valid only in the region

1 	 |x̂| 	 1√
G/d

. (2.27)

The asymptotic matching region, if it exists, must be located in the domain given by
(2.27). Note that the inequality in (2.27) cannot be satisfied for G/d � 10−2, therefore
the decomposition into inner and outer solutions will not be valid for gap ratios above this
value.

We now show that the pressure distributions on the surface of the cylinder from the inner
and outer solutions are matched asymptotically. Since, on the surface of the cylinder, we
have

x = x∗/d = sin φ cos φ, (2.28a)

y = y∗/d = sin2 φ, (2.28b)

the pressure distribution for the outer solution (2.10) becomes

pouter = 2
Re

[
2k

x
y

− (k + 1)
x
y2

]
. (2.29)

Since y ≈ (G/d)x̂2 and x ≈ (G/d)1/2x̂ in the matching region, this becomes

pouter ≈ − 2(k + 1)

Re (G/d)3/2
1
x̂3 + 4k

Re (G/d)1/2
1
x̂
, (2.30)

and since x̂ � 1, for k /=−1, this reduces to

pouter ≈ − 2(k + 1)

Re (G/d)3/2
1
x̂3 . (2.31)

Similarly, when x̂ � 1, the inner pressure distribution (2.23) becomes

pinner ≈ − 2(1 + k)
Re (G/d)3/2

1
x̂3 . (2.32)

Equations (2.31) and (2.32) are equal, therefore the inner and outer pressure distributions
are matched asymptotically.

Asymptotic matching between the pressure profiles for the inner and outer solutions is
shown in figure 3. Figure 3(a) shows the pressure profiles for both the inner and outer
solutions, normalised in inner variables. The asymptotic solution given by (2.31) and
(2.32) is also shown. The inner solution differs from the asymptotic prediction when x̂ is
small, but approaches the asymptotic profile when x̂ � 1. The outer solution differs from
the asymptotic region for large x̂, but follows the asymptotic profile when x̂ 	 1/

√
Gd.

Importantly, for G/d ≤ 10−3, there exists an asymptotic matching region, given by (2.27),
where both the inner and outer solutions are asymptotically matched.

Figure 3(b) presents the pressure profiles for the inner and outer solutions normalised in
outer variables. For large values of θ , the inner and outer solutions differ, and only the outer
solution is valid. The inner solution approaches the outer solution as θ is decreased, and
the inner and outer solutions are approximately equal in the asymptotic matching region.
Finite-gap effects become significant as θ is decreased further, and the inner solution
begins to deviate from the outer solution. The maximum θ for which finite-gap effects
are significant decreases as the gap ratio G/d is decreased.
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Figure 3. Asymptotic matching between the inner (2.23) and outer (2.10) pressure distributions for Stokes
flow, expressed in (a) inner and (b) outer variables, respectively. The asymptotic limit of the inner and outer
pressure profiles in the matching region ((2.31) and (2.32)) is also shown in (a).

We can also show that the wall shear stress distributions from the inner and outer
solutions are matched asymptotically. The x-wall shear stress in the outer region (2.11)
becomes, in the asymptotic matching region,

τxouter = −2(2k + 1)

Re
1 − 2y

y
≈ −2(2k + 1)

Re (G/d)

1
x̂2 , (2.33)

where we have assumed that G/d 	 1. For x̂ � 1, the wall shear from the inner region
(2.25) is given by

τxinner ≈ −2(2k + 1)

Re (G/d)

1
x̂2 . (2.34)

Equations (2.33) and (2.34) are equal, therefore the wall shear stress distributions are also
matched asymptotically.

3. Numerical methodology

This section discusses the numerical method used to solve for the inertial flow over a
circular cylinder near a plane wall. Two different numerical approaches are considered.
First, we consider the conventional approach, where the solution is obtained numerically
using a single computational domain that includes both the inner and outer regions. The
second approach is to simulate numerically only the outer flow, by setting G/d = 0, and
use the analytic lubrication solution for the inner region.

The structure of this section is as follows. First, in § 3.1, we discuss the conventional
approach to obtaining the finite gap ratio solution over a single computational domain.
Then, in § 3.2, the results of the single-domain computation are interpreted using the
decomposition into inner and outer flows. Next, in § 3.3, we discuss the combined
numerical–analytical approach, where the numerically obtained, G/d-independent outer
flow is matched with the inner lubrication solution. Finally, the possibility of applying the
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Figure 4. Schematic illustration of (a) the computational domain and (b) the block mesh scheme, for the finite
gap ratio cylinder. The variables Ny and 
x denote the number of cells across the film thickness, and minimum
cell spacing in the streamwise direction, respectively. Diagrams are not to scale, and the representative mesh is
much coarser than those used for numerical simulations.

combined numerical–analytical approach to other rolling body problems is discussed in
§ 3.4.

3.1. Finite gap ratio
We first discuss the conventional approach for simulating numerically the inertial flow over
a cylinder at a finite gap ratio. This approach considers a single computational domain that
encompasses both the inner and outer regions. Importantly, no explicit decomposition into
inner and outer solutions is made.

The computational domain and coordinate systems for this approach are as illustrated in
figure 4(a). Non-dimensional coordinates are used, so that the cylinder diameter is d = 1.
The inlet is located a distance 10d upstream from the centre of the cylinder, while the
outlet is positioned 25d downstream from the cylinder. Finally, the domain is bounded by
an upper wall located at vertical position y = 25d above the lower wall. Simulations are
performed in a Galilean reference frame co-translating the cylinder.

The computational domain was meshed with a block-structured mesh, using the
commercial software package ICEM CFD. A schematic illustration of the blocking scheme
is shown in figure 4(b). A finer mesh resolution is used near the cylinder and in the wake,
while a coarser resolution is used elsewhere. The cylinder is surrounded by an ‘O’-grid
block, which passes through the interstice, allowing a good mesh quality in the interstice.

Numerical simulations are performed using the commercial finite-volume solver
ANSYS FLUENT. Spatial derivatives were discretised using the least squares cell-based
formulation, with the second-order upwind scheme used for the momentum equation, and
second-order central differencing used for all other equations. For transient simulations,
the second-order implicit time-stepping scheme was used. The small cell size and large
pressure magnitudes in the interstice result in a relatively stiff set of equations, therefore
the coupled solver was used for improved robustness.

As G/d is decreased, the element size needed to resolve the inner lubrication flow
decreases, posing increased difficulty for numerical simulations. In the present work,
numerical instabilities were encountered for G/d = 10−5, therefore simulations are
performed to a minimum gap ratio G/d = 10−4. We also remark that if an explicit scheme
were used, then the time-step restrictions due to the Courant–Friedrichs–Lewy (CFL)
condition would provide additional limits on the minimum gap ratio. In the present work,
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Nc Ny 
x �CD,wake �CL,wake �CM ,wake CD,rms CL,rms CM ,rms

Mesh 1 22 056 40 2 × 10−4 2.4739 1.5754 −0.2847 0.3479 0.5708 0.0403
Mesh 2 104 227 80 1 × 10−4 2.6346 1.5166 −0.3060 0.3761 0.6631 0.0418
Mesh 3 358 056 160 5 × 10−5 2.6556 1.5098 −0.3094 0.3731 0.6680 0.0417

— — — (0.79 %) (0.45 %) (1.09 %) (0.80 %) (0.73 %) (0.12 %)

Table 1. Comparison between the mean and r.m.s. wake force and moment coefficients for Re = 200, k = 1
and G/d = 10−4 evaluated using different grid resolutions. The relative differences between the mesh 2 and
mesh 3 predictions are given in parentheses.

