S. Endo Nagoya Math. J. Vol. 46 (1972), 147–153

ON RAMIFICATION THEORY IN PROJECTIVE ORDERS, II

SHIZUO ENDO

Let R be a commutative ring and K be the total quotient ring of R. Let Σ be a separable K-algebra which is a finitely generated projective, faithful K-module and Λ be an R-order in Σ . We denote by $D_{A/R}$ the Dedekind different of Λ and by $N_{A/R}$ the Noetherian different of Λ .

The purpose of this paper is to give the following results, as a continuation to [2].

(I) For any projective *R*-order Λ in a separable *K*-algebra Σ , we have $\operatorname{trd}_{\Sigma/c(\Sigma)}(D_{A/R}) = N_{A/R}$.

(II) (Dedekind different theorem) Let R be a Noetherian normal domain with quotient field K. Let Σ be a separable K-algebra and Λ be a projective R-order in Σ . Then, for any prime ideal \mathfrak{P} of Λ , the following conditions are equivalent:

- (1) $D_{A/R} \not\subseteq \mathfrak{P}$.
- (2) $[D_{A/R}]^2 \subseteq (\mathfrak{P} \cap c(\Lambda))\Lambda.$
- (3) \mathfrak{P} is unramified over R.

Here we denote the center of Λ by $c(\Lambda)$.

We remark that both (I) and (II) have been proved under some additional assumptions ([1], [2], [4], [5], [8], etc.).

Our notation and terminology used in this paper are the same as in [2].

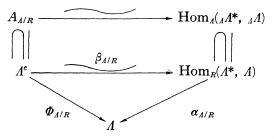
1. Let Λ be an R-algebra. Now we regard $\operatorname{Hom}_R(\Lambda^*, \Lambda)$ as a left Λ^e module by $[(\lambda \otimes \mu^\circ) \cdot h](f) = \lambda h(\mu \cdot f)$ for $h \in \operatorname{Hom}_R(\Lambda^*, \Lambda)$ and $f \in \Lambda^*$. We
define the Λ^e -homomorphism $\beta_{A/R} : \Lambda^e \to \operatorname{Hom}_R(\Lambda^*, \Lambda)$ by $\beta_{A/R}(\lambda \otimes \mu^\circ)(f) = \lambda f(\mu)$ for $f \in \Lambda^*$. Since $[\Lambda^e]^A = A_{A/R}$ and $\operatorname{Hom}_R(\Lambda^*, \Lambda)^A = \operatorname{Hom}_A(\Lambda^*, \Lambda^A)$, we have $\beta_{A/R}(A_{A/R}) \subseteq \operatorname{Hom}_A(\Lambda^*, \Lambda^A)$.

Suppose that Λ is a finitely generated projective *R*-module. Then $\beta_{A/R}$ is evidently an isomorphism and therefore $\beta_{A/R}(A_{A/R}) = \text{Hom}_A({}_A\Lambda^*, {}_A\Lambda)$. Let

Received July 12, 1971

SHIZUO ENDO

 ${f_i, \lambda_i}_{1 \le i \le m}$ be a dual basis of Λ over R and define $\alpha_{A/R}$: $\operatorname{Hom}_R(\Lambda^*, \Lambda) \to \Lambda$ by $\alpha_{A/R}(h) = \sum_i h(f_i)\lambda_i$ for $h \in \operatorname{Hom}_R(\Lambda^*, \Lambda)$. Then we can easily see that $\alpha_{A/R}$ does not depend on the choice of the dual basis of Λ , and we get the following commutative diagram:



Further suppose that Λ is a separable *R*-algebra which is a finitely generated projective, faithful *R*-module. Then we have $\Lambda^* = \Lambda \cdot \operatorname{trd}_{A/R}$ and so the homomorphism $\gamma_{A/R}$: $\operatorname{Hom}_A({}_A\Lambda^*, {}_A\Lambda) \to \Lambda$ defined by $\gamma_{A/R}(h) = h(\operatorname{trd}_{A/R})$ is an isomorphism.

