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ABSTRACT. In the current ice-sheet models calving of ice shelves is based on phenomenological
approaches. To obtain physics-based calving criteria, a viscoelastic Maxwell model is required account-
ing for short-term elastic and long-term viscous deformation. On timescales of months to years between
calving events, as well as on long timescales with several subsequent iceberg break-offs, deformations
are no longer small and linearized strain measures cannot be used. We present a finite deformation
framework of viscoelasticity and extend this model by a nonlinear Glen-type viscosity. A finite
element implementation is used to compute stress and strain states in the vicinity of the ice-shelf
calving front. Stress and strain maxima of small (linearized strain measure) and finite strain formulations
differ by ∼ 5% after 1 and by ∼ 30% after 10 years, respectively. A finite deformation formulation
reaches a critical stress or strain faster, thus calving rates will be higher, despite the fact that the
exact critical values are not known. Nonlinear viscosity of Glen-type leads to higher stress values. The
Maxwell material model formulation for finite deformations presented here can also be applied to
other glaciological problems, for example, tidal forcing at grounding lines or closure of englacial and
subglacial melt channels.
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1. INTRODUCTION
Projections of the future evolution of ice sheets such as the
Antarctic ice sheet and understanding their evolution is a
central subject of ongoing research. One insufficiently repre-
sented component in ice-sheet models is the process of
calving, i.e. mass loss at the ice front by means of fracture for-
mation leading to the detachments of icebergs. The horizon-
tal extent of ice sheets depends on the evolution of the
calving fronts, either at tidewater glaciers or ice shelves. In
the present work, we will only consider the latter, which
covers 75% of the Antarctic coastline (Rignot and others,
2013). While evolution equations can be included in numer-
ical models with techniques such as level set methods
(Bondzio and others, 2016), the main problem remains
unsolved, namely to determine a physics-based calving law
that results in a proper calving rate. Thus far, iceberg drift
and melting can be modeled with a high level of accuracy
(Rackow and others, 2017), but the production of icebergs
still follows empirical or even heuristic approaches. Given
that deep water formation in the ocean and climate models
is highly sensitive to variations of surface freshwater fluxes
(e.g Martin and Adcroft, 2010), a physics-based calving law
is essential to close the feedback between ocean and cryo-
sphere for global climate projections and studies of potential
sea-level rise.

In the current ice-sheet models, calving processes are
either replaced by a fixed ice front or parametrized using
phenomenological (Alley and others, 2008; Amundson and
Truffer, 2010; Albrecht and others, 2011) or even heuristic

approaches (Bassis, 2011), cf. the implementations in, for
example, the Ice Sheet System Model (ISSM; Larour and
others, 2012), the Parallel Ice Sheet Model (PISM; Bueler
and others, 2007), the SImulation COde for POLythermal
Ice Sheets (SICOPOLIS; Greve and others, 2011) and
Elmer/Ice (Seddik and others, 2012). Based on observations,
Benn and others (2007) classified different calving mechan-
isms at tidewater glaciers according to individual causes,
for example a hydrofracture mechanism of crevasse propaga-
tion. The hydrofracture mechanism has been used by Pollard
and others (2015) as a parameterization for ice-cliff failure.
Todd and others (2018) extended this approach to three
dimensions.

For all approaches, it is necessary to compare available
observations of calving to model results that realistically
reproduce physical processes in the ice. To obtain a
physics-based understanding of calving processes, the
short-term elastic response of ice must be considered for
various situations such as the changing load condition at
the newly formed ice front right after a calving event.
Hence, the relevant material characteristics for calving are
the short-term elastic and the long-term viscous (flow of
ice) behavior leading to a viscoelastic fluid. These material
requirements are contained in the description of a Maxwell
material (e.g. Christmann, 2017). Other examples in which
viscoelasticity is essential are the response of glaciers to
tidal forcing (Reeh and others, 2003; Gudmundsson, 2011;
Rosier and others, 2014) or the potential closing of englacial
and subglacial channels with decreasing meltwater supply at
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the end of the melt season. Furthermore, MacAyeal and
others (2015) analyzed the filling and draining of supraglacial
lakes employing a viscoelastic material model.

Different types of iceberg formation can be defined. These
include for instance fragmentation processes in which com-
plete or partial disintegration of ice shelves has been
observed at several locations (e.g. Vaughan and others,
2012; Liu and others, 2015). However, these break-up
events are widely different to the regular calving of icebergs.
Driven by the viscous flow of ice, ice shelves expand over
several years to decades during which lateral rifts propagate
episodically until an iceberg calves off (Hogg and
Gudmundsson, 2017). In this case, large icebergs in the
order of 10 km2 to 1 000 km2 or even giant icebergs with
areas above 1 000 km2 are formed. Occurrence and distribu-
tion of rifts thus (at least to a large extent) control the forma-
tion of large and giant icebergs. Both fracture fragmentation
and the calving that is characterized by the propagation of
pre-existing horizontal or vertical rifts (Larour and others,
2004a; 2004b; Plate, 2015) are important processes but
neither is addressed in the present study.

This study focuses on a second type of calving that occurs
for instance at ice shelves with homogeneous, crevasse-free
surfaces. Wesche and others (2013) classified the surface
types of calving fronts in Antarctica. Overall 7.4% of the ice
shelves have no surface structures in the vicinity of the
calving front, but calving events still happen at these ice
shelves. In time intervals between several months to few
years, small icebergs in the order of 100 m2 to several km2

detach. This process is called small-scale calving in the
present work. Until now, physics-based descriptions of
these rather continuous calving processes are missing in ice-
sheet models. To consider such a calving behavior, other
causes than pre-existing rifts must trigger these events.
Furthermore, small-scale calvingmay also happen in combin-
ation with the formation of large tabular icebergs as it is also
present at ice shelves containing rifts and crevasses. This com-
bination has been observed for example at Pine Island and
Thwaites glaciers (Liu and others, 2015) and is of importance
for future studies. However, we focus on the investigation of
small-scale calving and its mechanisms solely.

A crucial point for the modeling of small-scale calving is to
consider the influence of atmospheric and water pressure at
the ice front. In this context, several theoretical models tried
to explain small iceberg calving (e.g. Reeh, 1968; Reddy and
others, 1980; Fastook and Schmidt, 1982; Hughes, 1992).
However, no physics-based description was developed to
explain the observations of calving at crevasse-free ice
tongues. Due to the boundary conditions at the ice front, a
bending moment appears which plays a critical role for
calving (Todd and others, 2018). Bending leads to a deflec-
tion of the ice shelf near the terminus and the buoyancy equi-
librium is not fulfilled close to the ice front. This boundary
disturbance results in a bell-shaped stress distribution
(Christmann and others, 2016b). The maximum tensile
stress, which may cause calving events, is found at the
upper surface. At tidewater glaciers calving is considerably
different: bending at the grounding line enforces the propaga-
tion of basal crevasses in the upward direction leading to
calving (Benn and others, 2017). This does not happen at
the position of maximum tensile stress. However, in the
case of small-scale calving at Antarctic ice shelves, the influ-
ence of the grounding line far away from the calving front is
insignificant.

