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Abstract

We construct a process with inverse gamma increments and an asymptotically self-similar
limit. This construction supports the use of long-range-dependent t subordinator models
for actual financial data as advocated in Heyde and Leonenko (2005), in that it allows
for noninteger-valued model parameters, as is found empirically in model estimation
from data.
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1. Introduction

Heyde and Leonenko (2005) and Finlay and Seneta (2006) respectively constructed discrete
time t and variance-gamma-distributed (VG-distributed) subordinator models which exhibit
long-range dependence (LRD) of squared returns, a desirable property for asset price models.
In particular, they considered models of the form

log(Pt ) = log(P0) + µt + θTt + σB(Tt ),

where Pt is some asset price, B(t) is Brownian motion, µ, θ ∈ R, and σ > 0. The LRD of
squared returns comes from asymptotically self-similar inverse gamma (for the t-model) and
gamma (for the VG model) based ‘activity time’ {Tt } processes, and in particular is driven by
the LRD of the increment processes, denoted by τ(t) = Tt − Tt−1, t = 1, 2, . . .. Here a
continuous-time process {Yt } is said to be self-similar with parameter H if Yct

d= cH Yt ; LRD
of a discrete-time stationary process with ultimately nonnegative autocorrelations {γk} is said
to hold if

∑∞
k=1 γk = ∞; and the activity time Tt , as opposed to the standard clock time t , is the

increasing stochastic process over which security prices are taken to evolve. The {Tt } processes
are scaled such that their increments over unit time have unit expectation, with the τ(t) taken
to be inverse (or reciprocal) gamma R�(ν/2, ν/2 − 1) and gamma �(ν/2, ν/2) distributed,
respectively having probability density functions

fR�(x) = (ν/2 − 1)ν/2

�(ν/2)
x−ν/2−1e(1−ν/2)/x
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and

f�(x) = (ν/2)ν/2

�(ν/2)
xν/2−1e−(ν/2)x

for x > 0. Here if V ∼ �(α, β) is gamma distributed (so that B(V ) has the VG distribution)
then 1/V ∼ R�(α, β) is inverse gamma distributed (and B(1/V ) has the t-distribution).

The activity time processes constructed in Heyde and Leonenko (2005) and Finlay and
Seneta (2006) are restricted to integer ν however, a condition not consistent with estimation
with actual data. Finlay and Seneta (2007) extended τ(t), the gamma process from which the
activity time process Tt = ∑t

k=1 τ(k) is built, to allow for noninteger ν. In this note we do
likewise for the inverse gamma process.

2. The inverse gamma increment process τ(t)

Let {Xt, t ∈ N} be the stationary gamma process constructed in Finlay and Seneta (2007,
Section 2), which, for ι = (ν − [ν])/2 ([ν] denoting the integer part of ν), has a �(ι, 1

2 )

distribution and bivariate characteristic function given by

E(euiXt+viXt+s ) = ((1 − 2iu)(1 − 2iv))−ι+ιρ2(s)(1 − 2i(u + v))−ιρ2(s). (1)

Here ρ2(s) is the autocorrelation function of {Xt }, and can be taken as any function that satisfies
Assumption 1 below.

Assumption 1. ρ2(s) is a function on {0, 1, 2, . . .} satisfying ρ2(0) = 1, ρ2(s) ≥ 0, ρ2(s) −
ρ2(s + 1) ≥ 0, and ρ2(s) − 2ρ2(s + 1) + ρ2(s + 2) ≥ 0.

The construction in Finlay and Seneta (2007, Section 2) has the consequence of providing
an indirect proof that any function ρ2(s) satisfying Assumption 1 is an autocorrelation function
of a strictly stationary process. The same issue is discussed more generally in Finlay et al.
(2011).