Houdroge et al. (2017) Present study Relative difference
�CD 3.6973 3.6767 0.558 %
�CL 1.6423 1.6413 0.0572 %

Merlen & Frankiewicz (2011) Present study Relative difference
�CD 6.0099 6.1374 2.12 %
�CL 1.8660 1.9089 2.30 %

Table 2. Comparison between the force and moment coefficients predicted using the present numerical
approach and previous numerical investigations: Houdroge et al. (2017) at Re = 100, k = 1 and G/d = 0.005,
and Merlen & Frankiewicz (2011) at Re = 60, k = 1 and G/d = 0.0025.

the CFL limitations are avoided by using an implicit scheme. While large Courant numbers
also imply a loss of temporal accuracy, the interstitial flow is time-steady, therefore
relatively large Courant numbers can be tolerated in the interstice.

Boundary conditions for the fluid are as follows. A constant velocity ux = 1, uy = 0
was specified at the inlet, while a constant pressure p = 0 was specified at the outlet.
The stress-free condition was applied to the upper boundary. Finally, both the cylinder
and lower wall are no-slip boundaries, with velocities ux = 1 and uy = 0 on the wall, and
ux = k cos θ and uy = k sin θ on the cylinder.

A grid resolution study was performed to determine the resolution needed to obtain
converged solutions. A single case with Re = 200, k = 1 and G/d = 10−4 was considered.
Table 1 lists statistics for the three meshes used for the resolution study, including the
total number of cells in each mesh (Nc), the number of cells across the film thickness
(Ny), and the minimum streamwise cell spacing in the interstice (
x). The time-mean and
root-mean-square (r.m.s.) wake drag lift and moment coefficients (the wake force/moment
coefficients are defined in § 4) are also provided. Differences between the predicted force
and moment coefficients evaluated using mesh 2 and mesh 3 are below 1.1 %, therefore
mesh 2 is sufficient to resolve the force and moment coefficients.

Finally, we compare our predicted force and moment coefficients to results from
previous numerical investigations, which are presented in table 2. First, we compare the
predicted mean drag and lift coefficients at k = 1, Re = 100 and G/d = 0.005 to results
from Houdroge et al. (2017). Excellent agreement is observed, with errors below 0.6 %.
Next, we compare the mean drag and lift coefficients at k = 1, Re = 60 and G/d = 0.0025
to results presented in Merlen & Frankiewicz (2011). Good agreement is observed, with
errors below 2.3 %. Therefore, the present numerical results are validated successfully
against previous results.
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Figure 5. Vorticity contours for the rolling cylinder at Re = 100, k = 1 and t = 195, for gap ratios
(a) G/d = 10−3 and (b) G/d = 10−4, obtained using the single-domain, finite gap ratio method.

3.2. The inner and outer solutions for inertial flow
As discussed in § 2, the flow over a cylinder at small gap ratios can be separated
conceptually into an outer flow, which is independent of G/d, and an inner lubrication flow,
where gap ratio effects are significant. In this subsection, the results of the single-domain,
finite gap ratio simulations are interpreted and analysed using this decomposition into
inner and outer flows, to demonstrate that the outer flow is independent of G/d, and that
the lubrication solution is applicable in the inner region.

Simulations are performed at Re = 100 and k = 1, for a range of gap ratios between
G/d = 10−2 and G/d = 10−4. For these parameters, the unconstrained wake is typically
three-dimensional (Houdroge et al. 2017). For simplicity, however, only two-dimensional
simulations are considered in this work. For two-dimensional flow at Re = 100 and k = 1,
the wake features periodic vortex shedding (Stewart et al. 2010b; Houdroge et al. 2017).
We remark that the wake dynamics and transitions have been studied in great detail by
Stewart et al. (2010b) and Houdroge et al. (2017), and are not the main focus of this work.
The present work is concerned with determining the force and moment coefficients as
functions of Re, G/d and k, using the decomposition into inner and outer flows.

Figure 5 presents vorticity contours for the rolling cylinder at Re = 100 and k =
1, for gap ratios G/d = 10−3 and 10−4, at flow time t = 195, which corresponds
approximately to the maximum drag coefficient. A transient animation is provided
in supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.296. The wake
features the periodic shedding of vortices from the upper shear layer, which interact
with secondary vorticity from the wall to form counter-rotating vortex pairs (Houdroge
et al. 2017). Importantly, there is almost no perceptible difference in the wake between
G/d = 10−3 and G/d = 10−4, confirming that the assumption of a G/d-independent outer
flow is reasonable for inertial flows.

While the flow far from the interstice is independent of G/d, the interstitial flow depends
strongly on gap ratio. Figure 6 presents streamlines (contours of the streamfunction)
in the interstice for G/d = 10−3 and 10−4, and significant differences between the
streamfunctions are observed between the two plots. In particular, the upstream and
downstream saddle points (labelled Su and Sd in figure 6) move closer to the contact
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Figure 6. Contours of the streamfunction Ψ near the interstice for the rolling cylinder at Re = 100, k = 1 and
t = 195, for gap ratios (a) G/d = 10−3 and (b) G/d = 10−4, obtained using the single-domain, finite gap ratio
method outlined in § 3.1. The contour increment is 
Ψ = 10−4, and axes are stretched vertically for clarity.

point (x = 0) as G/d is decreased, and the total mass flow rate through the interstice also
decreases with the gap ratio.

Figures 5 and 6 validate our assumption that the flow far from the interstice (the outer
flow) is relatively independent of G/d, while the interstitial (inner) flow depends strongly
on the gap ratio. This can be demonstrated further by considering the pressure distribution
on the surface of the cylinder. Since the wake is periodic, we compute the mean pressure
p̄, which is the pressure averaged over a single vortex-shedding cycle. We stress once again
that since the single-domain method is used, a single pressure distribution, valid in both
the inner and outer domains, is obtained for each gap ratio. This pressure distribution may
be non-dimensionalised according to either outer variables (as p̄) or inner variables (as
ˆ̄p = p̄ Re (G/d)3/2/(2(1 + k))).

Figure 7(a) presents the mean pressure on the cylinder surface for Re = 100, k = 1 and
for a range of gap ratios, normalised by inner variables. The theoretical prediction from
lubrication theory (2.22) is also shown. The profiles for G/d = 10−3 and 10−4 are visually
indistinguishable from the lubrication solution, confirming that the lubrication solution is
valid in the inner region when G/d ≤ 10−3.

The lubrication solution for the inner region is obtained under the assumption of steady
flow. To check this, we have also plotted profiles of the r.m.s. pressure, normalised by inner
variables, in figure 7(a). The r.m.s. pressures are negligible when compared to the mean
pressure profiles, therefore the assumption of steady flow is valid in the inner region.