Failure concepts such as the hypothesis of critical stress
or strain values as calving criteria are discussed in this
work. Well established in the literature is a critical stress of
σcrit= 330 kPa for consolidated ice (suggested in Pralong,
2005, on the basis of Hayhurst, 1972), while other values
ranging from 90 kPa to 1 MPa have also been proposed
(Vaughan, 1993; Vaughan and others, 2012). In contrast to
the critical stress, neither a critical strain has ever been
observed for polycrystalline ice nor an analogy with metals
has been discussed as for the derivation of critical stress by
Hayhurst (1972). This does not mean that such a value
cannot exist, but further research on this topic is required.
In this study, instantaneous cracking through the whole ice
thickness is assumed once the critical criterion is reached.
This assumption is reasonable as the bending moment of
the eccentric water pressure at the ice front promotes
calving if a crack is initiated.

In the present work, stress and strain states are examined
to understand the essential factors influencing small-scale
calving. No explicit calving rate is derived; instead, the
impact of two viscoelastic Maxwell material concepts using
infinitesimal (linearized strain measure) and finite strain
theory are investigated. In the following, we first sketch the
theoretical basis of the mathematical models followed by
the introduction of the numerical model and the presentation
of its usefulness. Subsequently, we discuss the applicability
of both approaches to small-scale calving as well as the limi-
tation of the viscoelastic model assuming small strains. To
assess the sensitivity to uncertainties in the material para-
meters or the geometry, parameter studies are performed.
Finally, the constant viscosity in the viscoelastic model for
finite strains is replaced by the nonlinear Glen-type viscosity
and the effect is assessed.

2. CHALLENGES OF VISCOELASTIC MATERIAL
MODELING
In constitutive equations of a viscoelastic material model, the
stress tensor is not only related to the strain-rate tensor as in
the case of a viscous fluid. Additionally, the temporal deriva-
tive of the stress tensor is included in the viscoelastic
Maxwell model. In order to account not only for stress but
also for strain states as possible causes for calving, the
unknowns in this work are the displacements. The strain
results are mostly disregarded in purely viscous material
descriptions of current ice-sheet models since these models
solve for velocities.

For small strain values, it is sufficient to use a simplified,
linearized strain description based on infinitesimal strain
theory. This approach is called throughout this work the
small deformation model. However, the strain values in ice
shelves caused by the horizontal spreading unavoidably
increase with time (Christmann and others, 2016a). After
some time, the strain values do not fulfill the smallness
requirement anymore although strain rates may remain
small. Consequently, a material model applicable to large
and finite strain values is needed. This requires changes in
the kinematics and the choice of the configuration. This
paper aims to consider the effect of this material approach
– hereafter referred to the finite deformation model – on
quantities significant for calving. A comparison of numerical
results is carried out to show the limitation and shortcomings
of the small deformation model.
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3. THEORY
Polycrystalline ice reacts in two ways to an external load. An
instantaneous elastic deformation occurs and is accompan-
ied by a continuous creep (viscous) deformation. This mater-
ial behavior can be modeled by a viscoelastic material
description of Maxwell type (superposition of elastic and
viscous strain). We focus attention on this material law in
the present study. It is investigated whether the simplifying
assumption of a small deformation model is sufficient to
describe calving processes accurately, or whether a more
sophisticated finite deformation model is required. As the
geometric linearization is accurate only for small deforma-
tions, internal and external loads should cause only a
limited motion of the considered body.

For the small and the finite deformation approach, the
quasi-static local form of the momentum balance reads

div σ þ f ¼ 0 (1)

with the Cauchy stress tensor σ and the volume force f.
Gravity is the only external force included in the ice shelf
model. Thus, the volume force is given by f=−(ρice g)ez,
where ρice is the ice density, g the acceleration due to
gravity and ez= (0, 0, 1)T the upward pointing unit vector.
In the following, all equations are first described for the
small deformation model before these equations are then
extended to the finite deformations framework.

3.1. Small deformation model
The kinematic equation relates the deformation, given by the
displacement vector u= (u, v, w)T, to the strains. In the
small deformation model the linearized strain tensor ɛ is
given by the symmetric part of the displacement gradient

ε ¼ 1
2

∇uþ∇Tu
� �

: (2)

Equations (1) and (2) are independent of the material under
consideration. To close the system of equations a material
law is required that relates the kinematic quantities, i.e.
strains, to the dynamic quantities, i.e. stress. Material models
result frommathematicaldescription thatexpress thecharacter-
istic features of a real material in an idealized manner. The
material properties are often defined based on an additive
decomposition of the stress and strain tensors into a volumetric
and a deviatoric part. Here the deviatoric part is denoted
by ( · )D= ( · )− 1/3tr( · )I with the trace operator tr(·) and the
second order identity tensor I. In fluid dynamics the thermo-
dynamic pressure p is usually introduced as an additional
unknown. Thus the stress is given by σ=−pI+ σD. The pres-
sure p is determined by an incompressibility constraint, while
σD is given by amaterial law involving viscosity. The extension
of such a viscous flow model to viscoelasticity in order to
capture the short-term elastic response of ice is not trivial. In
crystalline materials, it is common to assume that the volumet-
ric response is entirely elastic and reversible. Following for
example Darby (1976) an elastic isometric/hydrostatic stress
is assumed by

σ ¼ λþ 2
3
μ

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼K

trðεÞI þ σD (3)

with the two Lamé constants λ= Eν/[(1+ ν)(1− 2ν)] and
μ= E/[2(1+ ν)], expressed by Young’s modulus E and

Poisson’s ratio ν of an isotropic material. Note that in Eqn. (3)
the isometric/hydrostatic stress can be interpreted as a constitu-
tive assumption for the thermodynamic pressure p in laminar
flow models. For discussion on this in the small deformation
context see Christmann and others (2016b) and for the finite
deformation framework Christmann (2017). The bulk modulus
K describes the resistance of the material against uniform com-
pression. In crystalline materials it is frequently assumed that
the volume deformation is linear elastic and not influenced
by the deviatoric deformation.