Next, for N = {1, 2, 3, . . .}, let {ηi(t), t ∈ N}, i = 1, . . . , [ν], with noninteger ν > 4,
be independent and identically distributed stationary Gaussian processes with zero mean, unit
variance, and autocorrection function ρ1(s), s ∈ N. We assume that ρ1(s) is of the form

ρ1(s) = (1 + ω|s|α)(H−1)/α

for ω > 0, 0 < α ≤ 2, and 1
2 < H < 1. That is, we assume that ρ1(s) belongs to the Cauchy

family of autocorrection functions discussed in Gneiting (2000).
Define the independent stationary processes {χ2

t } and {Vt }, t ∈ N, by

χ2
t = η2

1(t) + · · · + η2[ν](t)
2

∼ �

( [ν]
2

, 1

)
, Vt = Xt

2
∼ �(ι, 1).

Then (χ2
t + Vt ) ∼ �(ν/2, 1) and cor(χ2

t + Vt , χ2
t+s + Vt+s) = ([ν]/ν)ρ2

1 (s) + (1 − [ν]/ν)

ρ2(s).
We proceed to construct our inverse gamma activity time process {Tt } as

Tt =
t∑

k=1

τ(k), τ (t) = ν/2 − 1

χ2
t + Vt

∼ R�

(
ν

2
,
ν

2
− 1

)
. (2)

This construction ensures that the increments of the activity time process {Tt } are inverse gamma
distributed and that E(τ (t)) = 1.
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Now, from Leonenko (1999, Chapter 2) for example, for p(x) = x[ν]/2−1e−x/�([ν]/2),

the density function of χ2
t , we can define a complete orthogonal system of functions {ek(x)}∞k=0

in the Hilbert space L2((0, ∞), p(x) dx) by e0(x) ≡ 1 and, for k > 0,

ek(x) = L
[ν]/2−1
k (x)

(
k! �([ν]/2)

�([ν]/2 + k)

)1/2

, where L
β
k (x) = 1

k!x
−βex dk

dxk
{xβ+ke−x} (3)

are the generalised Laguerre polynomials of index β. That is, for G(x) ∈ L2((0, ∞), p(x) dx),

G(χ2
t ) =

∞∑
k=0

Ckek(χ
2
t ), where Ck =

∫ ∞

0
G(x)p(x)ek(x) dx, (4)

and
∑∞

k=0 C2
k = ∫ ∞

0 G(x)2p(x) dx < ∞. For δm
k , the Kronecker symbol, we also have the

useful property
E(ek(χ

2
t )em(χ2

t+s)) = δm
k ρ2k

1 (s), (5)

so, for example, cov(G(χ2
t ), G(χ2

t+s)) = ∑∞
k=1 C2

k ρ2k
1 (s).

Now, for fixed y > 0 and ν > 4, (ν/2 − 1)/(x + y) ∈ L2((0, ∞), p(x) dx), so, given Vt ,
we can expand (ν/2 − 1)/(χ2

t + Vt ) as
∑∞

k=0 Ck(Vt )ek(χ
2
t ). From (5),

∞ > E

(
ν/2 − 1

χ2
t + Vt

)2

= E

(
E

(( ∞∑
k=0

Ck(Vt )ek(χ
2
t )

)2 ∣∣∣∣ Vt

))
=

∞∑
k=0

E(C2
k (Vt )).

Given the above,

E

(
ν/2 − 1

χ2
t + Vt

−
n∑

k=0

Ck(Vt )ek(χ
2
t )

)2

= E

(
E

(( ∞∑
k=n+1

Ck(Vt )ek(χ
2
t )

)2 ∣∣∣∣ Vt

))

=
∞∑

k=n+1

E(C2
k (Vt )),

which goes to 0 as n → ∞. Thus, we have (in terms of mean-square convergence)

τ(t) = ν/2 − 1

χ2
t + Vt

=
∞∑

k=0

Ck(Vt )ek(χ
2
t ) ∼ R�

(
ν

2
,
ν

2
− 1

)
. (6)

Our inverse gamma activity time process {Tt } will be constructed as the sum of these τ(t), as
given in (2).

