Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in healthy human subjects

Adele Costabile1†, Francesca Fava1,4†, Henna Röytö2, Sofia D. Forssten2, Kaisa Olli2, Judith Klievink3, Ian R. Rowland1, Arthur C. Ouwehand2, Robert A. Rastall1, Glenn R. Gibson1 and Gemma E. Walton1*

1Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK
2Danisco Health and Nutrition, Sokeritehtaantie 20, 02460 Kantvik, Finland
3Wageningen University, Wageningen, The Netherlands
4Nutrition and Nutrigenomics, Food Quality and Nutrition Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Istituto Agrario di San Michele all’Adige, Via Mach 1, San Michele all’Adige 38010 (TN), Italy

(Submitted 19 May 2011 – Final revision received 26 September 2011 – Accepted 27 September 2011 – First published online 21 November 2011)

Abstract

In this placebo-controlled, double-blind, crossover human feeding study, the effects of polydextrose (PDX; 8 g/d) on the colonic microbial composition, immune parameters, bowel habits and quality of life were investigated. PDX is a complex glucose oligomer used as a sugar replacer. The main goal of the present study was to identify the microbial groups affected by PDX fermentation in the colon. PDX was shown to significantly increase the known butyrate producer Ruminococcus intestinalis and bacteria of the Clostridium clusters I, II and IV. Of the other microbial groups investigated, decreases in the faecal Lactobacillus–Enterococcus group were demonstrated. Denaturing gel gradient electrophoresis analysis showed that bacterial profiles between PDX and placebo treatments were significantly different. PDX was shown to be slowly degraded in the colon, and the fermentation significantly reduced the genotoxicity of the faecal water. PDX also affected bowel habits of the subjects, as less abdominal discomfort was recorded and there was a trend for less hard and more formed stools during PDX consumption. Furthermore, reduced snacking was observed upon PDX consumption. This study demonstrated the impact of PDX on the colonic microbiota and showed some potential for reducing the risk factors that may be associated with colon cancer initiation.

Key words: Polydextrose; Human faecal microbiota; Genotoxicity; Biomarkers of colonic health

Prebiotics are growing in popularity amid evidence of a host of beneficial effects, including enhancing immune function(1) and improving mucosal structural(2) and cellular turnover(3). Some studies even indicate anti-cancer potential(4) to be one among the many beneficial effects. A prebiotic is a selectively fermented ingredient that results in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health(5). To date, much of the work on prebiotics has focused on fructo-oligosaccharides, inulin and galacto-oligosaccharides(6). As the commercial interest in functional food ingredients and colonic health has grown worldwide, further prebiotics may eventually make their way into the market. However, the ultimate tests for prebiotic activity, the human volunteer trials, are scarce or lacking for the majority of these candidates(7). Thus, more evidence on their efficacy is needed for a prebiotic status to be achieved.

A diet that contains sufficient fibre is likely to be advantageous for consumer health. Epidemiological studies have long suggested an inverse association between dietary fibre intake and a range of colonic and systemic human diseases including certain cancers and CVD(8). The increased availability of carbohydrate within, especially, the distal part of the intestine means increased microbial saccharolytic activities and SCFA production. This leads to a potential reduction of proteolytic activities that are linked to carcinogen or genotoxin production(9). In addition to decreased proteolytic activity, the independent role of increased SCFA concentrations, especially butyrate, has been speculated to be behind some of the beneficial effects associated with fibre(10). Low- or non-fermentable fibres, such as cellulose, may act as bulking agents, improve intestinal transit time and, thereby, reduce the exposure of human mucosal tissue

Abbreviations: COX, cyclo-oxygenase; DGGE, denaturing gel electrophoresis; FISH, fluorescence in situ hybridisation; PDX, polydextrose; qPCR, quantitative PCR.

* Corresponding author: G. E. Walton, email g.e.walton@reading.ac.uk
† These authors contributed equally to this work.
Polydextrose (PDX) is a soluble fibre synthesised from glucose; it is frequently used to increase the fibre content of food. PDX has a highly branched structure with a spectrum of glycosidic linkages\(^{(12)}\). Previous \textit{in vitro} research has shown that PDX is selectively fermented by the faecal microbiota, to stimulate bifidobacterial growth\(^{(13)}\). These findings are supported by a feeding trial where dose-dependent increases in bifidobacteria and lactobacilli and decreases of three species of bacteroides were observed\(^{(14)}\). However, it is worth noting that in the feeding trial of Jie \textit{et al.}\(^{(15)}\), enumeration is done using selective plating techniques, though such enumeration techniques are problematic\(^{(16)}\). \textit{In vitro} studies suggest that PDX may have protective activities for markers of colorectal cancer; for example, cyclo-oxygenase (COX)-2 expression has been observed to be elevated in individuals with colon cancer\(^{(17)}\), and fermentation products derived from PDX have been demonstrated to lower the expression of COX-2 \textit{in vitro} by Caco-2 cells\(^{(18)}\). In addition, similar results were obtained in animal studies with reduced intestinal levels of branched chain fatty acids and biogenic amines\(^{(19,20)}\). Furthermore, in pigs, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine\(^{(20)}\). Furthermore, Peuranen \textit{et al.}\(^{(20)}\) reported an immune-stimulatory effect in the intestine by PDX with an associated change in the microbial metabolism, including butyrate production and reduction in putrefaction. Tools for the measurement of colon cancer risk factors are limited in short-term intervention studies. However, the use of single cell genotoxicity screening, or the comet assay, is gaining interest as a straightforward method for examining DNA damage and is, therefore, being considered as a biomarker for monitoring the effects of dietary intervention on cancer risk\(^{(21)}\). Furthermore, human intervention studies have shown that PDX may also provide benefits to colonic function\(^{(22)}\).