The rate-dependent behavior is introduced only via the
deviatoric stress. For a viscoelastic Maxwell material
(Fig. 1), the deviatoric stresses in the elastic and viscous ele-
ments are equal to the total deviatoric stress σD. The consti-
tutive relation including the viscosity η is given by

σD ¼ 2η_εDV ¼ 2μεDe ; (4)

where viscous or elastic quantities are indicated by ð�Þv or ð�Þe
and the time derivative d(·)/dt is denoted by the superim-
posed dot. To determine the deviatoric stress either the
viscous strain rate or the elastic strain is needed. Using the
additive decomposition of the deviatoric strain tensor

εD ¼ εDv þ εDe (5)

into elastic and viscous contribution renders the evolution
equation for the viscous deviatoric strain

η_εDv ¼ μ εD � εDv
� �

: (6)

The viscous strain is used as an additional unknown, a so-
called internal variable. In general, internal variables charac-
terize aspects of the internal structure of materials that are
often correlated to dissipative effects. A discussion of internal
variables in a thermodynamic context is given for example,
in Coleman and Noll (1961) or Coleman and
Gurtin (1967). The evolution of internal variables captures
the history of deformation. In contrast to external variables,
which can be controlled by the boundary conditions, internal
variables are hidden to an external observer. To solve
Eqns. (4) and (6) is equivalent to solving the well-known dif-
ferential equation of the Maxwell model

σD þ η

μ
_σD ¼ 2η_εD: (7)

More details on rheological models considering viscoelasti-
city are given in several textbooks (e.g. Flügge, 1967).

3.2. Finite deformation model
This section provides the basic equations for a finite viscoelas-
ticMaxwell model. For the sake of brevitywe restrict attention
to the main concepts, more details can be found in many

Fig. 1. One-dimensional rheological model of the Maxwell material
with the elasticity relation and the flow rule of this fundamental
viscoelastic material model.

214 Christmann and others: On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves

https://doi.org/10.1017/jog.2018.107 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2018.107


textbooks on nonlinear continuum mechanics, for example,
Holzapfel (2001). Different formulations of evolution equa-
tions for viscoelastic materials in the finite strain context are
possible. We follow the approach presented in Haupt (2000).

A distinction between different configurations is necessary
to consider finite deformations. The reference configuration
κ0 is defined by all positions X of material points in an initially
undeformed body. The current configuration κt is specified
by a unique deformation mapping φ that relates the position
X of material points to positions x of spatial points depending
on the external load until time t. Through the displacement
field u= x− X the particle position X in the reference config-
uration is related to its position x in the current configuration
(Fig. 2, left). The differential equations for finite viscoelasticity
can be formulated with respect to the reference or the current
configuration. Here we focus on a formulation with respect to
the reference configuration, which is frequently applied in
solid mechanics.

The deformation gradient F characterizes the material gra-
dient of motion

FðX; tÞ ¼ ∂x
∂X

¼ ∂u
∂X

þ I: (8)

However, the deformation gradient F also includes rigid body
motions composed of translations and rigid body rotations.
These motions preserve the distance between two points of
a continuum and induce no strains. Thus the Green-
Lagrange strain tensor

E ¼ 1
2
C � Ið Þ (9)

is defined as a reasonable strain measure in the reference
configuration with the right Cauchy-Green tensor given by

C ¼ FTF : (10)

Accordingly, the strain measure in the current configuration
is the Euler-Almansi strain tensor

e ¼ 1
2

I � b�1
� �

(11)

with the left Cauchy-Green tensor defined by

b ¼ FFT : (12)

For rigid body motions, the deformation gradient F does not
vanish, and hence, it is not a suitable strain measure. In con-
trast, the Green-Lagrange E and the Euler-Almansi e strain
tensors are zero for rigid body motions (translation and rota-
tion). Note that the infinitesimal strain tensor ɛ is also not
applicable, as it is non-zero for finite rigid body rotations.

The quasi-static momentum balance in the reference con-
figuration is given by

Div Pþ f0 ¼ 0 (13)

where Div ( · ) is the divergence with respect to the refer-
ence configuration. The equation for the volume force
f0=−(Jρiceg)ez contains the Jacobian determinant J ¼ detðFÞ
due to the transformation rule for volume elements dv= J dV
(Fig. 2, left). The first Piola-Kirchhoff stress tensor P= JσF−T

includes the transposed inverse of the deformation gradient
F−T= (F−1)T. The relation between P and the Cauchy

stress tensor σ is obtained based on the vector of stress
resultant force df= σn da= PN dA and Nanson’s formula
JF−TN dA= n da. Nanson’s formula provides the relation of
infinitesimal area elements in the current and the reference
configuration (Fig. 2, left) with the unit normal vectors n
(current configuration) and N (reference configuration).

The formulation for finite viscoelasticity uses the concep-
tual multiplicative decomposition of the deformation
gradient F (Lee, 1969; Simo and Hughes, 2000) into rate-
independent (elastic) and rate-dependent (viscous) parts

F ¼ FeFv (14)

to represent thematerial behavior (Fig. 2, right). Since the strain
cannot beadditivelydecomposed in a purely elastic andpurely
viscous part either in the reference or in the current configur-
ation, the intermediate configuration κv is considered. All
essential equations are formulated in the intermediate
configuration κv. As a motivation the additive decomposition
of the strain tensor Γ in the intermediate configuration reads

Γ ¼ F�T
v EF�1

v ¼ 1
2
F�T
v ðFTF � IÞF�1

v

¼ 1
2

FT
eFe � F�T

v F�1
v

� � ¼ Γe þ Γv

(15)

(cf. the small deformation model). The elastic and viscous
strain tensor are given by Γe ¼ 1=2ðFT

eFe � IÞ and
Γv ¼ 1=2ðI � F�T

v F�1
v Þ, respectively. Note that F�T

v ð�ÞF�1
v

describes the push-forward operation of strain tensors from
the reference to the intermediate configuration.

In a viscoelastic material the stress tensor Σ of the inter-
mediate configuration is assumed to depend on the rate-inde-
pendent part of the deformation gradient

Σ ¼ f ðFeÞ: (16)

A generalization of Hooke’s law is given by

Σ ¼ E Γe (17)

with the constant forth order elasticity tensor E. For an iso-
tropic material this relation simplifies to

Σ ¼ λtr Γeð ÞI þ 2μΓe: (18)

This constitutive equation is also addressed as Saint Venant-
Kirchhoff material. Based on the additive decomposition of
the strain tensor, Eqn. (18) can be expressed by the viscous
strain tensor Γv via

Σ ¼ λtr Γ� Γvð ÞI þ 2μðΓ� ΓvÞ: (19)

Analogous to the small strain formulation, an incompressible
viscous flow is assumed which leads to a trace-free viscous
strain rate. In particular, suitable initial conditions lead to
tr Γvð Þ ¼ 0 (Christmann, 2017). Hence, Eqn. (19) results in

Σ ¼ λþ 2
3
μ

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼K

tr Γð ÞI þ 2μ Γ� Γv � 1
3
tr Γ�Γvð ÞI

	 


¼ λþ 2
3
μ

� �
tr Γð ÞI|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼Σvol

þ 2μ Γe � 1
3
tr Γeð ÞI

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ΣD

(20)
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The structure of Eqn. (20) resembles the stress/strain relation
of the small deformation model (Eqns. 3, 4). The decompos-
ition of the stress tensor into a volumetric Σvol and deviatoric
part ΣD is recovered. The volumetric part of the stress tensor
is expressed by the trace of the strain tensor. This trace is
related to the relative change in volume ΔV/V in the case of
small strains. Consequently, this ansatz is valid for finite
deformations but moderate (small) strains.

