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Abstract

A common observation in the field of pattern recognition for atmospheric phenomena using supervised machine
learning is that recognition performance decreases for events with few observed cases, such as extreme weather
events. Here, we aimed to mitigate this issue by using numerical simulation and satellite observational data for
training. However, as simulation and observational data possess distinct characteristics, we employed neural style
transformation learning to transform the simulation data to more closely resemble the observational data. The
resulting transformed cloud images of the simulation data were found to possess physical features comparable to
those of the observational data. By utilizing the transformed data for training, we successfully improved the
classification performance of cloud images of tropical cyclone precursors 7, 5, and 3 days before their formation
by 40.5, 90.3, and 41.3%, respectively.

Impact Statement

Mutual style transformation between simulated and observed data was achieved using a neural network. This
compensated for the lack of observational data in the construction of data-driven models with simulation data.

1. Introduction

In recent years, deep learning-based image recognition techniques have been applied to atmospheric
science. Deep learning, a machine learning approach that utilizes neural networks with high represen-
tation capabilities through the connection of multiple layers of neurons, has demonstrated exceptional
performance in recognizing atmospheric patterns. Numerous research reports have detailed the use of
deep learning to detect extreme weather (Matsuoka et al., 2019; Prabhat et al., 2021), perform statistical
downscaling (Harris et al., 2022), and parameterization (Rasp et al., 2018). Several comprehensive review
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papers have also been published, encompassing diverse applications of these techniques to topics such as
tropical cyclones (Chen et al., 2020), rainfall (Barrera-Animas et al., 2022), and temperature forecasting
(Tran et al., 2021). In particular, deep learning can be advantageous in situations where constructing
models based on physical principles proves to be challenging. Moreover, the use of machine learning for
improving observations and simulations is expected to increase in the future.

In general, the accuracy ofmachine learning-based pattern recognition decreases for phenomenawith a
small number of observed cases. In related research, a decline in recognition performance has been
reported for tropical cyclone precursors in their early stages (Matsuoka et al., 2018) and for super-large
hurricanes (Pradhan et al., 2018). This is a fundamental problem in supervised machine learning, which
learns rules for pattern recognition from training data. Enhancing the predictive capabilities for cases with
a limited amount of data has been one of the key challenges in machine learning.

One approach for avoiding the degradation of recognition accuracy is to artificially increase the
amount of data with a small number of examples (Shorten &Khoshgoftaar, 2019). A method called “data
augmentation” has been proposed to increase the amount of original data using geometric and color-space
transformations. Particularly, data augmentation techniques, including vertical and horizontal flip,
random crop, and random rotation, are widely recognized in image pattern recognition, and have been
extensively employed in data analysis competitions for tropical cyclone detection (Matsuoka, 2021). In
addition, attempts have been made to create new data using generative adversarial networks (GANs), a
type of generative model (Goodfellow et al., 2014). However, because the data created by GANs have
very similar characteristics as the original data, it is uncertain whether data augmentation can improve
recognition performance.

Numerical simulations can generate a large amount of data using multiple initial values and scenarios
that are appropriate for use as training data in terms of data volume. Furthermore, simulation data typically
contain a greater number of physical variables in comparison to observational data, and it is possible to
generate labeled data with higher accuracy than humans by applying the tropical cyclone tracking
algorithm to temperature, wind speed, and sea surface pressure data. Thus, simulation data can be used
in conjunction with observational data. However, to use simulation and observational data simultan-
eously, it is necessary to match the two styles. Simulation data do not perfectly match the observed data in
terms of patterns, owing to factors such as spatiotemporal resolution, physical schemes, and numerical
noise. Therefore, it is not realistic to apply machine learning models learned from simulation data directly
to observational data (Matsuoka, 2022).

In this study, cloud image data augmentation using style transformation techniques based on simu-
lation data was used to reduce the degradation of the recognition accuracy caused by the lack of
observational data. A style-transformation technique was used to transform the simulation data into the
style of the observed data, and simultaneous learningwith the observed datawas achieved formodel’s fine
tuning. As a case study, the effectiveness of the method was verified by detecting tropical cyclone
precursors during the early stages of their development.