LEMMA 1. Let Λ be a separable R-algebra which is a finitely generated projective, faithful R-module. Then $\alpha_{A/R} \cdot \tilde{\gamma}_{A/R}^{-1} = trd_{A/c(\Lambda)}$, where $c(\Lambda)$ denotes the center of Λ .

Proof. For any commutative R-algebra S, we have $\alpha_{S_R^{\otimes A/S}} = I_S \bigotimes_R \alpha_{A/R}$, $\gamma_{S_R^{\otimes A/S}} = I_S \bigotimes_R \gamma_{A/R}$ and $\operatorname{trd}_{S_R^{\otimes A/c}(S_R^{\otimes A})} = I_S \bigotimes_R \operatorname{trd}_{A/c(A)}$. Therefore we see $\alpha_{A/R}$. $\overline{\tau_{A/R}}^1 = \operatorname{trd}_{A/c(A)}$, if and only if, for any maximal ideal \mathfrak{m} of R, $\alpha_{A\mathfrak{m}/R\mathfrak{m}} \cdot \overline{\tau_{A/R}}^1 = \operatorname{trd}_{A\mathfrak{m}/c(A\mathfrak{m})}$. Hence we may assume without loss of generality that R is a local ring. Furthermore, if S is a commutative R-faithful R-algebra and if $\alpha_{S\otimes A/S} \cdot \overline{\tau_{S_R^{\otimes A/S}}^1} = \operatorname{trd}_{S_R^{\otimes A/c}(S_R^{\otimes A})}$, then $\alpha_{A/R} \cdot \overline{\tau_{A/R}}^1 = \operatorname{trd}_{A/c(A)}$. So we may further assume that R is a separably closed, Henselian local ring ([6]). Then Λ is of split type and we can write

$$c(\Lambda) = R_1 \oplus R_2 \oplus \cdots \oplus R_t, \ R_i \cong R$$

and

$$\Lambda = M_{n_1}(R_1) \oplus M_{n_2}(R_2) \oplus \cdots \oplus M_{n_k}(R_k)$$

where each $M_{n_k}(R_k)$ denotes the total matric algebra of degree n_k over R_k . Also we put $1_R = e_1 + e_2 + \cdots + e_l$, $e_k \in R_k$.

For each k let $\{e_{ij}^{(k)}\}$ be the set of all matrix units of $M_{n_k}(R_k)$. Then we can easily see that $\{e_{ij}^{(k)} \operatorname{trd}_{\mathfrak{M}_{n_k}(R_k)/R_k}, e_{ji}^{(k)}\}_{1 \leq i \leq n_k, 1 \leq j \leq n_k}$ forms a dual basis of

148

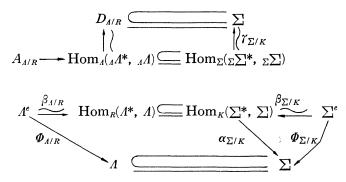
 $M_{n_k}(R_k)$ over R_k and, for any $\lambda_k \in M_{n_k}(R_k)$, $\operatorname{trd}_{M_{n_k}(R_k)/R_k}(\lambda_k) = \sum_{i,j} e_{ij}^{(k)} \lambda_k e_{ji}^{(k)}$. Furthermore we see that $\{e_{ij}^{(k)} \operatorname{trd}_{A/R}, e_{ji}^{(k)}\}_{1 \leq i \leq n_k, 1 \leq j \leq n_k, 1 \leq k \leq t}$ forms a dual basis of Λ over R. In fact, for any $\lambda = \lambda_1 + \cdots + \lambda_t$, $\lambda_k \in M_{n_k}(R_k)$, we have