Another possible finite deformation formulation is known
as the neo-Hookean formulation. The investigation of calving
at ice shelves using neo-Hookean material leads to identical
results as the Saint Venant-Kirchhoff material (Christmann,
2017). Hence, the Saint Venant-Kirchhoff material model is
used in the following.

In order to derive the evolution equation of the internal
variable Cv ¼ FT

vFv, the strain-rate tensor of the intermediate
configuration is needed. The push-forward operation of the
rate of the Green-Lagrange strain tensor _E to the intermediate

configuration renders the objective lower Oldroyd rate Γ
Δ
as a

Lie time derivative

Γ
Δ ¼ F�T

v
_EF�1

v ¼ F�T
v

_
FT
vΓFv

� �
F�1
v ¼ _Γþ ITvΓþ ΓIv (21)

with the viscous deformation rate Iv ¼ _FvF�1
v . Lie time deri-

vatives are always objective rates of a spatial tensor.
However, the choice of an objective strain rate is not
unique. In Haupt (2000) the applicability of the Oldroyd
rate to the Maxwell material model is shown, and in
Christmann (2017) investigations with the upper Oldroyd
rate are discussed. Based on the additive decomposition of
the total strain, the additive decomposition of the strain-rate

tensor is also valid with the elastic Γ
Δ

e ¼ _Γe þ ITvΓe þ ΓeIv

and the viscous strain rate Γ
Δ

v ¼ _Γv þ ITvΓv þ ΓvIv. To derive
the flow relation in the intermediate configuration, the devia-
toric elasticity relation is assumed to be proportional to the

viscous strain rate Γ
Δ

v (cf. Eqn. 4)

2ηΓ
Δ

v ¼ 2μ Γ� Γv � 1
3
tr Γ� Γvð ÞI

	 

¼ 2μΓDe : (22)

Note that tr Γ
Δ

v

� �
vanishes.

To transform Eqns. (20) and (22) back to the reference config-
uration, where the quasi-static momentum balance is solved,
the pull-back operation F�1

v ð�ÞF�T
v for contravariant second

order tensors is used. The second Piola-Kirchhoff stress
tensor S in the reference configuration becomes

S ¼ F�1
v ΣF�T

v ¼ λþ ð2=3Þμ
2

tr CC�1
v

� �� 3
� �

C�1
v

þ μ C�1
v CC�1

v � 1
3
tr CC�1

v

� �
C�1

v

	 

:

(23)

This is the elasticity relation in the reference configuration. In
order to solve the quasi-static momentum balance (Eqn. 13)
in the reference configuration, the first Piola-Kirchhoff stress
tensor is given by P= FS. The pull-back operation FT

v ð�ÞFv

for covariant second order tensors such as the viscous
strain rate of Eqn. (22) provides the evolution equation for
the internal variable Cv

η _Cv ¼ μ C � 1
3
tr CC�1

v

� �
Cv

� �
: (24)

A summary of the system of differential equations to be
solved to get the displacement vector u is given in Table 1.

3.2.1. Glen’s flow law
So far a constant viscosity η has been used. In the following, a
non-constant viscosity based on Glen’s flow law will extend
the linear rheology. To this end a rate-dependent dashpot is
introduced in the rheological model (Fig. 1). To be consistent
with the large deformation formulation, the nonlinear viscos-
ity is introduced in the intermediate configuration as an

Fig. 2. For the finite viscoelastic Maxwell material model, it is necessary to distinguish between reference (κ0), current (κt) and intermediate
(κv) configurations. In the intermediate configuration (dashed line in the right panel) the viscoelastic material equations are derived.

Table 1. Summary of solved equations and unknowns for the finite
viscoelastic Maxwell model

Description Equation
number

Degrees of freedom

Quasi-static momentum balance,
P= FS

(13) Displacements u

• Material law (23)
• Kinematics (8) & (10)

Evolution equation for internal
variable

(24) Viscous right Cauchy-
Green tensor Cv
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additional constitutive assumption. Glen’s flow law states

η ¼ 1
2Aσn�1

eff

; σeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
tr σD
� �2r

(25)

with the rate factor A, the stress exponent n=3, and the effect-
ive stress σeff (Greve and Blatter, 2009). For the viscoelastic
Maxwell material model, the viscosity η appears only in the
flow relation (Eqn. 22). The nonlinear viscosity for the finite
deformation model is expressed by

2ηΓ
Δ

v ¼ 2
1

2AΣn�1
eff

Γ
Δ

v ¼ 2
1

2AΣ2
eff

Γ
Δ

v;

Σeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
tr ΣD
� �2r (26)

with the effective stress Σeff computed in the intermediate
configuration. The pull-back operation to the reference con-
figuration yields
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: (27)

where ηGlen denotes the nonlinear Glen-type viscosity. The
deviatoric stress tensor ΣD is given by (cf. Eqn. 20)

ΣD ¼ 2μ Γe � 1
3
tr Γeð ÞI

	 

(28)

and thus the effective stress in the intermediate configuration
reads

2Σ2
eff ¼ tr ΣD� �2¼ 4μ2 tr Γ2e

� �� 1
3
tr Γeð Þð Þ2

	 

: (29)

The elastic strain tensor Γe can be expressed by quantities of
the reference configuration (cf. Eqn. 23)

tr Γeð Þ ¼ 1
2

tr CC�1
v

� �� 3
� �

with Γe ¼ 1
2

CC�1
v � I

� �
: (30)

In the end, the effective stress of Eqn. (29) results in

2Σ2
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v

� �2 � 1
3
μ2 trðCC�1

v Þ� �2
(31)

with
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and
�
tr Γeð Þ�2 ¼ 1

4

�
trðCC�1
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h i

: (33)

Hence, it is possible to compute the nonlinear viscosity

ηGlen ¼ 1
A 2Σ2

eff

¼ 1

A tr ΣD
� �2 (34)

solely by quantities of the reference configuration.

4. MODELING CONCEPT
In this study the focus is on a geometry that resembles the
Ekström Ice Shelf, East Antarctica. This specific ice shelf is
an example where small-scale calving occurs despite a cre-
vasse-free surface. Ground-penetrating radar has been used
to determine the ice thickness along streamlines (Lohse,
2012). The thinning in flow direction up to the calving
front is ∼111 m over a distance of 12 km. In Fig. 3, the
stress component σxx in flow direction is depicted for this
measured ice shelf geometry. The transition from the small
region of tension (green) to compression (pink) is highlighted
by the black line, while each contour of the stress component
indicates a difference of 100 kPa in gray. In order to describe
small-scale calving, the maximum values of stress and strain
are important and occur near the termination (cf. the stress
distribution in Fig. 3). In this relevant area near the ice front
it is sufficient to consider a model geometry with a constant
thickness (Christmann, 2017), as only negligible thickness gra-
dients appear. In the present work, the initial ice shelf domain
has a length of L= 5000 m and a thickness of H= 100 m
(Fig. 4). The ice flows from the left to the right and calving
processes happen at the right end (ice front). Common mater-
ial values are assumed to model polycrystalline ice with the
elastic constants represented by Young’s modulus E= 9 GPa
(Gammon and others, 1983; Rist and others, 2002), Poisson’s
ratio ν= 0.325 (Schulson and Duval, 2009), and the constant
viscosity η= 1014 Pa s (Greve and Blatter, 2009).