3. Main result

Consider the normalized inverse gamma activity time process given by

1

nH
(T[nt] − [nt]) = 1

nH

[nt]∑
k=1

(τ (k) − 1), (7)

where in what follows we will hold ν fixed and let n → ∞, and, therefore, normalise
by nH (note that ν appears in the limit process—see (15) below—but not in a form that
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requires normalisation). From (6) and for C̄1 = E(C1(Vt )), we can decompose this process
into the four terms

T[nt] − [nt] =
[nt]∑
m=1

∞∑
k=2

(Ck(Vm)ek(χ
2
m))

︸ ︷︷ ︸
Ant

+
[nt]∑
m=1

((C1(Vm) − C̄1)e1(χ
2
m))

︸ ︷︷ ︸
Bnt

+
[nt]∑
m=1

(C̄1e1(χ
2
m))

︸ ︷︷ ︸
Cnt

+
[nt]∑
m=1

(C0(Vm) − 1)

︸ ︷︷ ︸
Dnt

,

where the equality holds in the sense of mean-square convergence. We then have the following
result.

Theorem 1. For any ρ2(s) satisfying Assumption 1 and further satisfying
∑∞

s=1 ρ2(s) < ∞,
Ant/nH , Bnt/nH , and Dnt/nH converge in mean square to 0 as n → ∞ and Cnt/nH converges
weakly to the sum of [ν] independent copies of the H self-similar Rosenblatt process.

Theorem 1 is the main result of this paper and implies that the process given in (7) converges
weakly to a sum of self-similar Rosenblatt processes (the Rosenblatt process is discussed in
greater detail below). It complements the result of Finlay and Seneta (2007) for gamma activity
time processes and supports the use of long-range-dependent t subordinator models for actual
financial data as advocated in Heyde and Leonenko (2005), in that it proves that activity time
processes {Tt } which display asymptotic self-similarity and have inverse gamma distributed
increments (and so imply asset price increments with the t-distribution) exist.

Proof of Theorem 1. First consider

Ant =
[nt]∑
m=1

∞∑
k=2

(Ck(Vm)ek(χ
2
m)).

For k > 0, E(ek(χ
2
m)) = 0, so E(Ant ) = 0. Then, since the {Vt } and {χ2

t } are independent, using
(5), the Cauchy–Schwarz inequality, and the functional form of ρ2

1 (s), we have, irrespective of
ρ2(s),

var

(
Ant

nH

)
= 1

n2H

∞∑
k=2

[nt]∑
m=1

[nt]∑
s=1

E(Ck(Vm)Ck(Vs))ρ
2k
1 (|s − m|)

≤
∞∑

k=2

E(C2
k (V0))

1

n2H

[nt]∑
m=1

[nt]∑
s=1

ρ4
1(|s − m|)

= k∗
1

( [nt]
n2H

+ 2

n2H

[nt]−1∑
s=1

([nt] − s)(1 + ω|s|α)4(H−1)/α

)

for k∗
1 = ∑∞

k=2 E(C2
k (V0)) < ∞. Here the last two lines follow since ρ2k

1 (|s − m|) ≤ ρ4
1(|s −

m|) for k ≥ 2, and, for any positive integer a and any function I ,

a∑
m=1

a∑
s=1

I (|s − m|) = aI (0) + 2
a−1∑
s=1

(a − s)I (s). (8)
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Now [nt]/n2H → 0 for 1
2 < H < 1, and, for 1

2 < H < 1, H 	= 3
4 , and k∗

2 < ∞ a constant,
we have

2

n2H

[nt]−1∑
s=1

([nt] − s)(1 + ω|s|α)4(H−1)/α < ω4(H−1)/α [nt]
n2H

[nt]∑
s=1

s4(H−1) (9)

≤ k∗
2(nt)1−2H

∫ nt

1
s4(H−1) ds

= k∗
2

(
(nt)2H−2 − (nt)1−2H

4H − 3

)
, (10)

which is positive but goes to 0 as n → ∞. Here (9) follows since, for s ≥ 1, α, γ, ω > 0, and
1
2 < H < 1,

(1 + ωsα)γ (H−1)/α < ωγ (H−1)/αsγ (H−1). (11)

For H = 3
4 , (10) becomes

k∗
2(nt)−1/2

∫ nt

1

ds

s
= k∗

2(nt)−1/2 log(nt) → 0 as n → ∞.