$$\begin{split} \sum_{k} \sum_{i,j} \operatorname{trd}_{A/R}(e^{\langle k \rangle}_{ij} \lambda) e^{\langle k \rangle}_{ji} &= \sum_{k} \sum_{i,j} \operatorname{trd}_{A/R}(e^{\langle k \rangle}_{ij} \lambda_{k}) e^{\langle k \rangle}_{ji} \\ &= \sum_{k} \sum_{i,j} \operatorname{trd}_{M_{n_{k}}(R_{k})/R_{k}}(e^{\langle k \rangle}_{ij} \lambda_{k}) e^{\langle k \rangle}_{ji} \\ &= \sum_{k} \lambda_{k} = \lambda, \end{split}$$

because $\operatorname{trd}_{A/R}(e_{ij}^{(k)}\lambda_k)e_k = \operatorname{trd}_{M_{n_k}(R_k)/R_k}(e_{ij}^{(k)}\lambda_k)$ and $e_k e_{ji}^{(k)} = e_{ji}^{(k)}$. Hence $\alpha_{A/R} \cdot \tilde{\tau}_{A/R}^{-1}(\lambda)$ $= \sum_k \sum_{i,j} e_{ij}^{(k)}\lambda e_{ji}^{(k)} = \sum_k \sum_{i,j} e_{ij}^{(k)}\lambda_k e_{ji}^{(k)} = \sum_k \operatorname{trd}_{M_{n_k}(R_k)/R_k}(\lambda_k) = \operatorname{trd}_{A/c(A)}(\lambda).$ Thus $\alpha_{A/R} \cdot \tilde{\tau}_{A/R}^{-1}$ $= \operatorname{trd}_{A/c(A)}.$

THEOREM 1. Let R be a commutative ring and K be the total quotient ring of R. Let Σ be a separable K-algebra which is a finitely generated projective, faithful K-module. Then, for any R-order Λ in Σ , we have $N_{A/R} \subseteq \operatorname{trd}_{A/c(\Lambda)}(D_{A/R})$. Especially, if Λ is a projective R-order in Σ , $N_{A/R} = \operatorname{trd}_{A/c(\Lambda)}(D_{A/R})$ and $D_{A/R} \subseteq C_{A/c(\Lambda)}$.

Proof. Hom_{*R*}(Λ^* , Λ) can be regarded naturally as the submodule of Hom_{*K*}(Σ^* , Σ). Then, by the definition of $D_{A/R}$, we have $r_{\Sigma/K}(\text{Hom}_A(\Lambda^*, \Lambda)) = D_{A/R}$. Hence we get the following commutative diagram:



Since $\beta_{A/R}(A_{A/R}) \subseteq \operatorname{Hom}_{A}({}_{A}\Lambda^{*}, \Lambda) = \tilde{\tau}_{\Sigma'R}^{-1}(D_{A/R}), N_{A/R} = \Phi_{A/R}(A_{A/R}) = \alpha_{\Sigma'K} \cdot \beta_{A/R}(A_{A/R})$ $\subseteq \alpha_{\Sigma'K} \cdot \tilde{\tau}_{\Sigma'K}^{-1}(D_{A/R}).$ By Lemma 1, $\alpha_{\Sigma'K} \cdot \tilde{\tau}_{\Sigma'K}^{-1} = \operatorname{trd}_{\Sigma'c(\Sigma)}$ and so $N_{A/R} \subseteq \operatorname{trd}_{\Sigma/c(\Sigma)}(D_{A/R}).$ Especially, if Λ is a projective R-order in Σ , we have $\beta_{A/R}(A_{A/R}) = \tilde{\tau}_{\Sigma'K}^{-1}(D_{A/R}).$ Hence we obtain $N_{A/R} = \operatorname{trd}_{\Sigma/c(\Sigma)}(D_{A/R}).$ Further, from this it follows directly that $D_{A/R} \subseteq C_{A/c(A)}$. Thus our proof is completed.

2. In the rest of this paper we assume that R is a Noetherian normal domain, in order to simplify our description. We should remark that the

following results can be proved under weaker assumptions (cf. [2]).

Let K be the quotient field of R and Σ be a separable K-algebra. Then, for any R-order Λ in Σ , we have $\operatorname{trd}_{\Sigma/K}(\Lambda) \subseteq R$ and $\operatorname{t}_{c(\Sigma/)K}(c(\Lambda)) \subseteq R$ and so $D_{A/R} \subseteq \Lambda \subseteq C_{A/R}$. If Λ is a projective R-order in Σ , then the discriminant $d_{A/R}$ of Λ is a projective ideal of R.

