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Abstract

We consider a tandem queueing system with m stages and finite
intermediate buffer storage spaces. Each stage has a single server and the
service times are independent and exponentially distributed. There is an
unlimited supply of customers in front of the first stage. For this system we
show that the number of customers departing from each of the m stages
during the time interval [0, t] for any t ~°is strongly stochastically
increasing and concave in the buffer storage capacities. Consequently the
throughput of this tandem queueing system is an increasing and concave
function of the buffer storage capacities. We establish this result using a
sample path recursion for the departure processes from the m stages of the
tandem queueing system, that may be of independent interest. The
concavity of the throughput is used along with the reversibility property of
tandem queues to obtain the optimal buffer space allocation that maximizes
the throughput for a three-stage tandem queue.
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1. Introduction and summary

Consider a tandem queueing system with m stages numbered 1,2,· .. .m. Stage j has a
single server and the service times are independent and exponentially distributed with mean
1/ /Jj, j = 1, 2, . · . ,m. The buffer storage capacity between stages j and j + 1 is b, < +00,
j =1, 2, ... , m - 1. There is an unlimited number of customers in front of the first stage (that
is, the first stage is never starved) and the output buffer storage for stage m has an unlimited
capacity (that is, b; = +00 and stage m is never blocked). Customers require service from all
stages in the order 1, 2, · .. , m and the service to a customer at stage j is initiated only if the
number of customers at stage j + 1 (that is the number of customers in the buffer storage j
including the one at the server at stage j + 1, if any) is less than b., j = 1, 2, ... , m - 1.
Service to a customer at any stage, once initiated, is completed without interruptions. Let
Dj(t, b) be the number of customers departing from stage j during the time interval [0, t] and
D(t, b) = (Dj(t, b), j = 1, ... , m). Then we show the following (see Section 2).

(1.1) Theorem. Dj(t, b) is strongly stochastically increasing and concave in b almost
everywhere.

(1.2) Definition. A collection {X( 8), 8 E 8} of random variables with a convex parameter
set 8 c IR m is said to be strongly stochastically increasing and concave in 8 almost everywhere
if there exists a collection {X'( 8), 8 E 8} of random variables such that X'( 8) has the same
distribution as X (8) and it is increasing and concave in 8 almost surely.
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This definition of strong stochastic concavity is stronger than the stochastic concavity
definition of Shaked and Shanthikumar (1988) and Shanthikumar and Yao (1991). Now let
TH(b) be the steady state throughput of this tandem queueing system. Then

(1.3) TH(b) = lim Dj(t, b) .
1_00 t

From Theorem (1.1) and (1.3) we have the following corollary.

(1.4) Corollary. TH(b) is an increasing and concave function of b.

Tandem queueing systems with finite buffer spaces serve as models for several manufactur­
ing and communication systems. Consequently, considerable attention has been focused on
the analysis of such systems (e.g. see the review paper by Perros (1986». One of the main
design issues addressed in these studies is the optimal allocation of buffer spaces (e.g. see
Hillier et al. (1986». The concavity of the throughput has remained a conjecture and often
used in good faith in the empirical studies of optimal buffer space allocation problems.
Corollary (1.4) now validates most of these empirical studies and allows the development of
efficient optimization techniques to obtain solutions for the buffer space allocation problems.
We illustrate this through a simple example. It has been conjectured that in a three-stage
(that is m = 3) tandem queue with 1J1= 1J3' the optimal buffer space allocation (b ~, b~) that
maximizes the throughput subject to b, + b2 = B should satisfy \b; - b~\ ~ 1. The following
result provides an affirmative answer to this conjecture.

(1.5) Theorem. For m = 3 and 1JI = 1J3' TH(b) is Schur-concave in b.

(1.6) Remark. Recall that a function f: 7L?~ IR is Schur-concave if for any n E 7L.?, n, > [ < ]n2
implies [tn, - 1, n2+ 1)~ [~]f(n., n2). It is then immediate that max {f(n): n E Z~, n, +
n2= N} = f(n') where In; - n~1 ~ 1.

Proof of Theorem (1.5). From the duality results of Yamazaki and Sakasegawa (1975) it
follows that TH(b) is symmetric in b (that is, TH(b I, b2 ) = TH(b 2 , bI». Then from Corollary
(1.4) and Proposition 3.C.2 of Marshall and Olkin (1979) for discrete functions, the
Schur-concavity of TH(b) follows.

2. Concavity of tbe departure processes

In this section we prove Theorem (1.1). We do this by first constructing a process {D'(t, b),
t~O}, where D'(t,b)=(D;(t,b), j=l,···,m), such that {D'(t,b), t~O}~{D(t,b),

t ~ O} and D; (t, b) is increasing and concave in b for each j = 1, ... , m.
Suppose the number of customers at stage j at time 0 is rj , j = 1, ... ,m. By our earlier

assumption, rl = +00. Then the number of customers at stage j at time t is rj + Dj-I(t) - Dj(t),
j = 2, ... , m. Note that the number of customers at stage 1 is always equal to +00. Therefore
it is not hard to see that {D(t, b), t ~ O} is a Markov process on the state space
S = {d E Z~: -rj ~ dj - I - d, ~ b.., r r» j = 2, ... , m}. The transition rate from state d to state
d + ej is 1Jj · I{dj- I - d, > -rj} . Lid, - dj+ I < b, - rj+ I } . Here e, is the jth unit vector and I{·} is
the indicator function. Next we construct the process {D'(t, b), t ~ O} on the state space S
such that it is Markov with the same transition rates as that of {D(t, b), t ~ O}.