2. Datasets

2.1. Observational data

We used infrared data (IR1) from GridSat-B1 as the satellite observational data for cloud distribution.
GridSat-B1 data are provided by NOAA as a dataset that combines multiple satellite observations in the
International Satellite Cloud Climatology Project on a grid of approximately 7 km for ease of use (Knapp
& Wilkins, 2018). In this study, data from 1980 to 2017 in the Northwest Pacific were used.

For supervised machine learning, the above data were trimmed to an appropriate size and correctly
labeled as tropical cyclones, their precursors (positive), or not (negative). To label positive cases, we used
the best-track data of tropical cyclones obtained through IBTrACS version 4 published by NOAA’s
National Climate Data Center. The best track data included the latitude and longitude of the center of the
tropical cyclone, minimum pressure, and maximum wind speed. Additionally, it included information
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after the development of a tropical cyclone as well as information on tropical disturbances before they
become tropical cyclones and after they changed to extratropical cyclones. In this study, a 128 × 128 grid
(approximately 1,000 km2) rectangular area, including the center of the cyclone, was cut out as positive
examples (TCs and preTCs).When the IRwas normalized from 0 to 1 in the range of 200–300, the regions
in the rectangular area with a mean value of 0.3 or higher that did not contain positive examples were cut
out as negative examples (nonTCs). The total data comprised 39,115 positive and 977,812 negative
examples.

Positive and negative examples taken from GridSat IR1 are shown in Figure 1a,b. The number of data
points per elapsed time is shown in Figure 1d. The number of cases was highest at themoment of the onset
of the tropical cyclone (zero elapsed time), and was smaller for preTCs with a longer time to onset. The
number of cases 168 hr before the onset of the cyclonewas 10 or less. Additionally, there were fewer cases
7–14 days prior to the outbreak.

2.2. Simulation data

In this study, we used 30-year climate simulation data produced by the nonhydrostatic icosahedral
atmospheric model (NICAM) with a 14-km horizontal resolution (Kodama et al., 2015). Fully compress-
ible nonhydrostatic equations guarantee the conservation of mass and energy. This study is not specific to
any particular model; for more information on the NICAM, see the survey by Satoh et al. (2014).

Similar to the observational data, the training data for machine learning were prepared as simulation
data. A tropical cyclone tracking algorithm (Sugi et al., 2002; Nakano et al., 2015; Yamada et al., 2017)
was applied to the 30-year NICAM data, and 754 TC tracks in the western North Pacific were extracted.
The algorithm uses sea-level pressure, temperature, andwind field data to detect tropical cyclones andwas
optimized for NICAM data. From the extracted tracks, the outgoing longwave radiation (OLR) data of a
64 × 64 grid (approximately 1,000 km2) rectangular area, including the center of the tropical cyclone,
were cut out as the training data. The number of examples extracted in this way was 35,060 (13,514

Figure 1. Examples of (a) observed TCs and preTCs, (b) observed nonTCs, and (c) simulated TCs and
preTCs. The numbers of training and/or test data of (d) observation and (e) simulation in each
elapsed time.
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preTCs and 21,546 TCs). Because the NICAM data were used only for style conversion of positive
examples (TC and preTC), negative examples (nonTC) were not included.

Some positive examples of the NICAM data are presented in Figure 1c. Compared with the positive
examples of GridSat IR, qualitatively, the images appear blurred with a less fine structure. The amount of
data per unit of elapsed time is shown in Figure 1e. The observational data show only 10 cases 168 hr
before the event, whereas the simulation data show more than 200 cases.

3. Method

3.1. Method overview

The framework of the proposed method consists of two types of convolutional neural networks (CNNs):
neural style transfer and binary classification. An overview of the proposed method is presented in
Figure 2. Neural style transfer involved training to transform the features of the observational and
simulation data. This framework was used to convert the simulation data (only a positive example) into
an observation-like style. The binary classification involved two steps. In the first step, only observational
data are input into the CNN and the binary classifier was trained. In the second step, additional training of
the binary classifier was performed by inputting the observational data and observation-like data
converted from the simulation data by neural style transfer. The trained classifier was then applied to
the observational data not used for training to evaluate the detection performance. In the following
sections, we describe the architecture of each CNN and its experimental settings.