Figure 7(b) shows the mean pressure on the cylinder surface normalised by outer
variables, at Re = 100, k = 1 and for a range of gap ratios. Far from the interstice (which
is located at θ = 0, 2π), the pressure distributions follow a single curve, confirming that
the outer flow is independent of the gap ratio. The analytical solution for Stokes flow (2.10)
is also presented in figure 7(b). While the inertial solutions for various G/d follow a single
curve, this curve differs substantially from the Stokes flow solution. Therefore, for inertial
flows, there is a G/d-independent outer solution that differs from the Stokes flow solution.
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Figure 7. Mean pressure distribution on the cylinder surface normalised using (a) inner and (b,c) outer
variables for Re = 100 and k = 1. Solid black lines indicate the analytical solutions for (a) lubrication theory
(2.23) and (b) Stokes flow (2.10). A logarithmic y-axis is used in (c) to show that the outer solution approaches
the Stokes flow solution in the region where the inner and outer solutions are asymptotically matched. The
r.m.s. pressure is indicated by dashed lines in (a).

Figure 7(c) shows the mean pressure on the cylinder surface in the region near the
interstice, on a logarithmic y-axis. For small θ , the pressure profiles no longer follow
a single G/d-independent solution, confirming that gap ratio effects are significant in
the inner region. As θ is decreased, but still sufficiently large for gap ratio effects to be
negligible, the inertial pressure distributions approach the Stokes flow solution. Therefore,
the inertial outer-flow solution approaches the Stokes flow solution as θ approaches zero.

In this subsection, we have examined the flow over a rolling cylinder at a finite gap
ratio, using a single-domain numerical computation. By interpreting this solution using
the decomposition into inner and outer solutions, we have shown that for a sufficiently
small gap ratio (G/d ≤ 10−3):

(i) the inner flow is given by the analytic solution to lubrication theory;
(ii) the outer flow is independent of the gap ratio, but differs from the Stokes flow

solution;
(iii) as the interstice is approached, the inertial outer-flow solution approaches the Stokes

flow solution.
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Figure 8. For zero gap ratio simulations, the contact point is removed from the mesh and replaced with
prescribed velocity boundaries, thereby avoiding the infinite pressure at the contact point. The parameters

x and Ny are the minimum cell spacing in the x-direction, and the number of cells across the film thickness,
respectively.
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Figure 9. Vorticity contours for the rolling cylinder at Re = 100, k = 1 and t = 195, obtained using the
G/d = 0 method outlined in this subsection.

3.3. Obtaining the outer-flow solution for G/d = 0
The results of § 3.2 show that the outer flow does not depend on G/d, while the inner
flow matches the analytic solution obtained using lubrication theory. Therefore, the
single-domain approach is inefficient: numerical simulations are performed for each value
of G/d, despite the fact that this affects only the inner flow, for which we already have an
analytic solution. Therefore, we propose a new approach, where numerical simulations are
performed only to obtain the G/d-independent outer solution. This solution can then be
matched with the analytic solution to the inner flow to obtain a complete solution, valid
for small gap ratios.

To obtain the G/d-independent outer flow, we assume G/d = 0, thereby avoiding
any finite-gap effects. Under this condition, the pressure approaches infinity at the
contact point. The infinite pressures are avoided by removing the contact point from the
computational domain, as shown in figure 8. New inlet/outlet boundaries are introduced at
θ = ±θc, and the velocity at these boundaries is set to the Stokes flow velocity profiles
(2.7) and (2.8). Since the inertial outer flow solution is approximately equal to the
Stokes flow solution for small θ , this approximation is reasonable when θc is small. All
other aspects of the numerical method, including the discretisation methods, boundary
conditions and mesh scheme, are identical to the finite-gap simulations described in § 3.1.

Figure 9 presents vorticity contours obtained using the zero-gap method, for k = 1, Re =
100 and θc = 0.01. A transient animation is also provided in supplementary movie 1. The
observed wake is nearly identical to that obtained using the single-domain simulations at
G/d = 10−3 and 10−4 (figures 5a,b), confirming that the proposed numerical approach is
capable of predicting correctly the G/d-independent outer flow.
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Figure 10. Contours of the streamfunction Ψ near the interstice for the rolling cylinder at Re = 100, k = 1,
t = 195 and G/d = 0: (a) numerical result, and (b) the analytic Stokes flow solution (2.7) and (2.8).
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Figure 11. (a) Mean pressure distribution on the cylinder surface for G/d = 0 and 10−4 at Re = 100 and
k = 1. (b) Difference between the mean pressure distributions for inertial flow and Stokes flow (p̄ − pStokes) at
Re = 100 and k = 1.

Figure 10(a) presents streamfunction contours near the contact point for G/d = 0,
k = 1 and Re = 100 obtained numerically with θc = 0.01, while figure 10(b) presents
streamfunction contours for Stokes flow (2.7) and (2.8). The predicted streamlines are
nearly identical, confirming that the proposed method produces a velocity field that is
approximately equal to the Stokes flow solution near the contact point. Moreover, the
streamfunctions for the finite-gap cases, shown in figures 6(a,b), appear to converge
towards the zero-gap solution as G/d approaches zero.

Note that the outer solution obtained under the assumption G/d = 0 is valid for |θ | �
2
√

G/d (see (2.27)), and the inner lubrication solution must be used when |θ | is below this
value. To illustrate this point, figure 11(a) presents the mean pressure along the cylinder
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surface for Re = 100 and k = 1 obtained using the G/d = 0 approach outlined in this
subsection, with θc = 0.01, and a solution obtained using the conventional single-domain
approach outlined in § 3.1, for finite gap ratio G/d = 10−4. The Stokes flow solution for
the outer flow (2.10) is also shown. All solutions are in good agreement between θ = 0.1
and θ = 0.3. However, finite-gap effects become significant for θ < 0.1, and the G/d = 0
solution does not match the G/d = 10−4 solution in this region.

Therefore, we introduce a transition angle θ0 that separates the inner and outer solutions.
By using the numerically obtained G/d = 0 outer solution for |θ | ≥ θ0, and the inner
lubrication solution for |θ | < θ0, we obtain a complete solution to the flow over a rolling
cylinder at small, but finite, gap ratios. Importantly, θ0 must lie in the asymptotic matching
region given by (2.27), therefore we require 2

√
G/d ≤ θ0 ≤ 2. However, an additional

constraint is that θ0 must be sufficiently small for inertial effects to be negligible. For
this, we assume a film thickness Reynolds number Reh � 1, which by (2.14) requires θ0 �
2/

√
Re. The range 0.1 ≤ θ ≤ 0.3 satisfies these conditions approximately for G/d = 10−4

and Re = 100, therefore θ0 may take any value within this range. This is confirmed by the
agreement between the inner and outer solutions over this range as observed in figure 11(a).

Figure 11(b) presents a comparison between the pressure distribution obtained under
the zero-gap assumption, and the pressure obtained using the single-domain, finite-gap
method. Here, we have subtracted the pressure from the Stokes flow solution (2.10) to show
more clearly the inertial contribution. Away from the contact point, the single-domain and
zero-gap solutions are nearly indistinguishable, therefore the zero-gap method proposed in
this subsection is capable of determining the outer solution for finite-gap inertial flows, in
the domain where this solution is applicable.

To summarise, we have shown that the inertial outer-flow solution obtained under the
assumption G/d = 0 correctly describes the flow in the outer region (|θ | � 2/

√
G/d)

for small, but finite, gap ratios. We can then construct a complete solution by taking the
numerically obtained outer solution for |θ | ≥ θ0, and using the inner lubrication solution
for |θ | < θ0, where θ0 is in the range 2

√
G/d 	 θ0 	 2 and θ0 � 2/

√
Re.