Let {T,., n = 1, 2, ...} be the sequence of arrival epochs of a Poisson process with rate
11 = ~;:I1Jj' ~ = 0 and {Un, n = 1, 2, ...} be a sequence of i.i.d. uniform random variables
on (0, 11) independent of the Poisson process. Define

(2.1) Zj:n =I{~ IJk ~ U; < ±IJk}' j = 1, ... , m; n = 1, 2, ....
k=1 k=1

In the constructed process a service completion is allowed to take place only at time points
{T,., n = 1, 2, ...}. In particular, a service completion at stage j takes place at time T,. if
Zj:n = 1, there is at least one customer at that stage and the number of customers at stage
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j + 1 is less than b.. If D j:n(b) is the number of departures from stage j for the constructed
process during the time interval [0, 1;.], then we set

(2.2)

and

j=l,···, m,

(2.3) Dj:n+l(b)

=Dj:n(b) + Zj:n . I{Dj-l:n(b) - Dj:n(b) > -rj} . I{Dj:n(b) - Dj+l:n(b) < b, -'1+l},

j= 1,···, m; n =0,1,2, ... ,

where D~:n(b) = +00, D:"+I:n(b) = +00, n = 0, 1, 2, ... , b; = +00 and rm+l = °so that
I{D~:n(b) - D~:n(b) > -r1} = 1 always (that is, stage 1 is never starved) and I{D:n:n(b)­
D:"+I:n(b) < b; - rm+l} = 1 always (that is, stage m is never blocked). Since no state change is
supposed to take place during any time interval (1;., 1;.+1), n = 1, 2, · · .-, we set

(2.4) Dj(t, b) = Di:n(b), 1;.~ t < 1;.+h j = 1, .. · , m; n = 0, 1, 2, · ...

Clearly {D' (t, b), t ~ O} is a Markov process on the state space S. The transition rate of this
process from state dto d+ ej is 'TJ. P{Zj:n+l = I}· I{dj-1- d.> -rj}· Lid, -dj+1<b, - rj+1}=
JJj·I{dj-l-dj>-'1}·I{dj-dj+l<bj-'1+l}' same as that for {D(t,b),t~O}. Since the
initial states of these processes are the same (that is, d'(O, b) = D(O, b) = 0) it is clear that
{D'(t,b), t~O} ~ {D(t, b), t~O}. We use the following result to prove Theorem (1.1).

(2.5) Lemma. For n =0, 1, 2, · · · ,

(2.6) Dj:n+l(b) = min {Dj-l:n(b) + '1, Dj:n(b) + Zj:n+l, Dj+l:n(b) + b, -'1+l}, j = 1, . · · , m.

Proof Since Dj-l:n(b) + '1 ~ Dj:n(b), j = 1, · .. ,m; n = 0,1, 2, . · ., one sees that
I{Dj-l:n(b) - Dj:n(b) > -'1} =°[l]¢:)Dj-l:n(b) + '1= [> ]Dj:n(b). Similarly since Dj:n(b)­
Dj+l:n(b) ~ b, -'1+1' j = 1, ... ,m; n = 0, 1,2, . · · ,one has I{Dj:n(b) - Dj+l:n(b) < bj­
rj+1} =°[l]¢:)Dj:n(b) = [< ]Dj+l:n(b) + b, -'1+1. Then from (2.3) one sees that Dj:n+l(b) =
DJ:n(b) if either Dj-l:n(b) + rj = Dj:n(b) and/or D;:n(b) = D;+l:n(b) + b, - rj+l; otherwise
Dj:n+l(b) = Di:n(b) + Zj:n+l. It is now easily seen that the values obtained from (2.6) for all
these different cases are the same as above.

Proof of Theorem (1.1). From (2.6) it is easily seen that if D;:n(b) is increasing and concave
in b for every j = 1, · . · ,m, then Dj:n+l(b) is also increasing and concave in b for all
j = 1, .. · ,m. Then by induction and the initial condition D;:o(b) = 0, j = 1, ... ,m, it is
immediate that D;:n(b) is increasing and concave in b for every j = 1, . · . , m. The required
result now follows from (2.4).

(2.7) Remark. The blocking mechanism we considered in this paper is such that the service is
initiated only if there is room in the downstream buffer. This is called communication
blocking. In an alternate blocking mechanism, called production blocking, a service is
initiated even if the downstream buffer is full. In such a case a server is blocked only if the
customer it served cannot be advanced to the next stage. The above sample path construction
and the conclusions easily extend to this case and to several other blocking mechanisms.

(2.8) Remark. After this paper had been submitted for publication it was brought to our
attention that Anantharam and Tsoucas (1990) had independently derived the componentwise
concavity of the throughput of the exponential tandem queue with respect to the individual
buffer size. They use a sample path construction similar to ours, but we have derived an
explicit representation of the dynamics of the system which allowed us to obtain the stronger
joint concavity result. In particular we have obtained the joint stochastic concavity of the
number departures and the throughput with respect to the buffer capacities. We have
therefore also answered the open question raised in Section 3 of Anantharam and Tsoucas
(1990).
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