The impact of PDX on the human colonic microbiota has been investigated to some extent, but would require further substantiation on the effects, in particular, on recognised beneficial bacteria, such as bifidobacteria and lactobacilli. To this end, a placebo-controlled, double-blind human feeding study was conducted on thirty-one healthy adult volunteers in a crossover manner. Changes in the colonic microbiota were determined by measuring bacterial population levels using fluorescence \textit{in situ} hybridisation (FISH) and quantitative PCR (qPCR). In addition, a detailed qualitative study of the total microbiota diversity was performed on total faecal DNA extracts via denaturing gel gradient electrophoresis (DGGE). Faecal concentrations of SCFA were also determined; furthermore, gastrointestinal symptoms and stool characteristics were recorded (stool frequency, consistency, abdominal pain, intestinal bloating and flatulence) in order to assess tolerance. Additionally, markers of immune function and changes in the genotoxic nature of the faecal water and COX induction of the colon cells were assessed to determine whether the intervention would offer potential benefits against markers of colon cancer risk.

Experimental methods

Subjects

A total of thirty-three healthy volunteers (18–50 years of age) were enrolled from the Reading area; two volunteers dropped out due to personal reasons before the start of the intervention (n = 31). Written informed consent was obtained from all participants and the study protocol was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects were approved by the Ethics and Research Committee of the University of Reading. Written informed consent was obtained from all subjects. Inclusion criteria for participation in the study were: a signed consent form, age 18–50 years inclusive, BMI 19–25 kg/m\(^2\) inclusive and good general health. Volunteers with evidence of physical/mental disease, major surgery, history of drug abuse, severe allergy, a history of severe abnormal drug reaction and smokers were excluded. Volunteers were also excluded if pregnant, lactating or planning pregnancy. Intake of an experimental drug within 4 weeks before study, former participation in prebiotic, probiotic or laxative trials within 3 months, or use of antibiotics within 6 months before the study, chronic constipation, diarrhoea or other chronic gastrointestinal complaints (e.g. irritable bowel syndrome) were all exclusion criteria. Any intake of prebiotics, probiotics (live yoghurts, fermented milk drinks) and drugs active on gastrointestinal motility, antibiotic treatment or any class of laxative was not permitted. All medication taken throughout the duration of the study was recorded in diaries. Volunteers were instructed not to alter their usual diet or fluid intake during the trial.

Study design

The dietary intervention study was performed in a double-blind, randomised, placebo-controlled crossover manner. For a period of 14 d before the dietary intervention study, volunteers followed a restricted diet, refraining from consumption of yoghurts, prebiotic supplements and probiotics. A total of thirty-one subjects were randomly allocated into one of two groups. For volunteer randomisation, baseline bifidobacteria levels were enumerated and volunteers were allocated into the two groups in such a way that the two groups did not significantly differ for baseline bifidobacteria numbers.

The first group (n = 16) consumed PDX powder (Litesse® Ultra, 8 g/d; Danisco UK, Redhill, UK) for 3 weeks, and then after a 3-week washout period, they consumed the equivalent placebo (maltodextrin powder, 8 g/d, Syral, Marckolsheim, France) for 3 weeks. The second group (n = 15) received first the placebo for 3 weeks, and then after a 3-week washout period, PDX powder for another 3-week treatment period. During the 3-week washout period, no trial product was consumed.

All test products were packaged, labelled and randomised by Danisco before the study. The study was blinded to...
investigators and volunteers. Volunteers were asked to keep diaries throughout the study to record stool frequency, consistency (constipation, hard, formed, or soft stool or diarrhoea), abdominal pain (none, mild, moderate or severe), intestinal bloating (none, mild, moderate or severe) and flatulence (none, mild, moderate or severe) on a daily basis. Any concomitant medication or adverse events were also recorded. Faecal samples were collected from each volunteer at five different time points, before and after each treatment: at baseline (before PDX intake, pre-PDX), following PDX intake, following washout 1 (post-PDX and before maltodextrin), pre-maltodextrin, pre-maltodextrin, following maltodextrin intake and following washout 2 (post-maltodextrin).

Quality of life questionnaires

Volunteers were issued quality of life questionnaires to complete at the end of the treatment periods 4 h following consumption of the test product. This questionnaire was to rate hunger, motivation, mood and mental alertness by marking along a line between ‘not at all’ and ‘very’. The position along the line was quantified using a ruler to give rise to a value of between 1 and 10. These were used to assess general feeling of the volunteers following the treatments.

Collection and stool sample preparation

Freshly voided faecal samples were stored in an anaerobic cabinet (10% H₂; 10% CO₂; 80% N₂; Don Whitley Scientific, Shipley, UK) for no longer than 2 h before processing.

For FISH and SCFA analysis, samples were diluted 1 in 10 (w/w) with PBS (0·1 M; pH 7·0) and mixed in a Stomacher (w/㎡) with glass beads (diameter 0·1 mm) and a FastPrep beadbeater (Bio101 Savant FastPrep FP120, FastPrep® Instrument, Qbiogene, Cambridge, UK) set at speed 6 for two runs of 40 s. DNA quality was checked by running 5 μl aliquots of the samples on 0·8% (w/v) ultraPURE agarose (Gibco-BRL, Paisley, UK) gels containing ethidium bromide (0·4 mg/ml), and visualising the bands using UV light. The quantity of DNA in each sample was determined using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Samples were stored at −20°C.