Hence, var(Ant/nH ) → 0 as n → ∞ for 1
2 < H < 1 and so Ant/nH converges to 0 in mean

square for each t , irrespective of ρ2(s).
Next consider

Bnt =
[nt]∑
m=1

((C1(Vm) − C̄1)e1(χ
2
m)).

First note that, for G(x) = (ν/2 − 1)/(x + y) and p(x) = x[ν]/2−1e−x/�([ν]/2), we can
compute C1 = C1(y) = ∫ ∞

0 G(x)p(x)e1(x) dx from (4) as

C1(y) =
(

ν

2
− 1

)√ [ν]
2

∫ ∞

1
ey(1−t)(t−[ν]/2 − t−[ν]/2−1) dt .

Then, from (1), since Vm(1 − t) = Xm((1 − t)/2), we have, for t, u ≥ 1,

0 ≤ E(eVm(1−t)+Vs(1−u)) = (tu)−ι+ιρ2(|s−m|)(t + u − 1)−ιρ2(|s−m|) ≤ (tu)−ι+ιρ2(|s−m|). (12)

Hence,

0 ≤ E(C1(Vm)C1(Vs))

=
(

ν

2
− 1

)2 [ν]
2

∫ ∞

1

∫ ∞

1
E(eVm(1−t)+Vs(1−u))

(
1

t [ν]/2 − 1

t [ν]/2+1

)

×
(

1

u[ν]/2 − 1

u[ν]/2+1

)
dt du

≤
(

ν

2
− 1

)2 [ν]
2

∫ ∞

1

∫ ∞

1
(tu)−ι+ιρ2(|s−m|)

(
1

t [ν]/2 − 1

t [ν]/2+1

)(
1

u[ν]/2 − 1

u[ν]/2+1

)
dt du

=
(

ν

2
− 1

)2 [ν]
2

(
1

([ν]/2 + ι − ιρ2(|s − m|) − 1)2 + 1

([ν]/2 + ι − ιρ2(|s − m|))2

− 2

([ν]/2 + ι − ιρ2(|s − m|) − 1)([ν]/2 + ι − ιρ2(|s − m|))
)

. (13)
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Similarly,

(C̄1)
2 = (E(C1(Vm)))2

=
(

ν

2
− 1

)2 [ν]
2

(∫ ∞

1
E(eVm(1−t))

(
1

t [ν]/2 − 1

t [ν]/2+1

)
dt

)2

=
(

ν

2
− 1

)2 [ν]
2

(∫ ∞

1
t−ι

(
1

t [ν]/2 − 1

t [ν]/2+1

)
dt

)2

=
(

ν

2
− 1

)2 [ν]
2

(
1

([ν]/2 + ι − 1)2 + 1

([ν]/2 + ι)2 − 2

([ν]/2 + ι − 1)([ν]/2 + ι)

)
.

(14)

Now, from (12), (13), and (14),

E(C1(Vm)C1(Vs)) − (C̄1)
2

=
(

ν

2
− 1

)2 [ν]
2

∫ ∞

1

∫ ∞

1
(tu)−ι

((
tu

t + u − 1

)ιρ2(|s−m|)
− 1

)(
1

t [ν]/2 − 1

t [ν]/2+1

)

×
(

1

u[ν]/2 − 1

u[ν]/2+1

)
dt du.