A grid resolution study is performed to confirm that a grid-independent outer-flow
solutions is obtained. Table 3 lists four meshes used for this resolution study, including
the number of cells in each mesh (Nc), the representative cell sizes 
x and Ny (which are
illustrated in figure 8), and the cut-out angle θc. The time-mean and r.m.s. wake force and
moment coefficients are also provided, and changes to these quantities between meshes 2
and 3 are below 1 %. Therefore, mesh 2 is considered sufficient to resolve the force and
moment coefficients.

Mesh 4 has the same resolution as mesh 2, but with θc = 0.02. Changes to the mean
and r.m.s. wake force and moment coefficients between meshes 2 and 4 are below 0.02 %,
confirming that θc = 0.01 is sufficiently small to not introduce any significant errors.

Note that the minimum spacing in the x-direction for mesh 2 is 
x = 10−5, an order
of magnitude smaller than the minimum spacing used for the finite G/d computations
(table 1). This was to reduce numerical errors associated with taking the difference
of large numbers, which occurs in some of our analysis (see Appendix A). However,
in Appendix A, we demonstrate that taking a larger value of 
x = 5 × 10−4 does not
significantly affect the predicted force and moment coefficients.

In this subsection, we have simulated the flow over a cylinder at G/d = 0 by removing
the contact point from the computational domain in order to avoid the infinite pressure at
the contact point. Pirozzoli, Orlandi & Bernardini (2012) have also performed numerical
simulations of the rolling cylinder at G/d = 0, but do not report any difficulties with
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infinite pressures at the contact point. They report finite values for the drag coefficient
at G/d = 0, in contrast with both the Stokes flow predictions and the present study.
This discrepancy is likely a result of insufficient resolution to capture the flow near the
contact point. They use a relatively low grid resolution of 40 points per cell radius, which
means that near the contact point (specifically, for −0.1 < x/d < 0.1), the cylinder and
the wall lie in the same computational cell. It is unlikely that the flow in this region is
resolved satisfactorily, and the finite drag coefficients reported in that work are considered
unreliable. However, since the outer flow is relatively insensitive to the flow near the
contact point, the outer flow may be resolved correctly in their work.

3.4. Application of the proposed method to other problems
This paper has considered only the two-dimensional flow over a rolling cylinder. However,
we anticipate that the approach outlined in this work may be extended to other rolling body
problems, such as the flow over a rolling sphere or a finite cylinder (wheel). The method of
matched asymptotic expansions has already been applied to the Stokes flow over a rolling
sphere (Goldman et al. 1967; O’Neill & Stewartson 1967; Cooley & O’Neill 1968), to
decompose the flow into inner and outer expansions. Therefore, we expect that the same
method may be applied to the inertial flow over a rolling sphere.

We remark, however, that there are both qualitative and quantitative differences between
the Stokes flows over rolling cylinders and spheres. For example, both the torque applied
to a purely translating cylinder and the force applied to a purely rotating cylinder are zero
(Jeffrey & Onishi 1981), which is not the case for the rolling and translating spheres.
Moreover, the force and moment applied to a rolling sphere both exhibit a logarithmic
dependence on the gap ratio (Goldman et al. 1967; O’Neill & Stewartson 1967; Cooley &
O’Neill 1968), compared to the (G/d)−1/2 dependence for the force and moment applied to
the rolling cylinder (Merlen & Frankiewicz 2011). Despite these differences, the method of
asymptotic expansions has been applied successfully to the Stokes flow over both cylinders
and spheres, therefore the same approach should be applicable to the inertial flow over a
rolling sphere.

The present paper has also neglected several physical effects that are likely to be
present under typical experimental conditions, including surface roughness, cavitation and
compressibility. These effects are likely to be significant in the inner region, therefore a
modified lubrication theory must be used to account for these effects, such as Patir &
Cheng (1978) for rough surfaces, Almqvist et al. (2014) for compressible and cavitating
lubrication, or Harp & Salant (2001) for roughness-induced inter-asperity cavitation.

However, these effects are likely to be negligible in the outer region. Therefore, the
present method will allow these effects to be considered separately from those of inertia,
which affects only the outer solution. For example, the height of surface asperities is
generally much smaller than the cylinder diameter, therefore surface roughness will be
negligible in the outer region, except at high Reynolds numbers when the boundary layer
thickness is comparable to the surface roughness height.

Similarly, the magnitude of the pressure in the outer region is generally small, except
near the contact point where the outer solution is invalid. Hence we expect cavitation
and compressibility effects to be confined to the inner region, at least for a wide range of
experimental parameters. This is supported by the experimental observation that typically
cavitation bubbles are confined to the inner region, for both spheres (Ashmore et al. 2005)
and cylinders (Seddon & Mullin 2006). Moreover, Ashmore et al. (2005) are able to predict
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the motion of a sphere in a cavitating flow by assuming that flow outside the cavitation
region is not affected by the formation of the cavitation bubble.

Seddon & Mullin (2006), however, have argued that, unlike the flow over a rolling
sphere, cavitation in the interstice of the rolling cylinder modifies the outer flow to
the extent that reverse rotation of the cylinder is observed. They argue that cavitation
introduces a blockage effect, reducing the mass flow through the interstice. As a result,
more fluid must flow around the upper surface of the cylinder, modifying the outer flow.
However, the gap-to-diameter ratio also affects the volume flow rate of fluid through
the interstice, yet the outer solution is insensitive to G/d (Merlen & Frankiewicz 2011).
Therefore, there is no reason to assume that cavitation in the inner region directly affects
the outer flow in this manner. A possible explanation for the observed reverse rotation of
the cylinder is that cavitation modifies the inner-flow contribution to the moment applied to
the cylinder, thereby altering the rotation rate. This would, of course, indirectly affect the
outer flow, through its dependence on the parameter k. This proposal remains unconfirmed,
however, and further research is needed to determine whether the effects of cavitation are
confined to the inner region of the rolling cylinder flow.

4. Forces and moments

In this section, we discuss the computation of the force and moment coefficients using
the inner and outer solutions. We first discuss the forces and moments for the Stokes flow
solutions in § 4.1. Then the force and moment coefficients for inertial flows are discussed
in §§ 4.2 and 4.3. Finally, in § 4.4, we present a parameter space study of the force and
moment coefficients for a range of k and Re.

The total forces and moments applied to the cylinder are computed as

CD =
∫ 2π

0
(−p sin θ + τx) dθ, (4.1)

CL =
∫ 2π

0
( p cos θ + τy) dθ, (4.2)

CM =
∫ 2π

0
(τy sin θ + τx cos θ) dθ. (4.3)

Each of these integrals is split into inner and outer regions as follows. First, the force and
moment contributions from the outer region are written as

CD,O =
∫ 2π−θ0

θ0

(−p sin θ + τx) dθ, (4.4)

CL,O =
∫ 2π−θ0

θ0

(p cos θ + τy) dθ, (4.5)

CM ,O =
∫ 2π−θ0

θ0

(τy sin θ + τx cos θ) dθ, (4.6)
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while the force and moment contributions from the inner region are

CD,I =
∫ x̂0

−x̂0

[−4(G/d)x̂p + 2(G/d)1/2τx] dx̂, (4.7)

CL,I =
∫ x̂0

−x̂0

2(G/d)1/2(p + τy) dx̂, (4.8)

CM ,I =
∫ x̂0

−x̂0

[2(G/d)1/2τx + 4(G/d)x̂τy] dx̂, (4.9)

where x̂0 ≈ sin θ0/(2
√

G/d), and subscripts I and O denote the inner and outer regions,
respectively. As discussed in § 3.3, the parameter θ0 denotes the boundary between the
inner and outer regions, and must lie in the region where the inner and outer solutions
are asymptotically matched (2

√
G/d 	 θ0 	 2 and θ0 � 2/

√
Re). Within this range, the

individual force and moment contributions from the inner and outer regions may depend
on the value of θ0, but the total forces and moments must be independent of θ0.