Denaturing gradient gel electrophoresis

Fragments (230 bp) derived from the variable V3 region of the 16S rRNA gene were amplified using the universal primers P2 and P3(23). Primers were synthesised by Sigma-Genosys (Haverhill, UK). DGGE was carried out as described previously(24). The V20-HCDC DGGE system (BDH, Poole, UK) was used with gels comprising 35–60% gradients and run at 100 V. Gels were silver-stained according to the previously published method(24).

The gel pictures were analysed by the Gel Compar II software (Applied Maths NV, Sint-Martens-Latem, Belgium). Following normalisation, bands were defined for each sample using the appropriate densitometric curves. Bands constituting less than 1% of the total band area were omitted from further analysis. Similarity between DGGE profiles was determined by calculating the Pearson’s correlation. Clustering of the sample profiles was done using the unweighted pair-group method using arithmetic average with a tolerance of 5%.

Shannon-Weaver index, Simpson’s index and Fisher’s index were calculated using an implementation on Gel Compare II

Table 1. Probes used in this study for fluorescence in situ hybridisation analysis

<table>
<thead>
<tr>
<th>Target*</th>
<th>Probe sequence (5’–3’)</th>
<th>Accession no.</th>
<th>Hybridisation – washing temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erec482</td>
<td>GCT TCT TAG TCA RGT ACC G</td>
<td>pB-00963</td>
<td>50</td>
</tr>
<tr>
<td>Bac303</td>
<td>CCA ATG TGG GGG ACC TT</td>
<td>pB-00031</td>
<td>45</td>
</tr>
<tr>
<td>Fpra655</td>
<td>CGC CTA CCT CTG CAC TAC</td>
<td>pB-00734</td>
<td>58</td>
</tr>
<tr>
<td>Bif164</td>
<td>CAT CCG GCA TTA CCA CCC</td>
<td>pB-00037</td>
<td>50</td>
</tr>
<tr>
<td>Ato291</td>
<td>CCT GCC TGT CTC AAC CC</td>
<td>pB-00943</td>
<td>50</td>
</tr>
<tr>
<td>Lab158</td>
<td>GGT ATT AGC AYC TGT TTC CA</td>
<td>ND†</td>
<td>45</td>
</tr>
<tr>
<td>Chis150</td>
<td>TTA TGC GGT ATT AAT CTT CCT TT</td>
<td>pB-00962</td>
<td>50</td>
</tr>
</tbody>
</table>

ND, not deducted.

* Probe designation according to probeBase (http://www.microbial-ecology.net/probebase). All probes were used at the concentrations of 50 ng/μl(11).

† No information relating to these probes has been deposited in probeBase.
software (Applied Maths NV, Sint Martens-Latem, Belgium). They were used to compare changes in the diversity of microbial communities within treatments and baseline. Shannon-Weaver index (H'), Simpson’s index (D) and Fisher’s alpha index (α) were calculated as done previously.$^{(24)}$

DNA extraction for quantitative PCR

Microbial DNA was extracted from the faecal samples by an initial bead beating step of two 3 × 30 s cycles at 6800 rpm, and thereafter with the use of a modified Promega Wizard genomic DNA purification kit (Promega, Madison, WI, USA). DNA isolation was performed according to instructions of the manufacturer. DNA concentrations were measured by a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and samples were stored at −20°C until qPCR analyses.

Quantitative PCR

Extracted microbial DNA (1 ng) was analysed by qPCR, using primers specific for *Atopobium* spp., *Clostridium difficile*, *C. leptum* group (*Clostridium* cluster IV), *C. histolyticum* (clusters I and II), *C. perfringens*, *Desulfovibrio intestinalis*, *Roseburia intestinalis* and *Staphylococcus aureus* (Table 2$^{(25–30)}$). Each sample was analysed in triplicate and all samples of one subject analysed in the same run. No template controls and DNA standards from bacterial strains were included on each plate to enable quantification of the bacterial content of the samples.

SCFA analysis by GC

SCFA concentrations were analysed by a method adapted from Zhao et al.$^{(31)}$, as described by Walton et al.$^{(52)}$. Peaks were integrated using Atlas Lab managing software (Thermo Lab Systems, Mainz, Germany). Fatty acid concentrations were calculated by comparing their peak areas with those of the standards and were expressed as mmol/g faeces.

Immunological analyses

Concentrations of IgA and PGE$_2$ were measured from the soluble fraction of the faeces. The frozen samples were thawed and extracted with bovine serum albumin as described previously$^{(33)}$ and stored at −20°C before analysis. Concentrations of IgA and PGE$_2$ were determined using ELISA according to the respective manufacturer’s instructions (E80-102; Bethyl Laboratories, Inc., Montgomery, TX, USA; Cayman Chemical Company Limited, Ann Arbor, MI, USA) and the results were expressed as mg or pg/g faeces (fresh weight), respectively.