3.2. Style transfer between simulation and observational data

We transformed the simulation data into observation-like data using CycleGAN (Zhu et al., 2017), which
is a method for mutually transforming data in two different domains. Because the NICAM data do not
reproduce the actual atmosphere by data assimilation, they do not perfectly match the GridSat cloud
distribution. Therefore, CycleGAN is a promising approach because it enables conversion using unpaired
data, unlike conversionmethods that use paired data, such as pix2pix (Isola et al., 2017). CycleGAN trains
using unpaired data for function F, which transforms from domain X to domain Y, and function G, which
transforms from domain Y to domain X. We used adversarial loss to learn a mapping G that produced a
distribution G(X) that was indistinguishable from the target distribution Y. In this study, because the

Figure 2. Schematic diagram in the training phase of the proposed method.
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adversarial loss alone was not binding, we introduced a cycle consistency loss to correct F(G(X)) so that it
could recover X. The same process was used to train the transformation in the reverse direction. We used
4,000 training data each for both simulated and observed data (1999–2004), and repeated the training for
3,800 epochs until the error (sum of adversarial loss and cycle consistency loss) converged. The error
(RMSE) between xsim and G(F(xsim)) was 5.9–17.1 W/m2 (12.2 W/m2 on average) and between xobs and
F(G(xobs)) was 3.8–5.8 K (4.9 K on average) for the test data (2005–2008) for the trained CycleGAN.
Here, xsim and xobs are simulation and observational data, respectively. F and G are the mapping function
from the simulation data to the observational data and from the observational data to the simulation data,
respectively.

3.3. Binary classification

A binary classification model was constructed for GridSat IR data to distinguish between TCs and
nonTCs. The details of the classification model are beyond the scope of this study; however, we used the
ResNet-18 model (He et al., 2016), a deep CNN with 18 layers. ResNet is an architecture that efficiently
propagates gradients from the output layer to the input layer by introducing a Residual Module that skips
between multiple layers. The input data are a single channel of data corresponding to the cloud
distribution, and the output classes are TCs/preTCs (positive) and nonTCs (negative).

To evaluate the effectiveness of the proposedmethod, four classificationmodelswere constructed using
different training data settings (Table 1). Model 1 was a baseline classifier model constructed by training
only the observational data. Model 2 was not a realistic configuration, but a model that trained only
simulation data to be used as a reference for comparison.Models 3 and 4 performed fine-tuning by learning
additional simulation data as positive examples for Model 1. Model 4 trained the transformed simulation
data in addition to the observational data using CycleGAN, whereas Model 3 trained the simulation data
directly. In the first and second stages, training was repeated until the error between the predicted and
correct classes converged. The error function was defined by the binary cross entropy. In all models, the
validation data were 10% of the training data, and the test data for evaluation were the observational data
not used for training. The test data were unbalanced, with a 50-fold difference in balance: 958,845 negative
examples compared to 20,148 positive examples. As seen in previous studies (Matsuoka et al., 2018;
Matsuoka, 2021; Matsuoka, 2022), the training dataset shows an artificially balanced class distribution for
efficient learning, whereas the test dataset shows class imbalances similar to real applications.

4. Results and discussion

4.1. Style transformation

Using a style transformation, the OLR of the simulated data was converted into the IR of the observed
data. Figure 3 shows the examples of the original simulation images and the results of the transformation
into the observed style. Qualitatively, the cloud structure of the simulation data was converted into a fine
scale. In this figure, a color map wherein the cumulative distribution functions before and after the

Table 1. Training data setting for each classification model. The numbers of positive examples (P) and
negative examples (N)

Model 1 Model 2 Model 3 Model 4

Training data
(pre-training)

P: 18,967 (obs)
N: 18,967 (obs)

P: 20,200 (sim)
N: 20,000 (sim)

Same as Model 1 Same as Model 1

Training data
(fine-tuning)

— — P: 10,000 (sim)
N: 10,000 (obs)

P: 10,000 (obs-like sim)
N: 10,000 (obs)

Test data P: 20,148 (obs)
N: 958,845 (obs)

Environmental Data Science e20-5

https://doi.org/10.1017/eds.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.15


transformation are nearly identical is provided. The results showed no significant alterations in the cloud
form, only an improvement in the resolution of their texture.