In addition, the corresponding boundary conditions are
shown in Fig. 4. The area of investigation for small-scale
calving is far away from the grounding line where the ice
begins to float. Consequently, a constant inflow velocity is
present across the whole ice thickness since the missing trac-
tion of the ground causes a plug flow inside the ice shelf
(Greve and Blatter, 2009). At the inflow, this characteristic
is described by a constant displacement, i.e. a Dirichlet
boundary condition. Prescribed displacement values entail
rigid body motions, by which the examined stress and
strain states are unaffected. Hence, the normal displacement
at the inflow boundary is set to zero. For H= 100 m, the
boundary condition at the inflow does not affect the stress
and strain evolution near the ice front if the length L is
larger than 3000 m (Christmann, 2017).

The traction t at all other boundaries reads

t ¼ σn ¼ pn; (35)

where p is the water pressure that acts in the normal direction.
At the bottom, the water pressure must balance the weight of
the ice to ensure buoyancy equilibrium. The thickness of ice

Fig. 3. Stress component σxx in a cross section of the Ekstroem
Ice Shelf. Black line highlights the transition from tension (green)
into compression (pink), and gray lines are the contours at each
100 kPa of the stress component.
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below the sea level results in a draftHsw= ρice/ρsw Hwith the
sea water density ρsw= 1028 kg m−3 and the ice density
ρice= 910 kg m−3. At the bottom and the ice front, the
water pressure is given by

p ¼ ρswgð�z�wÞ for zþw � 0
0 else

�
(36)

and increases with the water depth. In the above equation,
g= 9.81 m s−2 is the gravity acceleration andw the displace-
ment in z-direction influenced by the bending moment of the
water pressure at the ice front. The second line of Eqn. (36)
guarantees that if the surface extents above sea level (free-
board), this part is traction-free. This traction-free condition
is also applied on the top surface.

For the finite deformation model, the differential equation
system is formulated in the reference configuration. The
Dirichlet condition at the inflow does not change, and the
corresponding traction boundary condition in the reference
configuration is given by

t0 ¼ PN ¼ P0N ¼ pJF�TN (37)

with the pressure P0 in the reference configuration. This
equation results from Nanson’s formula JF−TN dA= n da
describing the relation of boundary conditions in the refer-
ence and the current configuration. Hence, the traction is
not only dependent on the displacement w of the boundary
but also on the actual variation of the ice shelf geometry
represented by the deformation gradient F.

In viscous ice-sheet models, a nonlinear rate-dependent
viscosity is used. To include this by a nonlinear dashpot in
the viscoelastic Maxwell model, it is necessary to replace
the constant viscosity by a power law dependent on the
effective stress (Eqn. 34). This nonlinear Glen-type viscosity
is pulled to the reference configuration in which the system
of differential equations is solved. Thus, the equation of the
Glen-type viscosity is modified by C and the internal variable
Cv. In the end, the Glen-type viscosity as well as the quasi-
static momentum balance (Eqn. 13) depends on the deform-
ation gradient F.

5. NUMERICS
The mathematical models have been implemented into the
commercial finite element software COMSOL.1 Previous
studies have demonstrated that the influence of the lateral
boundaries vanishes in ice shelves with a width of a few

kilometers (Christmann, 2017). The area affected by the
lateral boundaries depends on the thickness. In the case of
H= 100 m, a width smaller than 7 km influences the stress
and strain states in the center. For wider ice shelves, the
state of plane strain is reached as the processes in the
middle are no longer influenced by the constraints at
lateral boundaries. In this situation it is sufficient to describe
the process of calving as a two-dimensional problem in the
x−z-plane assuming plane strain conditions in y-direction.

For the small deformation model COMSOL determines
the discrete nodal displacements u and the nodal viscous
strain tensor εv in every time step. The stress and strain
states can be computed from the displacements and the
viscous strain tensor in a postprocessing step. The time
steps are auto-controlled by the (time-dependent) solver of
COMSOL. The discretization consists of triangular elements
with quadratic Lagrange shape functions of second order
polynomials. The maximum element size is 50 m. At the
ice front and the ice shelf surface, the mesh is refined to
an element length of 2 m within the first 1000 m upstream
from the ice front. This mesh results in 147 254 degrees of
freedom. A coarsening of the mesh (maximum element
length of 5 m for the first kilometer away from the front)
leads to a 2% difference of the maximum stress value at
the upper surface.

In the finite deformation model the system of differential
equations is solved in three-dimensional space as the reduc-
tion to two dimensions is not straightforward. The three-
dimensional formulation allows for a direct implementation
of the constitutive relations (Eqns. 8, 10, 23) without any
further considerations. However, the displacement v in the
y-direction is fixed for the lateral surfaces by appropriate
boundary conditions enforcing plane strain conditions. The
balance of linear momentum (Eqn. 13) and the evolution
equation (Eqn. 24) are solved in the reference configuration
to obtain the unknown nodal displacement vector u and
the internal variable tensor Cv (Table 1). The domain is dis-
cretized using triangular prisms with a unit width in y-direc-
tion. This is sufficient due to the plane strain assumption.
Quadratic Lagrange shape functions are used in the triangles
on the lateral surfaces. The maximum edge length of the tri-
angles is equal to the maximum element length for the small
deformation model and results in 506 574 degrees of
freedom. The increase in the degrees of freedom is caused
by the fact that the finite deformation model has twice as
many nodes (three vs. two dimensional) and nearly twice
as many unknowns (9 vs. 5) compared with the small deform-
ation model. Consequently, the number of the degrees of
freedom is roughly four times higher in the finite deformation
model.

The independence of the results from the discretization
and the length L has been verified for both model
approaches. Based on the nonlinearity of the material formu-
lation in the finite deformation model, the choice of the reso-
lution for the spatial discretization becomes crucial. The
results are strongly influenced by the regions where bound-
ary conditions change, for instance by the transition at the
sea level where the traction free condition of the freeboard
is changing into the depth-dependent water pressure. If the
spatial discretization is too coarse, the boundary condition
cannot be resolved accurately enough. Artificial oscillations
occur in stress and strain states at those regions of the free-
board that are crucial to determine small-scale calving
(Christmann, 2017). Thus, for the finite element simulations

Fig. 4. The idealized ice shelf domain and its boundary conditions
representing the forces acting on an ice shelf.