Thus, E(C1(Vm)C1(Vs)) − (C̄1)
2 ≥ 0 since t, u ≥ 1 and so tu ≥ t+u−1. Then, for a > b > 0

and b < 1,

0 ≤ 1

(a − b)2 − 1

a2 = b

(
2a − b

a2(a − b)2

)
≤ b

(
2a

a2(a − 1)2

)
,

so

0 ≤ E((C1(Vm) − C̄1)(C1(Vs) − C̄1))

= E(C1(Vm)C1(Vs)) − (C̄1)
2

≤
(

ν

2
− 1

)2 [ν]
2

(
1

([ν]/2 + ι − ιρ2(|s − m|) − 1)2 − 1

([ν]/2 + ι − 1)2

+ 1

([ν]/2 + ι − ιρ2(|s − m|))2 − 1

([ν]/2 + ι)2

)
≤ k∗

3ρ2(|s − m|)

for k∗
3 a constant. Hence, for Bnt = ∑[nt]

m=1((C1(Vm) − C̄1)e1(χ
2
m)) and any ρ2(s) satisfying

Assumption 1 and further satisfying
∑∞

s=1 ρ2(s) < ∞, E(Bnt ) = 0, and using (8),

var

(
Bnt

nH

)
= 1

n2H

[nt]∑
m=1

[nt]∑
s=1

(E((C1(Vm) − C̄1)(C1(Vs) − C̄1))ρ
2
1 (|s − m|))

≤ k∗
3

n2H

[nt]∑
m=1

[nt]∑
s=1

ρ2(|s − m|)

= k∗
3

n2H

(
[nt] + 2

[nt]−1∑
s=1

([nt] − s)ρ2(s)

)
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<
k∗

3 [nt]
n2H

(
1 + 2

[nt]−1∑
s=1

ρ2(s)

)
→ 0 as n → ∞,

where the last line follows since
∑∞

s=1 ρ2(s) < ∞ by assumption.
For ρ2(s) = ρ2

1 (s), and, therefore, satisfying Assumption 1 but not satisfying
∑∞

s=1 ρ2(s) <

∞,

var

(
Bnt

nH

)
= 1

n2H

[nt]∑
m=1

[nt]∑
s=1

(E((C1(Vm) − C̄1)(C1(Vs) − C̄1))ρ
2
1 (|s − m|))

≤ k∗
3

n2H

[nt]∑
m=1

[nt]∑
s=1

ρ4
1(|s − m|)

→ 0 from earlier.

Thus, in either case Bnt/nH converges in mean square to 0.
Next consider Cnt = ∑[nt]

m=1(C̄1e1(χ
2
m)). Evaluating e1(x) from (3) as

√
2/[ν]([ν]/2 − x),

we have, from Taqqu (1975, Theorem 6.1 and Proposition 6.1), irrespective of ρ2(s),

1

nH

[nt]∑
m=1

(C̄1e1(χ
2
m)) = C̄1

nH

[nt]∑
m=1

√
2

[ν]
( [ν]

2
− χ2

m

)

= −C̄1

nH
√

2[ν]
[ν]∑
j=1

[nt]∑
m=1

(η2
j (m) − 1)

⇒ −C̄1√
2[ν]

[ν]∑
j=1

Rj (t), (15)

where convergence is in the weak sense and each Rj (t) is an independent copy of the self-
similar Rosenblatt process. The Rosenblatt process R(t) is defined in Taqqu (1975); it has
strictly stationary increments and is H self-similar, E(R(t)) = 0, and E(|R(t)|γ ) < ∞ for
γ ≤ 1/H ; it is separable and almost surely continuous, and the characteristic function of R(1)

admits the representation

φ(u) = exp

{
1

2

∞∑
k=2

(2iu)k

(k + 1)!Sk

}
for

Sk =
∫ 1

0
· · ·

∫ 1

0

dx1 · · · dxk

(|x1 − x2||x2 − x3| · · · |xk−1 − xk||xk − x1|)1−H
,

which is valid for small values of |u|.
Finally, consider

Dnt =
[nt]∑
m=1

(C0(Vm) − 1).