4.1. Stokes flow
Substituting (2.23) and (2.25) into (4.7)–(4.9), we obtain the following expressions for the
contributions to the force and moment coefficients from the inner region:

CD,I = 8
Re (G/d)1/2 tan−1 x̂0, (4.10)

CL,I = 0, (4.11)

CM ,I = 8
Re (G/d)1/2

[
−k tan−1 x̂0 + (1 + k)

x̂0

1 + x̂2
0

]
. (4.12)

Similarly, substituting (2.10)–(2.12) into (4.4)–(4.6) gives expressions for the contribution
to the force and moment coefficients from the outer region for Stokes flow:

CD,O,S = 8
Re

[cot(θ0/2) + k sin θ0], (4.13)

CL,O,S = 0, (4.14)

CM ,O,S = −8(2k + 1)

Re
cot(θ0/2), (4.15)

where a subscript S is used for the Stokes flow solutions. When θ0 is within the asymptotic
matching region (x̂0 � 1 and θ0 	 1), these are approximated as

CD,I ≈ 8
Re (G/d)1/2

[
π

2
− 1

x̂0

]
, (4.16)

CM ,I ≈ 8
Re (G/d)1/2

[
−π

2
k + (2k + 1)

1
x̂0

]
, (4.17)

CD,O,S ≈ 8
Re (G/d)1/2

1
x̂0

, (4.18)

CM ,O,S ≈ − 8(2k + 1)

Re (G/d)1/2
1
x̂0

, (4.19)
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and the total force and moment coefficients for Stokes flow are therefore given by

CD,S = 4π

Re (G/d)1/2 , (4.20)

CL,S = 0, (4.21)

CM ,S = − 4πk
Re (G/d)1/2 , (4.22)

in agreement with Merlen & Frankiewicz (2011). Importantly, while the drag and moment
coefficients from both the inner and outer regions ((4.16)–(4.19)) depend on the boundary
between the inner and outer regions (θ0), the total force and moment coefficients
((4.20)–(4.22)) do not.

4.2. Inertial flow
We now consider the force and moment coefficients for inertial flow. Since inertial effects
are negligible in the inner region, the force and moment coefficients for the inner region
(CD,I , CL,I and CM ,I) are given by the lubrication solution (4.10)–(4.12). The force and
moment coefficients for the outer region (CD,O, CL,O and CM ,O) are evaluated using
(4.4)–(4.6), with the pressure and velocity fields obtained numerically using the G/d = 0
approach described in § 3.3. In this subsection, we consider the mean force and moment
coefficients averaged over one period of the saturated vortex shedding state, which are
denoted �CD,O, �CL,O and �CM ,O, respectively. The transient behaviour of the force and
moment coefficients is considered later, in § 4.3. Only the inertial outer-flow solutions are
time-averaged, as both the inner lubrication and outer Stokes flow solutions are steady in
time. Note that equations derived in this subsection are expressed in terms of instantaneous
quantities, for generality. The corresponding expressions for time-averaged quantities are
identical.

Figure 12(a) plots the numerically obtained values of �CD,O, �CL,O and �CM ,O against
θ0, for Re = 100 and k = 1. The corresponding force and moment coefficients for Stokes
flow ((4.13)–(4.15)) are indicated by dashed lines. The force and moment coefficients for
inertial flow are all greater in magnitude than the corresponding values for Stokes flow,
indicating that inertial effects increase the drag, lift and torque applied to the cylinder.
Due to the pressure singularity at the contact point, the drag and moment coefficients are
singular at θ0 = 0. However, the lift coefficient remains finite as θ0 approaches 0.

The force and moment coefficients for a finite gap ratio are given as the sums of
contributions from the inner and outer solutions:

CD = CD,I + CD,O, CL = CL,I + CL,O, CM = CM ,I + CM ,O. (4.23a–c)

This is illustrated in figure 13, which plots the balance between the inner and outer drag
coefficients against θ0, for G/d = 10−4, Re = 100 and k = 1. Here, CD,I is given by (4.10),
while �CD,O is evaluated numerically using the G/d = 0 method described in § 3.3. While
both CD,I and �CD,O vary with θ0, the total drag coefficient (4.23a–c) is approximately
constant when θ0 is within the asymptotic matching region (estimated to be 0.1 ≤ θ0 ≤
0.3 at G/d = 10−4 and Re = 100; see § 3.3). Therefore, we can take any θ0 within this
range, and obtain the force and moment coefficients through (4.23a–c). The dashed line
in figure 13 indicates the drag coefficient obtained using the single-domain computation
at G/d = 10−4, and the drag coefficient predicted by (4.23a–c) is in excellent agreement
with this value when θ0 is in the asymptotic matching region.
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Figure 12. (a) Variation in the force and moment coefficients for the outer region ( �CD,O, �CL,O and �CM ,O)
against θ0 for Re = 100 and k = 1 (solid lines) as well as the Stokes flow predictions (4.13)–(4.15), shown
with dashed lines. (b) Variation of the inertial contributions to the outer-flow force and moment coefficients
(
 �CD,O, 
 �CL,O and 
 �CM ,O) with θ0 for Re = 100 and k = 1. Dashed lines indicate the limiting behaviour for
small θ0.

20
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Figure 13. Contributions to the drag coefficient from the inner and outer regions, for G/d = 10−4, Re = 100
and k = 1.

While (4.23a–c) is sufficient to obtain the force and moment coefficients for a given
G/d, a more convenient approach is to first define the ‘wake’ force/moment coefficients as

CD,wake = CD − CD,S, CL,wake = CL − CL,S, CM ,wake = CM − CM ,S, (4.24a–c)

which we interpret as representing the inertial contribution to the total force and moment
coefficients. Importantly, we will show that the wake force and moment coefficients are
approximately independent of G/d, and can be estimated using the outer-flow solution
alone. Thus this decomposition is more convenient than (4.23a–c), as the G/d dependence
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is contained entirely within the Stokes flow terms, for which we have a known analytic
solution (4.20)–(4.22).

Using (4.23a–c) and (4.24a–c), the wake force and moment coefficients can be
expressed as

CD,wake = 
CD,O(θ0), CL,wake = 
CL,O(θ0), CM ,wake = 
CM ,O(θ0), (4.25a–c)

where


CD,O = CD,O − CD,O,S, 
CL,O = CL,O − CL,O,S, 
CM ,O = CM ,O − CM ,O,S

(4.26a–c)

are the inertial contributions to the force and moment coefficients from the outer flow,
which are plotted in figure 12(b). While the total force and moment coefficients are
singular at θ0 = 0, the inertial contributions remain bounded.