Style transformation improved the frequency distribution of the physical quantities representing
clouds in the simulation. Figure 4a–c shows the differences in the cloud histograms before and after
the style transformation. The simulated tropical cyclone had a flat cloud-top and was dominated by high
clouds (lower OLR value in Figure 4b). However, the distribution representing the cloud-tops of the
tropical cyclones after the transformation (lower value of IR in Figure 4c) was not flat and was in good

Figure 3. Results of neural style transfer from (a) simulated clouds to (b) observed-like clouds.

Figure 4. Histograms of clouds (a) observation, (b) simulation, and (c) observation-like data.
Histograms of spatial gradient of clouds (d) observation, (e) simulation, and (f) observation-like data.
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agreement with the distribution of the observational data (Figure 4a). The distribution of low clouds was
also in good agreement before and after the conversion. Similarly, the histogram of the horizontal gradient
of clouds shows an improvement owing to the style transformation, as shown in Figure 4d–f. In particular,
the distribution of horizontal gradients near zero indicates that the weak horizontal gradients of clouds
reproduced by the simulation were improved by the style transformation.

4.2. Classification performance

Additional training using the style-transformed simulation data improved the classification performance for
the test data (observational data) compared with training using only the observational data. Figure 5a shows
the classificationperformance of the fourmodels as precision–recall curves (P–Rcurves). The larger the area
between the P–R curve and the vertical and horizontal axes (area under the curve [AUC]), the higher the
accuracy. The model with the highest classification accuracy was the model trained on transformed
simulation data (Model 4), with an AUC of 0.95, compared with 0.91 for Model 1, the model trained on
observational data alone. For reference, the AUCs for Models 2 and 3 are 0.83 and 0.91, respectively.

Additionally, the detection accuracy for tropical cyclone precursors in the early stages of their
development improved. Figure 5(b–d) shows the recall for each elapsed time when the precision was
fixed at 0.5, 0.7, and 0.9, respectively. The recall ofModel 4 was the highest from 7 days prior to the onset
of the tropical cyclone to the time of the onset of the cyclone. In particular, in the case of precision = 0.9,

Figure 5. Classification performance of four models for test observational data. (a) Precision–recall
curves and (b–d) recall with 95% confidence interval for each elapsed time when precisions are fixed at
0.5, 0.7, and 0.9, respectively. Note that in (a), the PR curve of Model 1 almost overlaps that of Model 3.
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the recall at 7, 5, and 3 days before the TC formation improved by 40.5, 90.3, and 41.3%, respectively,
compared with the model trained only with observational data. The model trained only on the simulation
data (Model 2) exhibited the lowest classification accuracy. Similarly, the model trained directly on the
simulation data (Model 3) did not show a significant improvement in accuracy. As seen in previous studies
(Matsuoka et al., 2018), the detection skill of TCs in the early stages is decreased because there is less
training example and the shape is not well formed (e.g., 7–14 days before the TC formation). Furthermore,
it should be noted that the range of confidence intervals for detection skill is larger during these periods
due to the lack of test data.

5. Conclusion

In this study, we propose an approach to compensate for the lack of observed cases using simulation data
in supervised machine learning to improve the detection accuracy of tropical cyclone precursors. The
simulation data were converted to a style similar to that of observational data by learning-style conversion
between the simulated and satellite-observed cloud images. The simulated data with style transformation
were confirmed to have a frequency distribution similar to that of the observed data. Incorporating these
data in the training improved the detection accuracy of tropical cyclone precursors up to 7 days before
onset by 41.2% on average. This represents a novel application of simulations in themachine learning era.

Although this study only dealt with clouds, similar style transformations may be applied to other scalar
and vector quantities. In atmospheric sciences, studies have reported the utilization of transfer learning
through the use of simulation and reanalysis data, with the aim of precipitation measurement (Sambath
et al., 2022), precipitation forecast (Gibson et al., 2021), and so forth. It is anticipated that these methods
will emerge as a pioneering approach to utilize numerical models. As mentioned earlier, simulations
cannot perfectly reproduce real atmospheric conditions because of limitations in factors such as spatio-
temporal resolution and physical schemes. However, learning and understanding the process of convert-
ing simulated data to observed data can enable the quantification of the characteristics of the simulation
model, thus leading to its advancement in the future.

Abbreviations

CNN convolutional neural network
GAN generative adversarial network
GridSat gridded satellite
IR infrared
NICAM nonhydrostatic icosahedral atmospheric model
OLR outgoing longwave radiation
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