For Dnt , C0(y) can be evaluated to give

C0(y) =
(

ν

2
− 1

) ∫ ∞

1
ey(1−t)t−[ν]/2 dt .
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Direct calculation shows that E(C0(Vm)) = 1, while var(C0(Vm)) < ∞ since

E(C0(Vm)2) =
( [ν]

2
− 1

)2 ∫ ∞

0
pι(y)

(∫ ∞

1
ey(1−t)t−[ν]/2 dt

)(∫ ∞

1
ey(1−s)s−[ν]/2 ds

)
dy

=
( [ν]

2
− 1

)2 ∫ ∞

1

∫ ∞

1
(ts)−[ν]/2

(∫ ∞

0
pι(y)ey(2−t−s) dy

)
dt ds

=
( [ν]

2
− 1

)2 ∫ ∞

1

∫ ∞

1
(ts)−[ν]/2(t + s − 1)([ν]−ν)/2 dt ds

≤
( [ν]

2
− 1

)2 ∫ ∞

1

∫ ∞

1
(t + s − 1)−ν/2 dt ds

= ([ν]/2 − 1)2

(ν/2 − 1)(ν/2 − 2)

< ∞,

where pι(y) = yι−1e−y/�(ι) is the density function of Vm and ι = (ν − [ν])/2 from earlier.
Hence, C0(y) ∈ L2((0, ∞), pι(y) dy) and similar to before we can write

C0(Vm) =
∞∑

k=0

Cι
ke

ι
k(Vm) for Cι

k =
∫ ∞

0
C0(y)pι(y)eι

k(y) dy,

where

eι
k(y) = Lι−1

k (y)

(
k! �(ι)

�(ι + k)

)1/2

and
∞∑

k=0

(Cι
k)

2 =
∫ ∞

0
C2

0 (y)pι(y) dy < ∞.

Since Cι
0 = eι

0(y) = 1,

1

nH
Dnt = 1

nH

[nt]∑
m=1

(C0(Vm) − 1) = 1

nH

[nt]∑
m=1

∞∑
k=1

Cι
ke

ι
k(Vm).

Now, for Wi ∼ �(ai, 1), i = 1, 2, 3, and each Wi independent, we have (see Griffiths (1969))

E(eι
k(W1 + W2)e

ι
m(W2 + W3)) = δm

k

(
�(a1 + a2)�(a2 + a3)

�(a1 + a2 + k)�(a2 + a3 + k)

)1/2
�(a2 + k)

�(a2)
.

From (1) however, {Vt , Vt+s} d= {W1 + W2, W2 + W3} for Wi as defined above with a1 = a3 =
ι − ιρ2(s) and a2 = ιρ2(s), so

E(eι
k(Vt )e

ι
m(Vt+s)) = δm

k ρ2(s)

(
1 + ιρ2(s)

1 + ι

)
· · ·

(
k − 1 + ιρ2(s)

k − 1 + ι

)
≤ δm

k ρ2(s). (16)

Hence, for any ρ2(s) satisfying Assumption 1 and additionally satisfying
∑∞

s=1 ρ2(s) < ∞,
we have

var

(
Dnt

nH

)
≤ 1

n2H

( ∞∑
k=1

(Cι
k)

2
) [nt]∑

m=1

[nt]∑
s=1

ρ2(|m − s|) → 0 from earlier.
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For ρ2(s) = ρ2
1 (s), and, therefore, not satisfying

∑∞
s=1 ρ2(s) < ∞, we write Dnt/nH as

1

nH
Dnt = 1

nH

[nt]∑
m=1

Cι
1e

ι
1(Vm) + 1

nH

[nt]∑
m=1

∞∑
k=2

Cι
ke

ι
k(Vm).