Since the conditions for asymptotic matching require θ0 	 1, we consider the behaviour
of 
 �CD,O, 
 �CM ,O and 
 �CL,O for small θ0. The asymptotic behaviours of these quantities
for small θ0 are represented by dashed lines in figure 12(b). These are obtained by fitting
fourth-order polynomials to each of these quantities in the range 0.1 ≤ θ0 ≤ 0.5, and
retaining terms up to first order in θ0. (The range θc ≤ θ0 ≤ 0.1 is omitted from the
polynomial fit, due to numerical issues associated with large pressure magnitudes near
the contact point, as discussed in Appendix A.) The drag and moment coefficients are
approximately constant, therefore the first-order terms are also neglected, i.e.


CD,O ≈ 
CD,O|θ0=0 + O(θ2
0 ), 
CM ,O ≈ 
CM ,O|θ0=0 + O(θ2

0 ), (4.27a,b)

while the lift coefficient is approximately linear, i.e.


CL,O ≈ 
CL,O|θ0=0 + O(θ0). (4.28)

Terms such as 
CD,O|θ0=0 are obtained as the constant terms in the polynomial fits,
which, for the Re = 100 and k = 1 case shown in figure 12(b), are 
CD,O|θ0=0 = 1.8973,

CL,O|θ0=0 = 1.9821 and 
CM ,O|θ0=0 = −0.3099.

Based on the conditions required for asymptotic matching between the inner and outer
solutions, we assume that θ0 ∝ √

G/d. Then, by using (4.27a,b) and (4.28), we can
estimate the wake force and moment coefficients from the outer flow solution alone:

CD,wake = 
CD,O|θ0=0 + O(G/d), (4.29)

CL,wake = 
CL,O|θ0=0 + O(
√

G/d), (4.30)

CM ,wake = 
CM ,O|θ0=0 + O(G/d). (4.31)

Note that the predicted wake drag and moment coefficients are of a higher order of
accuracy than the wake lift coefficient.

Equations (4.29)–(4.31) allow the wake force and moment coefficients to be estimated
from the outer solution alone. The total force and moment coefficients are then obtained
by adding the Stokes flow force and moment coefficients:

CD = CD,S + CD,wake, CL = CL,wake, CM = CM ,S + CM ,wake. (4.32a–c)

Moreover, the wake force and moment coefficients are approximately independent of G/d,
for small gaps. The gap ratio affects the force and moment coefficients through only the
Stokes flow terms, for which analytical expressions are given in (4.20)–(4.22).
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Figure 14. Comparison between the predicted force and moment coefficients (a) CD, (b) CM and (c) CL against
gap ratio using single-domain, finite G/d numerical simulations (circles) and the Stokes flow solution (solid
lines), and by using the wake force and moment coefficients obtained from the G/d = 0 solution ((4.32a–c),
dashed lines), for Re = 100 and k = 1.

We now validate the proposed approach for determining the force and moment
coefficients. Figure 14 presents the variation in the force and moment coefficients against
G/d for Re = 100 and k = 1, determined using finite gap ratio numerical simulations
(open circles) and the Stokes flow predictions (solid lines), and by using the wake
force/moment predictions from the zero-gap solution ((4.32a–c), dashed lines). For both
CD and CM (figures 14a,b), the predictions from the finite gap ratio simulations differ
from the Stokes flow predictions by a constant amount, which is equal to the wake
drag/moment coefficients predicted from the zero-gap outer flow ((4.29) and (4.31)).
Therefore, (4.32a–c) is found to predict accurately the drag and moment coefficients, for
a wide range of gap ratios.

Figure 14(c) presents the �CL predicted from finite G/d simulations, as well as predicted
using (4.32a–c). While (4.32a–c) predicts a constant lift coefficient, the numerically
computed values decrease with increasing G/d. The numerically obtained �CL vary
approximately linearly with

√
G/d, which is consistent with the order of the error estimate

given in (4.30). The value of CL,wake predicted from the outer-flow solution (4.30) is the
upper limit on the lift coefficient, as G/d approaches 0. This is confirmed by extrapolating
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Figure 15. Time history of (a) CD,wake, (b) CM ,wake and (c) CL,wake for a range of gap ratios. Flow times are
shifted so that t = 0 corresponds to the maximum value of CD,wake.

�CL from the finite G/d simulations to G/d = 0, which gives a prediction �CL = 1.9921,
and this is within 0.5 % of the prediction obtained using (4.30).

We remark that finite-gap simulations could not be performed for G/d < 10−4, due to
numerical difficulties associated with small cell sizes. However, the force and moment
predictions obtained using (4.29)–(4.31) and (4.32a–c) are valid for arbitrarily small G/d,
and the accuracy of these predictions increases as G/d approaches zero. Therefore, in
addition to reducing the parameter space to only two variables, the proposed method allows
the force and moment predictions to be obtained for arbitrarily small G/d, while avoiding
the numerical difficulties that occur in finite-gap simulations.

4.3. Force and moment coefficients for unsteady flow
While only time-averaged force and moment coefficients were discussed in § 4.2,
(4.29)–(4.32a–c) are also valid for the instantaneous force and moment coefficients
in an unsteady flow. Figure 15 presents the time history of CD,wake, CL,wake and
CM ,wake for Re = 100 and k = 1 obtained from the G/d = 0 numerical simulations
using (4.29)–(4.31). The wake force and moment coefficients predicted using finite G/d
simulations are also plotted in figure 15. To aid comparison, the flow times have been
shifted so that t = 0 corresponds to the maximum drag coefficient. Since the wake is
in the saturated state of periodic vortex shedding, the predicted wake force and moment
coefficients are periodic, and two complete wake cycles are shown.

Figures 15(a,b) show that the instantaneous values of CD,wake and CM ,wake are
approximately independent of gap ratio, with some mild discrepancy observed between
different values of G/d. On the other hand, figure 15(c) shows that the instantaneous
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G/d �CD,wake �CL,wake �CM ,wake CD,rms CL,rms CM ,rms St

0 1.89501 1.95905 −0.31466 0.05334 0.08541 0.01215 0.0714
10−2 1.90290 1.49162 −0.31318 0.04669 0.07719 0.01046 0.0722

(0.42 %) (23.86 %) (0.47 %) (12.47 %) (9.62 %) (13.94 %) (1.12 %)
10−3 1.89600 1.83841 −0.31914 0.05268 0.08455 0.01197 0.0715

(0.05 %) (6.16 %) (1.43 %) (1.23 %) (1.01 %) (1.49 %) (0.11 %)
10−4 1.88960 1.94602 −0.31252 0.05310 0.08500 0.01210 0.0713

(0.29 %) (0.67 %) (0.68 %) (0.45 %) (0.48 %) (0.41 %) (0.10 %)

Table 4. Dependence of the mean and r.m.s. wake force and moment coefficients, as well as the Strouhal
number (St), with gap ratio, at Re = 100 and k = 1. The relative differences between the finite-gap and zero-gap
values are given in parentheses.

value of CL,wake generally increases as G/d decreases, consistent with results presented
in § 4.2. However, while the mean value of CL,wake increases with G/d, the amplitude of
the oscillations in CL,wake appears to be relatively independent of G/d.

These qualitative observations are confirmed by table 4, which presents the mean and
r.m.s. values of the wake force and moment coefficients, as well as the Strouhal number,
for each G/d. For all quantities apart from the mean lift coefficient �CL,wake, the relative
error between the predictions for G/d = 10−3 and G/d = 0 are below 1.5 %, while the
relative errors between the G/d = 10−4 and G/d = 0 predictions for all quantities are
below 0.7 %. We remark that the discretisation errors from the grid resolution study are
also of order 1 %, so it is unclear how much of the observed discrepancy is due to finite-gap
effects and how much is due to grid resolution errors.