LEMMA 2. Let R be a Henselian normal local domain with maximal ideal \mathfrak{p} and K be the quotient field of R. Let L be a commutative separable K-algebra and S be a subring of L containing R which is integral over R and such that KS = L. Let \mathfrak{q} be the Jacobson radical of S. Then we have $t_{L/K}(\mathfrak{q}) \subseteq \mathfrak{p}$, where $t_{L/K}$ denote the trace of L over K.

Proof. Let \overline{S} be the derived normal ring of S in L and \mathfrak{q} be the Jacobson radical of \overline{S} . Then $\overline{\mathfrak{q}} \cap S = \mathfrak{q}$, and therefore we may assume that S is integrally closed. Since R is Henselian, we can write $S = S_1 \oplus S_2 \oplus \cdots$. $\oplus S_t$ where each S_i is a Henselian normal local domain. Let \mathfrak{q}_i be the maximal ideal of S_i and L_i be the quotient field of S_i . Then we have $\mathfrak{q} = \mathfrak{q}_1 + \mathfrak{q}_2 + \cdots + \mathfrak{q}_t$ and $\mathfrak{t}_{L/K}(\mathfrak{q}) = \sum_{i=1}^t \mathfrak{t}_{L_i/K}(\mathfrak{q}_i)$. Hence we may further suppose that S is a Henselian normal local domain with maximal ideal \mathfrak{q} .

Let F be a Galois extension of K containing L and T be the derived normal ring of S in F. Then T is also a Henselian normal local domain and we see $\sigma(T) = T$ for any $\sigma \in \operatorname{Gal}(F/K)$. Denoting by q' the maximal ideal of T, we have $\sigma(q') = q'$ for any $\sigma \in \operatorname{Gal}(F/K)$. From this it follows immediately that $t_{L/K}(q) \subseteq q' \cap R = \mathfrak{p}$.

We give, as a generalization of [2], (2.8), ii),

PROPOSITION 2. Let R be a Noetherian normal domain with quotient field K and Σ be a separable K-algebra. Then, for a projective R-order Λ in Σ , the following conditions are equivalent:

- (1) $C_{A/R} = \Lambda$.
- (2) $D_{A/R} = \Lambda$.
- (3) $d_{A/R} = R$.
- (4) $N_{A/R} = c(\Lambda)$, i.e., Λ is separable over R.

Proof. The equivalences of (1), (2) and (3) are evident and the implication (4) \Longrightarrow (1) has been shown (e.g. [2]). Hence we have only to prove (1) \Longrightarrow (4). Clearly it suffices to prove this in case R is a local domain. The Henselization \hat{R} of R is also normal and we can easily see $\hat{R} \bigotimes_{R} C_{A/R} = C_{\hat{R} \otimes A/\hat{R}}$, $\hat{R} \bigotimes_{R} D_{A/R} = D_{\hat{R} \otimes A/\hat{R}}$, $\hat{R} \bigotimes_{R} d_{A/R} = d_{\hat{R} \otimes A/\hat{R}}$ and $\hat{R} \bigotimes_{R} N_{A/R} = N_{\hat{R} \otimes A/\hat{R}}$. Therefore we may assume that R is a Henselian normal local domain. However, in this case, we can write $c(\Lambda) = S_1 \oplus S_2 \oplus \cdots \oplus S_t$ where each S_i is a Henselian local ring, and, putting $\Lambda_i = S_i \bigotimes_{C(\Lambda)} \Lambda$ for each i, we have $\Lambda = \Lambda_1 \oplus \cdots \oplus \Lambda_t$, $C_{A/R} = C_{A_1/R} \oplus \cdots \oplus C_{A_t/R}$, $D_{A/R} = D_{A_1/R} \oplus \cdots \oplus D_{A_t/R}$, etc.. Hence we may further suppose that $c(\Lambda)$ is also a Henselian local ring.