Faecal water preparation

Faecal samples were diluted 1:1 (w/v) in 1×-ice-cold PBS in a stomacher bag. Samples were homogenised in a stomacher for 2 min at high speed or until a uniform consistency was achieved. For each sample, 10 ml aliquots, in duplicate, were then transferred into ultracentrifuge tubes (Beckman Ultra-clear tubes; Beckman Limited, High Wycombe, UK) and the tubes stored at −70°C. Samples were thawed on ice before centrifugation, then ultracentrifuged at 64 000 g for 2 h at 4°C (Beckman Optima L90K Ultracentrifuge; Beckman Limited, High Wycombe, UK). Following centrifugation, the tubes were placed on ice and supernatants (faecal water) carefully removed and placed into sterile 7 ml Sterilin tubes. The faecal waters were then filtered through 0.2 µm syringe filter, dispensed into 0.5 ml aliquots and frozen at −70°C until analysis.

Determination of DNA damage by single cell gel electrophoresis (comet assay)

The comet assay (single cell gel electrophoresis) was used to microscopically detect DNA damage at the level of a single cell as described earlier$^{(33)}$. The assay was conducted on the baseline faecal water sample for all volunteers. The nine volunteers whose baseline samples caused high–medium levels of DNA damage to the HT29 cells and two additional low-level faecal waters were investigated for the remaining time-points. Briefly, after 48 h of cultivation in Dulbecco’s modified Eagle’s medium supplemented with 10% (w/v) fetal bovine serum and penicillin (50, 000 U/L) streptomycin (50 µg/ml) at 37°C in air with 5% CO$_2$, sub-confluent cultures of HT29 were harvested by trypsinisation and adjusted to a concentration of 2 × 106 cells/ml in serum-free Dulbecco’s modified Eagle’s medium. Duplicate tubes containing 100 µl of cell suspension and 100 µl of the respective faecal waters or PBS (negative controls) were incubated at 37°C for 30 min with constant gentle shaking. After incubation, one series of

Table 2. Primers used in the quantitative PCR to enumerate the microbial groups of interest

<table>
<thead>
<tr>
<th>Species</th>
<th>Primer name</th>
<th>Annealing temperature (°C)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopobium group</td>
<td>gAtop_F gAtop_R</td>
<td>58</td>
<td>Rinttilä et al.$^{(28)}$</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>cdlf_F2 cdlf_R2</td>
<td>60</td>
<td>Latinen et al.$^{(29)}$</td>
</tr>
<tr>
<td>Clostridium leptum subgroup (cluster IV)</td>
<td>sg_Clep_F sg_Clep_R3</td>
<td>62</td>
<td>Matsuki et al.$^{(27)}$</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>CPTAFW CPTARV</td>
<td>55</td>
<td>Tiihonen et al.$^{(28)}$</td>
</tr>
<tr>
<td>Clostridium clusters I and II</td>
<td>g_Cperf_F g_Cperf_R</td>
<td>55</td>
<td>Rinttilä et al.$^{(25)}$</td>
</tr>
<tr>
<td>Desulfovibrio intestinalis</td>
<td>apsA1F apsA1R</td>
<td>62</td>
<td>Tiihonen et al.$^{(28)}$</td>
</tr>
<tr>
<td>Roseburia spp.</td>
<td>Roseint_F gRose_R</td>
<td>56</td>
<td>Mäkivuokko et al.$^{(29)}$</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>NUC1_F NUC2</td>
<td>60</td>
<td>Brakstad et al.$^{(30)}$</td>
</tr>
</tbody>
</table>
tubes was treated with 75 μM-H₂O₂ as a genotoxic model agent for 5 min on ice. Samples were centrifuged at 280 g for 5 min at 4°C and washed once with PBS. Following this, three 50 μl aliquots of each sample were centrifuged again and the resulting cell pellets re-suspended in warm, low melting point agarose and further processed as described[33]. Cell numbers and viability of HT29 were assessed before and after incubation using Trypan Blue exclusion assay.

Cyclo-oxygenase gene expression

Human colon-derived carcinoma cells, Caco-2 (ATCC HB-37), were used to study the effects of faecal water samples on the COX gene expression of colonic epithelial cells. The Caco-2 cells were maintained at 37°C in a humidified air/5% CO₂ atmosphere in basal culture of Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Invitrogen), 2 mmol/l non-essential amino acids (Invitrogen), 10 μg/ml streptomycin (Invitrogen), 20 μg/ml penicillin (Invitrogen), 0.5 μg/ml amphotericin (Invitrogen). The cells were seeded as 6·4 × 10⁴ cells/cm² on twelve-well cell culture plates (Greiner Bio-One GmbH). On the second day following seeding, the medium was replaced with the serum- and antibiotic-free culture medium. On the third day of culture, the Caco-2 cells were treated with 0·5 % (w/v) faecal water samples prepared in the serum- and antibiotic-free culture medium. In addition to the medium-only control, 5 mmol/l sodium butyrate (Sigma-Aldrich, Chemie GmbH, Steinheim, Germany) and 100 mmol/l NaCl (J.T. Baker, Deventer, The Netherlands) were used as positive and negative controls, respectively. The cells were incubated at 37°C, were analysed with the relative quantification method(34) and the resulting cell pellets re-suspended in warm, low melting point agarose and further processed as described (33). Cell numbers within the Eubacterium rectale–C. coccoides group from baseline levels (P<0·05) as

Polydextrose measurements

The amounts of PDX excreted in the faeces were measured using the HPLC method as described previously(12).