Differences in �CL,wake between the finite-gap and zero-gap solutions are substantial for
both G/d = 10−3 and G/d = 10−2, but below 0.7 % for G/d = 10−4. As discussed in
§ 4.2, the value of �CL,wake predicted from the G/d = 0 simulations using (4.30) is an
upper bound on the true value of �CL,wake, with an error approximately proportional to√

G/d. While the mean lift coefficient shows strong dependence on G/d, CL,rms shows
only weak dependence on G/d, and the differences in CL,rms between the finite-gap and
zero-gap solutions are comparable to the corresponding differences in both CM ,rms and
CD,rms. Therefore, while the mean value of CL,wake depends on G/d, the amplitude of
oscillations of CL,wake is relatively insensitive to G/d.

Differences in CD,rms, CL,rms and CM ,rms between the G/d = 10−2 and G/d = 0
predictions are substantial. This is not surprising, given that the decomposition into inner
and outer solutions is valid only for small G/d. Moreover, figure 7(a) demonstrates that
the lubrication solution to the inner region is not valid for G/d = 10−2. Despite these
observations, the values of �CD,wake and �CM ,wake predicted for G/d = 10−2 are within
0.5 % of those predicted using G/d = 0, therefore the decomposition into inner and outer
flows is surprisingly effective in predicting the mean drag and moment coefficients, even
for relatively large G/d where the decomposition into inner and outer flows is not strictly
valid.

4.4. Parameter space
One of the main advantages of the decomposition into inner and outer flows presented in
this paper is that the wake force and moment coefficients predicted from the outer flow
depend on only two variables, Re and k, substantially reducing the parameter space to be
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Figure 16. Variation of (a) mean and (b) r.m.s. wake force and moment coefficients against Re for k = 1.
Circles and triangles indicate the predictions for unsteady and steady flow, respectively.

explored by numerical simulations. In this subsection, we present numerical computations
of the mean and r.m.s. wake force and moment coefficients as functions of Re and k. We
remark that the predicted values of �CL,wake presented in this subsection represent the upper
bounds on the lift coefficient, and have an error of order

√
G/d.

We first consider the effect of Re on the wake force and moment coefficients for k = 1.
Figure 16(a) presents the variation of �CD,wake, �CL,wake and �CM ,wake against Re, for k = 1
and for both unsteady (circles) and steady (triangles) two-dimensional flow. For steady
flow, the magnitudes of the mean wake drag, lift and moment coefficients all decrease
monotonically with increasing Re. For k = 1, the two-dimensional wake becomes unsteady
for Re > 88 (Houdroge et al. 2017). However, there is little difference in the values of
�CL,wake and �CM ,wake between the steady and unsteady flows above this critical Reynolds
number. The transition to unsteady flow is associated with a significant increase in the
mean wake drag coefficient ( �CD,wake), compared to the steady flow. This is in agreement
with Houdroge et al. (2017), who find that two-dimensional vortex shedding results in an
increase in drag coefficient compared to steady flow, with only small changes to the lift
coefficient.

Figure 16(b) presents the variation of the r.m.s. force and moment coefficients CD,rms,
CL,rms and CM ,rms against Re for k = 1. Below the critical Reynolds number Rec,2D = 88,
the r.m.s. force and moment coefficients are zero, indicating steady flow. As Re is increased
beyond this critical value, the r.m.s. force and moment coefficients increase monotonically.

Figure 17 presents a comparison between the predicted mean drag and lift coefficients
at G/d = 0.005 and k = 1 using the wake drag approach (4.32a–c) and with numerical
results given by Houdroge et al. (2017). Good agreement is observed between the predicted
mean drag coefficients, while our method slightly overestimates the lift coefficient, which
is expected given that the error in the lift coefficient is of order

√
G/d.

We now consider the effect of varying rotation rate (k) for a fixed Reynolds number
Re = 100. Figure 18(a) presents the variation of �CD,wake, �CL,wake and �CM ,wake against
Re for k = 1 for both unsteady (circles) and steady (triangles) two-dimensional flow. The
magnitudes of both �CD,wake and �CM ,wake increase monotonically with k, while �CL,wake
takes a minimum value between k = 0.5 and k = 0.75.
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Figure 17. Comparison between the predicted mean drag and lift coefficients for unsteady flow at k = 1 and
G/d = 0.005 using the present method (◦) and Houdroge et al. (2017) (×).
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Figure 18. Variation of (a) mean and (b) r.m.s. wake force and moment coefficients against k for Re = 100.
Circles and triangles indicate the predictions for unsteady and steady flow, respectively.

Figure 18(b) presents the variation of the r.m.s. force and moment coefficients against
k for Re = 100. At this Reynolds number, the transition between steady and unsteady
flow occurs between k = 0.25 and k = 0.5, and the r.m.s. force and moment coefficients
increase monotonically with k beyond the transition to unsteady flow. This suggests that
the critical Reynolds number for transition to unsteady flow decreases with increasing
k, in agreement with Stewart et al. (2010b). Figure 18(a) shows little difference in the
predicted mean lift and moment coefficients between steady and unsteady flow; however,
the transition to unsteady flow is associated with an increase in the mean drag coefficient.

Finally, we consider the effects of varying both Re and k for two-dimensional, unsteady
flow. Figure 19 presents contours of �CD,wake, �CL,wake, �CM ,wake, CD,rms, CL,rms and CM ,rms
against both Re and k, for two-dimensional unsteady flow. The solid black line marks the
approximate transition from steady to unsteady flow, which is estimated using the r.m.s.
lift coefficient. The critical Reynolds number Rec,2D decreases with increasing rotation
rate, in agreement with Stewart et al. (2010b). Within the unsteady regime, the r.m.s. force
and moment coefficients (figures 19d– f ) increase with both k and Re.
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Within the steady regime, �CD,wake increases with increasing k, but decreases with
increasing Re (figure 19a). In the unsteady regime, however, �CD,wake increases with
both increasing k and increasing Re. The wake moment coefficient �CM ,wake depends
predominantly on Re within the steady regime, but is relatively insensitive to Re in the
unsteady regime (figure 19c). In particular, �CM ,wake decreases with increasing Re in the
steady regime, and increases with increasing k in the unsteady regime. Finally, �CL,wake
decreases with increasing Re in both the steady and unsteady regimes (figure 19b). For
a fixed Reynolds number, �CL,wake takes a minimum value for an intermediate value of k
between approximately k = 0.5 and k = 0.75; however, there is insufficient resolution in
the k-direction to determine accurately the precise value of k that minimises �CL,wake.

5. Conclusions

We have analysed and interpreted the two-dimensional flow over a circular cylinder
translating along a plane wall, and with varying degrees of slip, including no-slip, using
the method of matched asymptotic expansions. We consider an inner lubrication flow,
which is valid near the thin interstice between the cylinder and the wall, and an inertial
outer flow, which is valid far from the interstice. While three dimensionless parameters –
Re, k and G/d – are needed to characterise this flow, the outer flow is independent of G/d,
and depends only on Re and k.

Numerical simulations of the outer flow were performed over a range of Re and k. To
avoid the numerical difficulties associated with infinite pressures arising at the contact
point, the contact point itself was removed from the computational domain. The velocity
corresponding to the Stokes flow solution was used as a prescribed-velocity boundary
condition near the contact point. To complete this model, the pressure and velocity
distributions in the inner flow were then obtained as an analytic solution to the Reynolds
equation.