Then direct calculation yields eι
1(y) = √

1/ι(ι − y), so

1

nH

[nt]∑
m=1

Cι
1e

ι
1(Vm) = −Cι

1

2
√

ιnH

[nt]∑
m=1

(2Vm − 2ι),

which, from Finlay and Seneta (2007, Theorem 2), converges in probability to 0. Next, using
(8), (11), and (16),

var

(
1

nH

[nt]∑
m=1

∞∑
k=2

Cι
ke

ι
k(Vm)

)
≤ 1

n2H

( ∞∑
k=2

(Cι
k)

2
) [nt]∑

m=1

[nt]∑
s=1

ρ2
1 (|m − s|)

<
k∗

4 [nt]
n2H

(
1 + 2ω2(H−1)/α

[nt]−1∑
s=1

s2(H−1)

)

∼ 2k∗
4ntω2(H−1)/α

n2H

∫ nt

0
s2H−2 ds

= 2k∗
4 t2H ω2(H−1)/α

2H − 1
< ∞

for k∗
4 = ∑∞

k=2(C
ι
k)

2 < ∞. Similarly, using (16), we have

E(eι
k(Vt )e

ι
m(Vt+s)) ≥ δm

k ρ2
1 (s)

(
1

1 + ι

)
· · ·

(
k − 1

k − 1 + ι

)
,

so, for (Cι∗
k )2 = (Cι

k)
2(1/(1 + ι)) · · · ((k − 1)/(k − 1 + ι)) and k∗

5 = ∑∞
k=2(C

ι∗
k )2 > 0, from

(8),

var

(
1

nH

[nt]∑
m=1

∞∑
k=2

Cι
ke

ι
k(Vm)

)
≥ 1

n2H

( ∞∑
k=2

(Cι∗
k )2

) [nt]∑
m=1

[nt]∑
s=1

ρ2
1 (|m − s|)

>
k∗

5

n2H

(
[nt] + 2(1 + ω)2(H−1)/α

[nt]−1∑
s=1

([nt] − s)s2(H−1)

)

∼ 2k∗
5(1 + ω)2(H−1)/α

n2H

∫ nt

0
(nt − s)s2H−2 ds

= 2k∗
5 t2H (1 + ω)2(H−1)/α

2H(2H − 1)

> 0,

where we have used the fact that, for s ≥ 1, α, γ, ω > 0 and 1
2 < H < 1,

(1 + ωsα)γ (H−1)/α > (sα + ωsα)γ (H−1)/α = (1 + ω)γ (H−1)/αsγ (H−1),

and Cauchy’s integral test. Hence, in the case ρ2(s) = ρ2
1 (s), 0 < lim infn→∞ var(Dnt/nH ) ≤

lim supn→∞ var(Dnt/nH ) < ∞.
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Hence, we have proved Theorem 1 and further proved that, when ρ2(s) = ρ2
1 (s), so that

Assumption 1 holds but
∑∞

s=1 ρ2(s) = ∞, Ant/nH and Bnt/nH converge in mean square to 0
as n → ∞, Cnt/nH converges weakly to the sum of [ν] independent copies of the Rosenblatt
process, and Dnt/nH has, for each fixed t , variance bounded away from 0 and ∞.

4. Discussion

We have constructed a long-range dependence (LRD) and asymptotically self-similar activity
time process {Tt }which has inverse gamma distributed increments with noninteger distributional
parameters. This process naturally extends that considered in Heyde and Leonenko (2005) to
the context of a subordinator model for financial assets with marginal t-distribution, which
was restricted to integer parameter values, and, thus, supports the use of the t-model for actual
financial data.

We also note that there are other methods of constructing activity time processes with LRD
and an asymptotically self-similar limit. For example, Leonenko et al. (2012) constructed
gamma and inverse Gaussian processes, based on a superposition of Ornstein–Uhlenbeck-
type processes, which converge to Brownian motion (in the case of a finite superposition) or
fractional Brownian motion (in the case of an infinite superposition). Finlay and Seneta (2007)
also reviewed a number of different approaches to constructing activity time processes.
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