1 www.comsol.com.
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of the two viscoelastic models used here a high spatial reso-
lution is required.

6. RESULTS
In order to show differences between the results of the small
and finite deformation model, the evolution of the geometry
based on deformations is analyzed with time. Resulting posi-
tions of top and bottom surfaces are displayed in Fig. 5 for dif-
ferent points in time. In the left panel, the temporal evolution
of the geometry obtained with the small deformation model is
depicted. The position of the ice draft remains constant, with
a draft of Hsw= 88.5 m, while the upper surface (and thus
also the freeboard) decreases monotonously with time. The
geometry at t= 30 a assuming buoyancy equilibrium is add-
itionally given by the dashed line. Using the small deform-
ation model, the buoyancy equilibrium is clearly not
fulfilled as the dashed and solid cyan lines do not coincide.
In contrast, ice surface and base match for the finite deform-
ation model with the buoyancy equilibrium (exemplarily
shown for t= 30 a in Fig. 5, right panel) due to the fact that
both surfaces evolve over time. Only near the calving front
(− 200 m ≤ x− L≤ 0 m), the disturbance of the boundary
condition of the ice front (eccentric water pressure) leads to
deviation from the buoyancy equilibrium.

Tensile stresses only occur for σxx (Fig. 3) as the stress σzz
in vertical direction depicts the hydrostatic pressure. The
maximum tensile stress in the ice shelf is obtained at the
top surface in flow direction (not shown here;
cf. Christmann and others, 2016b). This maximum is
located close to the calving front (Fig. 6) and is caused by
the bending moment of the depth-dependent water pressure
at the ice front. As thicker the ice front, the higher is the stress
at the surface for a purely elastic material model (Christmann,
2017). For a purely viscous material the stress distribution
decreases in time as the ice shelf expands in flow direction
and the ice thickness decreases (Christmann and others,
2016a). In the viscoelastic Maxwell model, the elastic
stress distribution is achieved directly at t= 0 a and after a
first increase (shown later on for the stress maximum in
Fig. 8), the tensile stress at the top surface reduces in time.

Initially the stress responses are identical for finite and
small deformation models (blue curves in Fig. 6). Over
time, the small deformation model (dashed lines) leads to a
faster decrease of the maximum stress than the finite deform-
ation model (solid lines). Crucial differences occur at the

latest when t= 10 a (brown curves in Fig. 6). At this point
in time, the maximum stress values differ by about 30%.
However, differences are already identifiable at t= 1 a
when the maximum of the dashed purple curve is 6%,
namely 4.8 kPa, lower than the maximum of the solid
purple curve.

Thus far, all results are obtained using a constant viscosity
η= 1014 Pa s. For the finite deformation model, the stress
evolution at the top surface using this constant viscosity is
compared with stress results using a nonlinear Glen-type vis-
cosity (dash-dotted lines in Fig. 7). The viscosity must not
have any influence at t= 0 a in the viscoelastic Maxwell case
and therefore the constant rate factor A= 10−25 s−1 Pa−3 is
chosen. We do not include any temperature dependence.
As expected, the viscosity does not have any influence
at t= 0 a. The maximum stress value at t= 1 a is 4% lower
for nonlinear viscosity, while this reverses at t= 4 a. For
t= 30 a, the maximum stress applying a constant viscosity
is 12% lower than for a nonlinear viscosity.

The impact of other material and geometrical parameters
on the maximum stress is presented in Fig. 8. For these
studies, a constant viscosity is assumed to separate the
effects. A decrease of Young’s modulus makes the material
softer. A reduction of Young’s modulus from E= 9 GPa (ref-
erence) to E= 1 GPa (Vaughan, 1995) results in a small
decrease of the maximum tensile stress (Fig. 8, left). The influ-
ence of an incompressible Poisson’s ratio ν≈ 0.5 is slightly
larger, but the initial stress increase is missing for finite
(solid lines) and small (dashed lines) deformation models.
Furthermore, the effect of both elastic parameters becomes
negligible for t> 45 d. Differences of ∼2 kPa appear in the
stress for both model formulations at t= 45 d (Fig. 8, left).
The difference between those stress results increases non-
linearly. The constant viscosity is also varied to demonstrate
that the effect of a larger value is equivalent to increasing the
time until the highest stress value is reached. However, this
does only affect timing, not the achieved stress values.

In addition, the effect of a modified geometry is investi-
gated. The thickness of the ice shelf almost linearly controls
the computed stress state and hence the maximum stress
value (blue and orange curves in Fig. 8, right). The last par-
ameter considered is the ice density. Using GPS and
ground-penetrating radar measurements at the Ekström Ice
Shelf, a mean density of ρice= 822 kg m−3 was determined.
The decrease of the ice density ρice= 910 kg m−3 for pure
ice to the mean value ρice= 822 kg m−3 (purple lines)

Fig. 5. Temporal evolution of the positions of the top and bottom surfaces attained by the small (left) and finite deformation (right) models.
Dashed lines show the positions of the buoyancy equilibrium at time t= 30 a.
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results in an increase of the freeboard thickness due to the
buoyancy equilibrium. In consequence, the stress values
increase at the upper surface.

At last, the strain in flow direction is investigated as it is the
largest strain component. In particular, its maximum is
located at the upper surface (Christmann, 2017). For the
finite deformation model, the Euler-Almansi strain exx is ana-
lyzed as this is a possible strain measure in the current con-
figuration. In this parameter study, only the relative strain
difference between the strain obtained by the finite and the
small deformation models is discussed in more detail
(Fig. 9). Using the finite deformation approach, the strain is
always higher than the strain computed with the small
deformation model. The relative difference of both model
formulations increases nonlinearly. An increase in viscosity
by a certain factor results in strain growth divided by this
factor, and hence smaller strain states are reached. All
other elastic material parameters have almost no influence
on the strain distribution in a time interval of one year.
Therefore, these strain results are not explicitly included in
Fig. 9 but are similar to the orange curve. A lower ice

density slightly decreases the relative difference of the
strain values obtained by the two model approaches in con-
trast to a thicker ice shelf in which this relative difference is
higher: doubling the ice thickness leads to almost half the
time to reach similar strain values with the small deformation
model. The maximum strain values increase linearly with
time and are given at t= 1 a in Table 2 for both models.

7. DISCUSSION
In Antarctica, small-scale calving occurs on intervals of
several weeks to few years. During this period of time, the
spreading in the flow direction leads to the largest deform-
ation and elongates the ice shelf up to a few hundreds of
meters. The goal of this work is not to establish a unique
calving rate but to assess which material formulation is suit-
able for establishing calving laws. The results of the small
deformation model shown above coincide with the ones of
the more sophisticated finite deformation model for short
time periods only. As long as the strain values remain
small, a linearized strain tensor can be assumed. This

Fig. 6. Stress component σxx at the top surface using the concept of finite deformation (solid lines) vs. the assumption of small deformations
(dashed lines). Area of investigation is additionally shown in a cross section of an ice sheet – ice shelf model that is deformed based on the
boundary conditions (exaggerated deformation).