The effects of inertia on the force and moment coefficients are characterised by the wake
force and moment coefficients, which can be estimated directly from the outer solution as
functions of Re and k. The total force and moment coefficients can then be determined
by adding to these the corresponding force and moment coefficients for Stokes flow. We
find that the wake drag and moment coefficients are relatively independent of G/d, and
therefore can be determined to a high accuracy using the outer solution alone. The wake
lift coefficient, however, decreases linearly with

√
G/d, and the outer solution provides

only the maximum limiting value of the wake coefficient.
One of the main benefits of the decomposition into inner and outer flows is a reduction

in the parameter space to be explored by numerical simulations. In particular, the gap
ratio effects are completely contained in the analytic Stokes flow terms, and numerical
simulations for the outer flow depend only on Re and k. To obtain a complete dynamical
model for the motion of a rolling body, we require the force and moment coefficients as
functions of k, Re and G/d. The present method substantially reduces the computational
effort required to construct such a model.

Additionally, numerical simulations become increasingly impractical as G/d is
decreased, due to the small cell sizes required to resolve the interstitial flow, as well as
the large pressure magnitudes that occur in the interstice. Since the inner lubrication flow
is obtained analytically, rather than numerically, these issues are avoided when using the
method proposed in this paper.

Moreover, many physical effects, including cavitation, compressibility and surface
roughness, are likely to be significant only in the inner region. The present work separates
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these effects conceptually from those of inertia, which affects only the outer region.
Therefore, the method presented in this work can be extended readily to rough cylinders,
as well as cavitating and compressible flows, by using a modified Reynolds equation that
accounts for these effects in the inner region.

Finally, we remark that the method presented in this work can be extended to flows over
other rolling bodies. For example, the forces and moments applied to a rolling sphere in
a Stokes flow are also obtained by a decomposition into inner and outer flows (Goldman
et al. 1967; O’Neill & Stewartson 1967), and we anticipate that the present approach can
be used to obtain the wake force and moment coefficients for a rolling sphere in an inertial
flow as functions of only Re and k. This approach may also be useful for understanding a
range of other rolling bodies, including finite cylinders (wheels), or asymmetrically shaped
particles. These possibilities will be explored in future research.

Supplementary movies. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.296.
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Appendix A. Computing the inertial part of the outer flow solution

Computing the wake force and moment coefficients requires subtracting the Stokes flow
solutions from the numerically obtained outer-flow solution. Since the pressure and wall
shear stresses for the outer flow approach infinity as θ → 0, this requires taking the
difference of two large, and nearly equal, numbers, when θ is small. This amplifies
numerical errors near the contact point, making the wake force and moment computations
unreliable when θ0 is small.

To illustrate this point, figure 20(a) plots the mean pressure obtained numerically using
the zero-gap approach outlined in § 3.3, for k = 1 and Re = 100. Four different meshes are
used, with values of 
x between 10−5 and 5 × 10−4, and all other parameters are similar
to mesh 2 from table 3. The pressure distribution for Stokes flow (2.10) is also shown. The
pressures obtained on each mesh are nearly identical to the Stokes flow pressure when θ is
small, and both profiles approach infinity as θ approaches zero. Therefore, computing the
pressure difference (p̄ − pStokes) near θ = 0 requires taking the difference of two large, but
nearly equal, numbers.

Figure 20(b) plots profiles of the pressure difference (p̄ − pStokes) against θ . While the
total pressure p̄ is grid-independent (figure 20a), the computed pressure difference shows
a clear grid dependency, as well as large oscillations, when θ is small, presumably due to
numerical errors arising from subtracting large numbers. The numerical oscillations are
reduced as 
x is decreased, and there appears to be a clear trend in convergence towards
a grid-independent solution as 
x is decreased. Therefore, a fine mesh with 
x = 10−5

was used in the present study.
We now consider the force and moment coefficients. Figure 21 plots profiles of


 �CD,O (defined in (4.26a–c)) against θ0, computed on each of the four numerical grids.
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Figure 20. (a) Profiles of the mean pressure p̄ near the contact point, and (b) the difference between the mean
pressure for inertial and Stokes flow solutions (p̄ − pStokes), at Re = 100 and k = 1. Four different meshes are
used, with 
x between 10−5 and 5 × 10−4.
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Figure 21. Profiles of the inertial part of the outer-flow contribution to the drag coefficient (
CD,O) against
θ0, at Re = 100 and k = 1, computed using four different meshes with 
x between 10−5 and 5 × 10−4. The
dashed line indicates the polynomial fit obtained for the 
x = 10−5 solution.

Numerical errors associated with taking the difference of large numbers are significant
when θ0 < 0.1. These errors are most noticeable when 
x = 5 × 10−4, but visible
numerical artefacts are still observed for the finer grids. We find similar errors for the
other force and moment coefficients 
 �CL,O and 
 �CM ,O (not shown for brevity).

Therefore, we consider the computed profiles of 
 �CD,O, 
 �CL,O and 
 �CM ,O to be
unreliable when θ0 < 0.1. To estimate the wake force and moment coefficients, we propose
fitting a fourth-order polynomial to these terms over the interval 0.1 < θ0 < 0.5, and using
this polynomial fit to estimate the wake force and moment coefficients, as described in
§ 4.2. The polynomial fit for 
 �CD,O obtained using the 
x = 10−5 solution is indicated
by a dashed line in figure 21, and appears to be a good approximation for the ‘expected’
behaviour of 
 �CD,O over the interval 0 < θ0 < 0.1. This polynomial approximation is
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θc 
x �CD,wake �CL,wake �CM ,wake

0.01 1 × 10−5 1.895114 1.956262 −0.314521
0.01 5 × 10−5 1.895112 1.956262 −0.314521
0.01 1 × 10−5 1.895115 1.956262 −0.314521
0.01 5 × 10−4 1.895116 1.956264 −0.314520
0.1 5 × 10−5 1.900179 1.957517 −0.314208

Table 5. Comparison of the predicted mean and r.m.s. wake force and moment coefficients for Re = 100 and
k = 1, evaluated using five grids with varying values of θc and 
x.

further justified by the agreement in the predicted wake force and moment coefficients
compared to the single-domain, finite-gap simulations presented in table 4 (see § 4.3).

Table 5 shows the predicted wake force and moment coefficients obtained on each
of the four meshes, using the polynomial approximation. Variation in the predicted
force and moment coefficients is negligible, since the polynomial fit is performed over
the domain 0.1 < θ0 < 0.5, where the profiles are grid-independent. Therefore, while

x = 10−5 was taken in this study, to minimise the numerical errors for small θ , the wake
force and moment coefficients may be determined accurately using a lower resolution
(
x = 5 × 10−4), so long as the solution for θ0 < 0.1 is disregarded when computing the
wake force and moment coefficients.

Since the region θ < 0.1 is not used for computing the wake force and moment
coefficients, an additional simulation was performed with θc = 0.1 and 
x = 10−5. The
mean wake force and moment coefficients obtained using this mesh are presented in
table 5, and changes to the predicted force and moment coefficients are below 0.3 % when
compared to the θc = 0.01 meshes. Using a larger θc may offer improved computational
efficiency, which would be particularly valuable when considering three-dimensional
problems.
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