Statistical analysis

The data from the crossover study were analysed with linear mixed-effects models in a repeated-measures manner assuming no carry-over effect, having a random effect for the subject accounting for repeated measures, and fixed effects for the order of treatments (first PDX, second placebo or vice versa) and for the treatment (placebo, PDX, washout or baseline), and finally having a baseline regression coefficient accounting for individual baseline differences between the subjects. Based on the residual analysis, some of the original variables were log-transformed. The linear model analyses were conducted with statistical programming language R (version 2.11.1; R-Core, Auckland, New Zealand) using the non-linear mixed-effects package (version 3.1-97; R-Core, Auckland, New Zealand).

Data for DGGE indices were analysed by using one-way ANOVA and paired Student’s t test using GraphPad Prism 5·0 (GraphPad Software, La Jolla, CA, USA).

Results

Overall, thirty-three participants entered into this crossover study (sixteen female, seventeen male), two dropped out (both male) – due to moving from the local area. Therefore, a total of thirty-one volunteers (sixteen female, fifteen male) aged 22–52 years (average age 33 years) with an average BMI of 24±1 (sd 2.8) kg/m² completed the study.

Faecal microbiota

A primary objective of the study was to assess the impact of PDX on the intestinal microbiota. 16S rRNA-based FISH probes were used to target predominantly significant groups of human faecal bacteria (Table 1). Bacterial numbers at the end of each treatment period – either 8 g/d PDX or 8 g/d placebo – were compared to samples obtained before the respective treatment, and the results between the two treatment groups were also compared. Average faecal bacterial numbers for the volunteers, as determined by FISH, and expressed as log₁₀ cells/g faeces ± standard deviations (n 31) are shown in Table 3. The FISH results for PDX supplementation showed significantly decreased levels of C. histolyticum group from baseline levels (P<0·05). PDX treatment was, furthermore, associated with a trend of reduced levels of C. histolyticum group (P=0·0525) as compared to the placebo treatment. Both PDX treatment and placebo were found to reduce the levels of lactobacilli/enterococci in relation to their respective baseline values (both P<0·001). In addition, the placebo increased the bacterial numbers within the Eubacterium rectale–C. coccoides group (P<0·01, in comparison to baseline); a trend of increased levels for this group was also observed after PDX treatment (P=0·0593). No other significant changes in bacterial population number determined by FISH were observed following the supplementations.

qPCR analyses were conducted to assess the effects of PDX on selected pathogenic and commensal bacterial groups and species (Table 4). Bacterial cell numbers of C. histolyticum...
Table 3. Bacteriology of faecal samples determined by fluorescence in situ hybridisation in the placebo-controlled, double-blind, crossover, human feeding study investigating the effects of polydextrose (PDX; 8 g/d), as compared to the placebo (8 g/d), on the human faecal microbiota of a healthy adult population†‡

(Mean cell numbers (log10) and standard deviations, n 31 volunteers)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Treatment</th>
<th>Baseline</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean cell</td>
<td>Mean cell</td>
<td>Mean cell</td>
<td>Mean cell</td>
</tr>
<tr>
<td></td>
<td>number (log10)</td>
<td>SD</td>
<td>number (log10)</td>
<td>SD</td>
</tr>
<tr>
<td>Total bacteria</td>
<td>10·91</td>
<td>0·42</td>
<td>10·89</td>
<td>0·30</td>
</tr>
<tr>
<td>Atopobium group</td>
<td>9·74</td>
<td>0·39</td>
<td>9·78</td>
<td>0·42</td>
</tr>
<tr>
<td>Bacteroides spp.</td>
<td>9·89</td>
<td>0·42</td>
<td>9·84</td>
<td>0·36</td>
</tr>
<tr>
<td>Blifidobacterium spp.</td>
<td>9·03</td>
<td>0·79</td>
<td>9·13</td>
<td>0·72</td>
</tr>
<tr>
<td>Eubacterium rectale</td>
<td>10·11</td>
<td>0·31</td>
<td>10·16</td>
<td>0·25</td>
</tr>
<tr>
<td>Clostridium coccoidei group</td>
<td>9·34</td>
<td>0·36</td>
<td>9·12†</td>
<td>0·36</td>
</tr>
<tr>
<td>Faecalibacterium prausnitzii</td>
<td>9·18</td>
<td>0·39</td>
<td>9·16***</td>
<td>0·42</td>
</tr>
<tr>
<td>Bacteroides spp.</td>
<td>9·03</td>
<td>0·79</td>
<td>9·13</td>
<td>0·72</td>
</tr>
<tr>
<td>Bifidobacterium spp.</td>
<td>9·89</td>
<td>0·42</td>
<td>9·84</td>
<td>0·36</td>
</tr>
<tr>
<td>Bacteroides spp.</td>
<td>9·03</td>
<td>0·79</td>
<td>9·13</td>
<td>0·72</td>
</tr>
<tr>
<td>Faecalibacterium prausnitzii</td>
<td>9·77</td>
<td>0·28</td>
<td>9·7</td>
<td>0·25</td>
</tr>
</tbody>
</table>

***Mean cell numbers were significantly different between PDX and placebo treatments (P<0.001).
Mean cell numbers were significantly different between (PDX baseline v. PDX treatment or placebo baseline v. placebo treatment): †P<0.05, ††P<0.01, †††P<0.001.
‡ The aforementioned treatments were consumed in either order, unknown to the investigator and the volunteer.