Now suppose (1) (equivalently (2) and (3)). Then, by Theorem 1, we have $\operatorname{trd}_{\Sigma/c(\Sigma)}(\Lambda) = \operatorname{trd}_{\Sigma/c(\Sigma)}(D_{A/R}) = N_{A/R}$. However, since Λ is a projective R-order in Σ , $\operatorname{trd}_{\Sigma/K}(\Lambda) = \operatorname{trd}_{\Sigma/K}(C_{A/R}) = R$. Accordingly we get $\operatorname{t}_{c(\Sigma)/K}(N_{A/R}) = R$. Let \mathfrak{p} be the maximal ideal of R and \mathfrak{q} be the maximal ideal of $c(\Lambda)$. By Lemma 2, then, we have $\operatorname{t}_{c(\Sigma)/K}(\mathfrak{q}) \subseteq \mathfrak{p}$. If $N_{A/R} \neq c(\Lambda)$, then $\operatorname{t}_{c(\Sigma)/K}(N_{A/R}) \subseteq \mathfrak{p}$, which is a contradiction. Thus we must have $N_{A/R} = c(\Lambda)$. This completes the proof of (1) \Longrightarrow (4).

COROLLARY 1. Let Λ be a projective R-order in a separable K-algebra Σ . Then any minimal prime divisor of $N_{\Lambda/R}$ in $c(\Lambda)$ is of height 1 in $c(\Lambda)$.

Proof. Let q be a minimal prime divisor of $N_{A/R}$ in $c(\Lambda)$ and set $\mathfrak{p} = \mathfrak{q} \cap R$. By localizing and Henselizing R at \mathfrak{p} as in the proof of Proposition 2, we may suppose that R is a Henselian normal local domain with maximal ideal \mathfrak{p} and that $c(\Lambda)$ is a Henselian local ring with maximal ideal q. Then $N_{A/R}$ can be considered as a q-primary ideal of $c(\Lambda)$. If we suppose height_{c(\Lambda)} $\mathfrak{q} > 1$, then, for any prime ideal \mathfrak{p}' of height 1 in R, $N_{A\mathfrak{p}'/B\mathfrak{p}'} = (N_{A/R})_{\mathfrak{p}'} = c(\Lambda_{\mathfrak{p}'})$, and so $d_{A\mathfrak{p}'/R\mathfrak{p}'} = R\mathfrak{p}'$ by Proposition 2. However, $d_{A/R}$ is an unmixed ideal of height 1 in R, because it is R-projective. Hence $d_{A/R} = R$. Again, by Proposition 2, we obtain $N_{A/R} = c(\Lambda)$, which contradicts the fact that $N_{A/R}$ is \mathfrak{q} -primary. Thus \mathfrak{q} is of height 1 in $c(\Lambda)$.

Let Λ be an *R*-algebra and \mathfrak{P} be a prime ideal of Λ . Let us put $\mathfrak{p} = \mathfrak{P} \cap R$ and $\mathfrak{q} = \mathfrak{P} \cap c(\Lambda)$. We say that \mathfrak{P} is unramified over R if $\Lambda_{\mathfrak{p}}/\mathfrak{P}\Lambda_{\mathfrak{p}}$ is separable over $R_{\mathfrak{p}}/\mathfrak{P}R_{\mathfrak{p}}$ and $\mathfrak{P}\Lambda_{\mathfrak{q}} = \mathfrak{p}\Lambda_{\mathfrak{q}}$.

COROLLARY 2 (Discriminant theorem). Let R be a Noetherian normal domain with quotient field K and Σ be a separable K-algebra. Let Λ be a projective Rorder in Σ . Then, for any prime ideal \mathfrak{p} of R, the following conditions are equivalent:

(1)
$$d_{A/R} \subseteq \mathfrak{p}$$
.

SHIZUO ENDO

(2) Any prime ideal \mathfrak{P} of Λ such that $\mathfrak{p} = \mathfrak{P} \cap R$ is unramified over R.