Fig. 7. Stress component σxx at the top surface for the finite deformation model using a constant viscosity η= 1014 Pa s (solid lines) compared
with the results obtained with a nonlinear Glen-type viscosity (dash-dotted lines).
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restriction gives rise to the necessity of using a finite deform-
ation model if one studies several consecutive calving events
or flow of hundreds of meters between those events. In order
to analyze the time period in which the small deformation
model is adequate, the main differences resulting from
these two formulations are discussed subsequently.

In consequence of the viscous stretching of the ice shelf, it
thins out with time. In the small deformation model, the
bottom surface does not move. As there is no difference
between the reference and actual configuration for the
small deformation model, there is no way to adapt internal
and external forces. The boundary condition at the bottom
is at any time related to the initial situation and the weight
of the ice is constant in time. This behavior induces the
unphysical situation that the buoyancy equilibrium of the
ice shelf is increasingly violated with progressing time (exem-
plarily shown in Fig. 5 for t= 30 a). The reason for this is that
the current weight of the floating ice is not correctly balanced
by the opposed buoyancy force. A small deformation model
is presumably sufficient to simulate a single calving event,
but the geometry must be readjusted after each event to
satisfy the buoyant equilibrium. This procedure is undesir-
able as multiple subsequent calving events must be com-
puted and a cumulative error of the evolving geometry
must be prevented.

To solve this unwanted issue, a finite deformation formu-
lation is established. For this modeling approach, the weight
of the ice and the boundary conditions depend on the
deformation gradient and are updated in each time step.
Similar to simulations using a moving mesh (often applied
in viscous laminar flow models), the internal and external
forces are adapted to the evolved geometry. An undesired
mesh degeneracy is avoided as all computations for the
finite deformation model are done with the initial mesh in
the reference configuration. Another advantage of solving
the system of equations in the reference configuration is
that the normal forces are not required in each time step.
Only the normal vector of the reference configuration is
needed to compute the boundary conditions.

At the beginning of the simulation, no deformations are
present and the stress responses are identical for both
model formulations (Fig. 6). The results for the reference
parameters show that deformations of more than 5% (e.g.
ɛxx= 0.07 at t= 10 a) lead to differences of 30% for the
maximum stress values and almost 20% for the maximum
strain values. These differences for both model approaches
are already significant at t= 2 a, where the stress differs by

10%, while the strain difference is 6.5%. The slower
decrease of the maximum stress value for the finite deform-
ation model has consequences for the stress-triggered calving
criterion. However, the critical stress value σcrit= 330 kPa
of Hayhurst (1972) is not reached in any of the model
approaches. A stress increase obtained for instance by a
geometry variation can faster close the gap between the crit-
ical stress value and the prevailing maximum stress in the
case of the finite deformation model. Hence, the stress state
of the finite deformation model reaches more quickly a crit-
ical stress. The parameter that influences the maximum stress
value most is the thickness. Obviously, the difference
between the stresses of the two approaches increases faster
for higher thicknesses (Fig. 8, right) as larger flow velocity
leads to larger strain in shorter times. Thus, the assumption
of linearized strain tensor is violated at an earlier point in
time.

The stress distribution at the ice surface has the same bell-
shaped form using Glen-type viscosity instead of a constant
one. The nonlinear Glen-type viscosity is a function of the
effective stress and thus of the deformation. The viscosity
does not have any influence at the beginning of the simula-
tion (Figs. 8, 9) as the instantaneous response is purely
elastic in a viscoelastic Maxwell material. The stress response
of the maximum tensile stress shows similar behavior as the
one for the reference parameters. After a first slight stress
increase, the maximum stress decreases in time. This stress
decrease is faster for the nonlinear viscosity than for the con-
stant one. The reason for that is the effective stress, which is
large for large tensile stresses. Large effective stress results in
small viscosity near the surface of the ice shelf (Eqn. 25) and
hence in a fast stress decrease at the beginning of the simula-
tion. The maximum stress value obtained by the nonlinear
viscosity converges during the considered simulation time
to a higher value of 75 kPa than the maximum stress value
for the constant viscosity (Fig. 7). Considering a critical
stress criterion for calving, the higher stress maximum will
lead to higher calving rates for the Glen-type viscosity if the
critical stress is reached based on, e.g., geometry variations.
In the future, also differences to the formulation of a visco-
elastic material model with a nonlinear viscosity inserted in
the actual configuration (dependent on the effective
Cauchy stress tensor) should be investigated. However, the
assumption that these differences will be small is plausible
as the elastic deformation gradient Fe, which is the connec-
tion between the intermediate and current configuration, is
presumably small in our case.

Fig. 8. Evolution of maximum stress at the top surface with time, dependent on different material (left) and geometric parameters (right) using
the finite (solid lines) and small (dashed lines) deformation models.
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In conclusion, if a stress criterion is used to describe
calving events it is essential that the applied model represents
the physical situation. All material and geometrical para-
meters that affect a faster strain increase involve an earlier
need to use the finite deformation model. This is caused by
the fact that external and internal forces (especially the
boundary conditions) act on the current configuration and
evolve in time. The most important point is that the small
deformation model entails a different (smaller) calving rate.
Consequently, it is essential to use a finite deformation
model (preferably with a Glen-type viscosity) if several suc-
cessive calving events are considered, or the calving event
does not occur at an ice shelf in the first few years. In both
cases, the current deformations in the flow direction are
too large to fulfill the assumption of small deformations.
The simplifying assumptions allowing to use a linearized
strain tensor do not hold anymore. In the end, it is imperative
not only for the understanding of calving processes to have a
robust and useful material description that is based on
physics.

After we found that a finite strain theory is here inevitable,
we now want to understand the implications of stress and
strain states on finding a calving law. There are three con-
ceivable routes: (C1) criticality by critical stress, (C2) critical-
ity by critical strain with strain after calving being initially the
same as prior, and (C3) criticality by critical strain with reset
of strain to zero. In order to define a calving law by the stress
criterion (C1), other effects than the uncertainties in material
or geometrical parameters must result in a sufficient stress
increase. Continuous melting at the bottom surface of the
ice shelf does not change the behavior of the maximum
stress. Higher melt rates lead to a faster stress decrease as
for the case of an overall constant thickness. Hence, the

assumption of a constant thickness is reasonable to consider
the influence of different parameters on quantities crucial for
small-scale calving. The effect of the elastic parameters such
as Young’s modulus and Poisson’s ratio fades away after 40
days, and only a higher viscosity has the impact to delay this
influence. This fits closely the characteristics of a Maxwell
material in which the characteristic time τ(η, E, ν) deter-
mines the temporal behavior but does not influence the
achieved values. In the end, the viscosity plays an important
role in determining the time between calving events.
However, the maximum value and the position of calving
is rather independent of the viscosity.