(clusters I and II) group increased after PDX treatment in comparison to baseline (P<0.01) and to placebo (P<0.001), which was opposite to the effect measured with FISH. However, the species-specific assay for *C. perfringens* led to no detection within the samples. Faecal counts of *R. intestinalis* were significantly higher after PDX intervention than after placebo treatment (P<0.05), and similarly, numbers of the *C. leptum* (cluster IV) were shown to increase with PDX treatment in comparison to baseline values (P<0.001), as well as compared to placebo treatment (P<0.001). *Atopobium* numbers remained unchanged following both the PDX and placebo treatments, as measured by both qPCR and FISH.

D. intestinalis was detected in the faecal samples of twenty-one subjects, of which eleven subjects had *D. intestinalis* in all their samples. PDX treatment did not seem to affect *D. intestinalis* numbers.

S. aureus was not detected in faecal samples collected from fourteen volunteers, while it was detected in twelve subjects at only one time point, and in one subject at all time points. *S. aureus* was detected in five samples at the baseline; in five samples at PDX treatment, and also in five at PDX washout, two subjects had positive samples for all three of their PDX samples (baseline, treatment and washout); thus, no effects were seen due to PDX supplementation. In the placebo group, there were six positive samples at baseline, four after treatment and seven after the washout period.

The *C. difficile* assay showed only one positive sample, which was in the first washout. Hence, no analyses could be performed on these data.

PCR-denaturing gradient gel electrophoresis and cluster analysis

In order to ascertain if PDX and/or placebo had an influence on the diversity of faecal microbiota, PCR-DGGE cluster analysis
was conducted. Dendrograms were constructed from DGGE profiles using Dice and unweighted pair-group method using arithmetic average. The values of diversity indices calculated from DGGE profiles are presented in Table 5. The DGGE data indices show that there were significant differences in the indices of the baseline profiles as compared to the placebo treatment ($P<0.05$) and the placebo treatment vs. the PDX treatment ($P=0.014$ – Simpson’s index).

SCFA concentrations

Table 6 shows the concentrations of faecal SCFA and branched chain fatty acids as determined by GC. No significant changes in faecal concentrations were observed after PDX or placebo treatment.

Analysis of bowel habits and gastrointestinal symptoms

From volunteer diaries, both the PDX and the placebo products were well tolerated (Table 7). However, less abdominal discomfort (on a scale none, mild, moderate to severe) and pain overall were recorded by the subjects while PDX was consumed (abdominal discomfort, none

$P<0.01$) during PDX consumption compared to placebo. Additionally, there was a trend for reduced snacking during the PDX period ($P=0.072$; Table 8).

Faecal IgA and PGE$_2$ levels

Following PDX treatment, the level of total faecal IgA was found to be lower (174 (sd 46) μg/g wet weight faeces) than after the placebo treatment (256 (sd 50) μg/g wet weight faeces; $P<0.05$). PGE$_2$ was not found to be different after PDX treatment (844 (sd 208) pg/g wet weight faeces) compared to placebo treatment (1116 (sd 315) pg/g wet weight faeces).

Determination of DNA damage by single cell gel electrophoresis (comet assay)

DNA-damaging potential towards the colonic epithelium exerted by the faecal water was analysed to assess the effect of the PDX and placebo treatment on exposure to genotoxins using the comet assay.

Genotoxicity data showed that the faecal water following PDX treatment led to significantly less genotoxic damage to HT29 DNA as compared to following the placebo treatment ($P<0.01$). No differences were observed compared to baseline values (Fig. 1).

Cyclo-oxygenase gene expression

Exposure of Caco-2 cells to faecal water collected after PDX treatment induced a 1·80 (SD 0·97)‐fold increase in the relative mRNA levels in COX-1 and a 1·32 (SD 52)‐fold increase in COX-2 expression in comparison to the reference medium (1·0). Following exposure to faecal water after placebo treatment, COX-1 expression increased 2·22 (SD 1·86)‐fold and COX-2 expression increased 1·43 (SD 0·50)‐fold. No statistically significant differences were seen between the treatments. Also, the COX-1:COX-2 ratio was not significantly altered between the treatments; 2·54 (SD 5·92) and 2·31 (SD 4·39) after PDX and placebo, respectively.

Table 5. Diversity index values calculated from denaturing gel gradient electrophoresis profiles during placebo-controlled, double-blind, crossover, human feeding study investigating the effects of polydextrose (PDX; 8 g/d), as compared to the placebo (8 g/d), on the human faecal microbiota of a healthy adult population*

<table>
<thead>
<tr>
<th></th>
<th>Simpson’s</th>
<th></th>
<th>Shannon</th>
<th></th>
<th>Fisher’s α</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>log$_{10}$</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Baseline</td>
<td>0·059†</td>
<td>0·03</td>
<td>1·349†</td>
<td>0·21</td>
<td>8·066†</td>
<td>3·72</td>
</tr>
<tr>
<td>PDX</td>
<td>0·054†</td>
<td>0·02</td>
<td>1·372†</td>
<td>0·2</td>
<td>8·191†</td>
<td>4·11</td>
</tr>
<tr>
<td>Placebo</td>
<td>0·039‡§</td>
<td>0·02</td>
<td>1·493‡§</td>
<td>0·18</td>
<td>10·091‡§</td>
<td>4·28</td>
</tr>
</tbody>
</table>

* The aforementioned treatments were consumed in either order, unknown to the investigator and the volunteer.

† Mean values were significantly different from those of placebo ($P<0.05$).
‡ Mean values were significantly different from those of baseline ($P<0.05$).
§ Mean values were significantly different from those of PDX ($P<0.05$).