Proof. The condition (1) is equivalent to the condition that $d_{A\mathfrak{p}/R\mathfrak{p}} = R\mathfrak{p}$. By Proposition 2 this is also equivalent to the condition that $A\mathfrak{p}$ is separable over $R\mathfrak{p}$, i.e., to the condition (2).

We now prove our main theorem in this paper. It should be remarked that this is not included in [2], (3.6).

THEOREM 3 (Dedekind different theorem). Let R be a Noetherian normal domain and K be the quotient field of R. Let Σ be a separable K-algebra and Λ be a projective R-order in Σ . Then, for any prime ideal \mathfrak{P} of Λ , the following conditions are equivalent:

- (1) $D_{A/R} \subseteq \mathfrak{P}$.
- (2) $[D_{A/R}]^2 \not\subseteq (\mathfrak{P} \cap c(\Lambda))\Lambda.$
- (3) \mathfrak{P} is unramified over R.

Proof. The implication $(1) \Longrightarrow (2)$ is obvious. Therefore it is sufficient to prove $(2) \Longrightarrow (3) \Longrightarrow (1)$. We put $\mathfrak{p} = \mathfrak{P} \cap R$ and $\mathfrak{q} = \mathfrak{P} \cap c(\Lambda)$. Then we may assume that R is a Henselian normal local domain with maximal ideal \mathfrak{p} and that $c(\Lambda)$ is a Henselian local ring with maximal ideal \mathfrak{q} .

(3) \Longrightarrow (1): Suppose that \mathfrak{P} is unramified over R. By virtue of [2], (3.2), we have $N_{A/R} \not\subseteq \mathfrak{q}$ and so $N_{A/R} = c(\Lambda)$. According to Proposition 2, then, $D_{A/R} = \Lambda$, and therefore $D_{A/R} \not\subseteq \mathfrak{P}$.

(2) \Longrightarrow (3): Suppose that \mathfrak{P} is ramified over R. Again, by [2], (3.2), we have $N_{A/R} \subseteq \mathfrak{q}$. Now we shall prove $[D_{A/R}]^{\mathfrak{p}} \subseteq \mathfrak{q}A$. In order to prove this we may further assume that \mathfrak{q} is a minimal prime divisor of $N_{A/R}$. Therefore, by Corollary 1 to Proposition 2, we may assume that height_{e(A)} \mathfrak{q} = height_R \mathfrak{p} = 1. Now, by Theorem 1 and Lemma 2, we have $\operatorname{trd}_{\Sigma/K}(D_{A/R})$ $\subseteq \mathfrak{p}$. Since R is a discrete rank one valuation ring, we easily see $\mathfrak{p}^{-1}D_{A/R} \subseteq C_{A/R}$. Consequently we get $[D_{A/R}]^{\mathfrak{p}} \subseteq \mathfrak{p}A \subseteq \mathfrak{q}A$. This proves (2) \Longrightarrow (3). q.e.d.

References

- M. Auslander and D.A. Buchsbaum, On ramification theory in Noetherian rings, Amer. J. Math., 81 (1959), 749-765.
- [2] S. Endo, On ramification theory in projective orders, Nagoya Math. J., 36 (1969); 121-141.
- [3] S. Endo and Y. Watanabe, On separable algebras over a commutative ring, Osaka J. Math., 4 (1967), 233-242.

152

RAMIFICATION THEORY

- [4] R. Fossum, The Noetherian different of projective orders, J. reine angew. Math., 224 (1966), 209–218.
- [5] D.G. Higman, On orders in separable algebras, Canadian J. Math., 7 (1955), 509-515.
- [6] G. Janusz, Separable algebras over commutative rings, Trans. A.M.S., 122 (1966), 461– 479.
- [7] M. Nagata, Local rings, Interscience Publ., New York, 1962.
- [8] Y. Watanabe, The Dedekind different and the homological different, Osaka J. Math., 4 (1967), 227-231.

McMaster University and Tokyo University of Education