Another possibility to define a calving criterion is a critical
strain value (C2). The ice shelf stretches in flow direction and
the atmospheric pressure acts at the freeboard, where the
strain has smaller resistance force than below the water
surface. Consequently, the strain is highest at the upper
surface. The strain distribution at this surface is comparable
with the one of the stress (Christmann and others, 2016a).

While the position of calving is independent of the critical
strain, the timing depends on it. However, the value of crit-
ical strain is an unknown parameter that would have to be
adjusted. In the end, a comparison with measurements of
small-scale calving is absolutely essential to make meaning-
ful statements on calving rates. Nevertheless, the evolving
strain distribution can be examined independently of an
exact critical value. After a calving event caused by an arbi-
trary critical strain value, the deformation initially decreases
before it increases again. The critical value is reached faster
and faster – caused by the strain history of the remaining
ice shelf – leading to disintegration (Christmann, 2017).
Only if the strain history is discarded after each calving
event a critical strain criterion is conceivable (C3). With
this procedure, constant calving rates are obtained. Here,
the finite deformation model yields more critical situations
than the small deformation model as the strain results are
higher (Fig. 9). This effect is caused by the ice draft that
declines in time meaning that the resulting stress at the ice
front decreases over time for the finite deformation model.
In contrast to the small deformation model in which the
decrease of the top surface leads to a constant stress at the
ice front boundary. The finite deformation model results in
faster horizontal spreading of the ice shelf and hence in
larger strain values.

In summary, criterion (C1) has the implication that calving
rates depend on ice thickness leading to higher calving rates
for thick ice shelves and may prohibit calving of very thin ice
shelves. The criterion depends on a critical stress as a mater-
ial property that may vary with porosity and thus firn proper-
ties, temperature and impurities. Hence it could be derived
by laboratory tests or inversely from remote-sensing calving
rates at appropriate locations. Criterion (C2) is as much justi-
fied from the physical basis as criterion (C1) but far less
constrained. Criterion (C3) is as little constrained as
criterion (C2); however, it leads to calving after a constant
time period, while it remains difficult to justify strain to be
removed in the ice shelf by just detaching an iceberg.

Thus, in order to establish a calving law for small-scale
calving, one needs to assess how ice-sheet models could
adopt this in future, in particular, as they rely only on
viscous flow thus far. The question to be answered can be for-
mulated as: does an ice-sheet model need to compute non-
linear viscoelastic material laws in order to be able to
apply the criteria? Criterion (C1) could be used in large-

Fig. 9. Relative difference between the maxima of the strain
components exx and ɛxx computed with the finite and small
deformation model, respectively.

Table 2. Maximum strain values in flow direction obtained after
1 year. The strain in the small as well as the finite deformation
model increases linearly with time

Parameter variation Reference ρice=
822 kg m−3

η=
5 · 1014 Pa s

H=
200 m

Finite deformation
model: max (exx) 0.0066 0.0096 0.0014 0.0131

Small deformation
model: max (ɛxx) 0.0064 0.0092 0.0014 0.0122
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scale ice sheet models, for example, in Earth system models
as long as the time step is not significantly smaller than 1
year. For shorter time periods, one could consider computing
a lookup table for stresses initiating calving. This table, which
includes a correction term for the elastic contribution, must
depend on different material parameters. Criteria (C2) and
(C3) currently suffer from uncertainties in the critical strain,
whereas criterion (C2) requires strain to be solved and is
hence not applicable in viscous ice models. Criterion (C3)
can potentially be applied to viscous models using a
lookup table for the time schedule of calving that once
again depends on different material parameters.

8. CONCLUSIONS
We presented a viscoelastic Maxwell model for small as well
as finite deformations and its application to small-scale
calving at ice shelves. At each point in time, the differences
between the stress states in the two model formulations are
higher than those for the strain. A difference of 5%
between the strains in the material models for infinitesimal
and finite strains is reached already after 1.25 a. After 10 a,
the difference increases to 20%. This shows that for a study
of several subsequent calving events or simulation times of
more than 1 year, it is essential to apply a viscoelastic
model using finite strain theory. This more sophisticated
approach ensures consistency concerning the hydrostatic
equilibrium, while the small deformation model (with linear-
ized strain) produces a deviation from buoyancy equilibrium
that grows larger with time. Furthermore, the consideration of
a nonlinear viscosity leads to higher maximum stress values
that converge to 75 kPa for a 100 m thick ice shelf. To
include this formulation using finite strain theory in ice-
sheet models requires a horizontal resolution of hundreds
of meters in flow direction and only a few meters close to
the calving front.

The evolution of stress and strain states obtained for
typical geometries and material parameters suggests three
different criteria for calving, which are all similarly justified
but yield substantially different calving rates. While a stress
criterion and a strain criterion without considering the
strain history result in almost constant calving rates, a strain
criterion considering the strain history forces the disintegra-
tion of the ice shelf. None of the criteria is yet constrained
by critical thresholds for polycrystalline ice. However,
regardless of maximum stress or strain criteria the finite
deformation model leads faster to critical states and conse-
quently to higher calving rates.

The finite strain formulation of the viscoelastic material
model that we presented here for the application to calving
may also be useful in other cases with short-term changes
in loading and finite deformations. These may include the
evolution of englacial and subglacial channels or tidal
forcing of grounding line migration. An open question still
remains whether it is necessary to include viscoelasticity in
the whole domain or only in those parts where the short-
term elastic response becomes essential and incorporating
viscoelastic effects into current ice-sheet models is practical.
In order to investigate small-scale calving at Antarctic ice
shelves caused by the boundary perturbation at the ice
front, it is sufficient to include the viscoelastic material
model only within a few kilometers from the ice front. The
processes further upstream are unimportant for small-scale
calving at crevasse-free surfaces. It may be time for a new

concept in ice-sheet modeling that tracks the strain history.
Using this additional knowledge combined with a high-reso-
lution mesh, a realistic representation of iceberg calving can
eventually close one of the missing links between the ice
sheet and ocean models.
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APPENDIX

List of symbols
u displacements (u, v, w)T

F deformation gradient
General J Jacobian determinant

(·)e elastic quantities
(·)v viscous quantities

E Young’s modulus (elastic)
Material parameters ν Poisson’s ratio (elastic)

η viscosity (viscous)

P first Piola-Kirchhoff stress tensor
S second Piola-Kirchhoff stress tensor
E Green-Lagrange strain tensor

Reference configuration C right Cauchy-Green tensor
N normal vector
f0 volume force
X particle position
Div divergence wrt.

reference configuration

Intermediate ∑ stress tensor
configuration Г strain tensor

σ stress tensor
e Euler-Almansi strain tensor
b left Cauchy-Green tensor

Current configuration n normal vector
f volume force
x particle position
div divergence wrt. current

configuration
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