Table 6. Volatile fatty acid profiles (mmol/g faeces) determined by GC from placebo-controlled, double-blind, crossover, human feeding study investigating the effects of polydextrose (PDX), as compared to the placebo (8 g/d), on the human faecal microbiota of a healthy adult population*

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Treatment</th>
<th>Baseline</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>29·5</td>
<td>14·6</td>
<td>23·9</td>
<td>15·3</td>
</tr>
<tr>
<td>Propionic acid</td>
<td>10·1</td>
<td>4·4</td>
<td>9·9</td>
<td>5·2</td>
</tr>
<tr>
<td>Iso-butyric acid</td>
<td>1·2</td>
<td>0·8</td>
<td>0·9</td>
<td>0·4</td>
</tr>
<tr>
<td>n-Butyric acid</td>
<td>9·3</td>
<td>7·1</td>
<td>6·5</td>
<td>5·2</td>
</tr>
<tr>
<td>Iso-valeric acid</td>
<td>1·7</td>
<td>1·4</td>
<td>1·3</td>
<td>0·6</td>
</tr>
<tr>
<td>n-Caprylic acid</td>
<td>1·0</td>
<td>0·9</td>
<td>0·9</td>
<td>1·0</td>
</tr>
</tbody>
</table>

* The aforementioned treatments were consumed in either order, unknown to the investigator and the volunteer.
Faecal polydextrose

Faecal PDX excretion was found to be significantly higher after the PDX treatment compared to the placebo treatment and baseline values (8·05 (SD 4·47) v. 0·25 (SD 0·96), P<0·0001).

Discussion

To date, few studies have been conducted investigating the prebiotic effects of PDX in human intervention studies. The present crossover study aimed to assess the effects of such supplementation in a European-based population.

Increased faecal PDX concentrations were detected after PDX intervention, thus demonstrating that PDX was not completely fermented by the colonic microbes and some PDX reached the distal part of the large intestine. Assuming a faecal output of approximately 100 g(22), 0·8 g (or 10 %) of the consumed PDX (8 g) was excreted in the faeces. A slow but constant fermentation of PDX has been demonstrated previously(35,36), and this feature could provide benefits for the health of the distal colon, as a substrate for the saccharolytic type fermentation is constantly available. Increased proteolytic fermentation in the distal part of the colon can contribute towards an increased risk of genotoxicity (35); thus, faecalibacterium prausnitzii microbes, such as Faecalibacterium prausnitzii, enterococci were measured with FISH, but the levels of C. histolyticum to modulations of the colonic microbiota. Decreased numbers of the candidate products, whereas in the future it may contain a range of environmental (dietary) genotoxins, are key factors in the early stages of carcinogenesis initiation. Thus, this study provides evidence that PDX may aid in the reduction of such genotoxic events. The cytotoxic effects of faecal water are considered to reflect the ability of these genotoxins to damage the colonic epithelium, resulting in a hyperproliferative response characteristic of early stages of tumour promotion in the colon(38). The COX-1 gene is expressed constitutively in the gastrointestinal tract, whereas the COX-2 gene is over-expressed in conditions such as gastrointestinal inflammation and cancerous diseases(39). No effects of the PDX faecal water on COX gene expression in Caco-2 colon cancer cells were demonstrated.

Analysis of selected members of the intestinal microbiota during this double-blind, placebo-controlled, randomised crossover study demonstrated that PDX fermentation leads to modulations of the colonic microbiota. Decreased numbers of faecal C. bistolyticum (clusters I and II) and lactobacilli/enterococci were measured with FISH, but the levels of Bifidobacterium, Bacteroides and Atopobium genera remained unchanged. According to qPCR analysis, however, PDX increased numbers of the Clostridium clusters I, II and IV and R. intestinalis. C. leptum cluster IV and E. rectale–C. coccoides group which includes important butyrate-producing microbes, such as Faecalibacterium prausnitzii and R. intestinais, and faecal levels of these microbes have been correlated to faecal butyrate concentrations(38,40). However, in the present study, no concomitant change in faecal butyrate levels, or in any other SCFA, was observed. The major part of research on prebiotic effects has, to date, mostly focused on the bifidogenic (and lactobacilli-increasing) properties of the candidate products, whereas in the future it may be worth investigating the impact of dietary intervention.

Table 7. Volunteer response diary data; changes in volunteer responses during the feeding study (Mean values and standard deviations)

<table>
<thead>
<tr>
<th>Stools/day number</th>
<th>Consistency</th>
<th>Abdominal discomfort</th>
<th>Bloating</th>
<th>Flatulence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hard</td>
<td>Formed</td>
<td>Soft</td>
<td>None</td>
</tr>
<tr>
<td>Placebo Mean</td>
<td>1·5</td>
<td>12·7</td>
<td>57·2</td>
<td>30·1</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0·4</td>
<td>19·5</td>
<td>21·5</td>
</tr>
<tr>
<td>PDX Mean</td>
<td>1·3</td>
<td>7·8</td>
<td>69·7</td>
<td>22·5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0·4</td>
<td>12·4</td>
<td>23·0</td>
</tr>
</tbody>
</table>

Table 8. Volunteer response diary data; changes in volunteer responses during the feeding study* (Mean values and standard deviations)

<table>
<thead>
<tr>
<th></th>
<th>Hungry</th>
<th>Full</th>
<th>Desire to eat</th>
<th>Snack appetite</th>
<th>Contented</th>
<th>Irritability</th>
<th>Sleepy</th>
<th>Alert</th>
<th>Ability to concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Placebo</td>
<td>4·75</td>
<td>2·98</td>
<td>4·67</td>
<td>2·50</td>
<td>4·71</td>
<td>3·18</td>
<td>5·17</td>
<td>3·40</td>
<td>6·58</td>
</tr>
<tr>
<td>Polydextrose</td>
<td>4·09</td>
<td>2·57</td>
<td>5·17</td>
<td>2·72</td>
<td>3·71</td>
<td>2·58</td>
<td>3·57</td>
<td>2·59</td>
<td>6·73</td>
</tr>
</tbody>
</table>

*On a scale from 0 to 10; 0 being not at all; 10 being very.
et al. to the previously published study of Jie et al. to encourage an outcome of PDX treatment. The FISH analysis may be more accurate.

Clostridium detectable numbers but instead increases other members to effectively increase this potentially pathogenic microbe to specific qPCR, indicating that PDX treatment does not was not detected in the samples (analysed by species-possesses thirteen copies – both species are targeted by primers for the Clostridium I and II qPCR assay. Thus, with the present probe, the FISH analysis may be more accurate. C. perfringens was not detected in the samples (analysed by species-specific qPCR), indicating that PDX treatment does not effectively increase this potentially pathogenic microbe to detectable numbers but instead increases other members of the Clostridium clusters I and II, therefore demonstrating an encouraging outcome of PDX treatment.

Comparison of the microbial changes observed in this study to the previously published study of Jie et al. has shown some differences in the effects; they observed that PDX led to dose-dependent increases in bifidobacteria and lactobacilli and decreased three Bacteroides species. However, it should be considered that the research of Jie et al. was performed in a parallel study design and used the less quantifiably accurate plating techniques. In the present study, the numbers of Bifidobacterium and Bacteroides remained unchanged, while those of Lactobacillus–Enterococcus decreased. This reduction was modest, but statistically significant. The biological relevance, however, would need to be determined. These differences could derive from the variation of responses between the two different study populations (Chinese vs. European), and the different methods used in enumeration of the microbes. An inverse correlation between the initial levels of bifidobacteria and the magnitude of prebiotic bifidogenicity has been demonstrated for some prebiotic substrates, such as fructo-oligosaccharides and galacto-oligosaccharides, where high initial levels of bifidobacteria tended to remain unchanged after prebiotic intervention. In this study, the baseline levels of bifidobacteria, as measured using FISH-technique, were above log_{10} 9-0 cells/g and no effects on bifidobacteria were seen. Previously, fermentation of PDX by colonic bacteria has been shown to increase the production of SCFAs in in vitro models in rats, pigs, and in human subjects. In particular, the levels of butyrate and acetate have been highly elevated in the previous studies due to PDX fermentation. Such changes were, however, not observed in the present study.

Faecal immune markers IgA and PGE_{2} were also measured and decreased levels of IgA were demonstrated after PDX consumption. In previous studies, increases in the intestinal immune parameters such as IgA and PGE_{2} levels have been measured after prebiotic and probiotic consumption, but also unchanged and decreased levels have been reported. It has been reported that many factors including stress and exercise can impact IgA levels; therefore discrepancies in changes may be a result of this.

In the present study, the placebo, maltodextrin, was seen to have an effect on the diversity of the faecal microbiota, leading to increased diversity – the same effect was not observed for PDX. The increase in diversity was relatively small. Little information is available on increased microbial diversity; however, the research of Scanlan et al. associated increased diversity with colonic polyps and cancer formation. However, the absence of a change in genotoxicity in this incidence was not the case. Further knowledge of the bacterial groups involved in this increased diversity would help to clarify these findings.

The effects of PDX consumption on the quality of life and bowel habits of the subjects were also assessed during the feeding trial. PDX did not influence the measured aspects of quality of life (hunger, motivation, mood and mental alertness), although a trend towards reduced snacking was observed. This agrees with previous findings in another human feeding study, where PDX was shown to increase post-prandial satiety. However, the effects on bowel habits were more profound, as less abdominal discomfort (none on a scale none, mild, moderate, severe) was recorded by the subjects while the PDX was consumed. There was also a trend towards less hard and more formed stools during PDX consumption.
Previously, an in vitro study showed that PDX fermentation led to less gas production compared to the prebiotics tested (fructo-oligosaccharides, galacto-oligosaccharides and inulin). Furthermore, the members of Clostridium cluster IV are Ruminococcus, Eubacterium and Faecalibacterium that are butyrate-producing commensals of which, in particular the latter has been suggested to be beneficial. Minimal gas production may explain the sensation of less abdominal pain by subjects during the feeding trial. Improved stool consistency (together with shortened oro-faecal transit time) has also been previously demonstrated in constipated subjects, and indicates the fibre-like properties of PDX.

PDX led to a significant decline in faecal water genotoxicity of volunteers following consumption. This shows the potential of PDX for reducing the risk factors that may be associated with colorectal cancer. This change coincides with increases in the numbers of a bacterial population that includes known butyrate producers. However, further investigation would be required to determine the activities of genes involved in the butyrate formation.

Acknowledgements

Brita Mäki and Jaana Larsson-Leskela, Danisco Health and Nutrition, are thanked for their skilful technical assistance in the analysis of the faecal samples. Dr Janne Nikkilä Esa Alhoniemi are acknowledged for conducting the statistical analyses. This work was funded by Danisco, who are market-biotics: current status and new definition. IFIS Bull 71, 1834–1845.

