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1. Introduction

We fix an ordinary elliptic curve E over a finite field Fq of q elements.
We assume that E is given by an affine Weierstrass equation

E : y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6,

with some a1, . . . , a6 ∈ Fq [20].
We recall that the set of all points on E forms an abelian group, with the point

at infinity O as the neutral element. As usual, we write every point Q �= O on E as
Q = (x(Q), y(Q)).

Let E(Fq) denote the set of Fq-rational points on E and let P ∈ E(Fq) be a fixed
point of order T .

Let ZT denote the residue ring modulo T and let Z
∗
T be its unit group.

We use the ideas of Garaev and Karatsuba [8] to improve the bound of [1] on bilinear
sums of additive characters with x(kmP ) as argument, where k and m run through
arbitrary sets K,M ⊆ Z

∗
T . We also use a result of Chen [4], which in turn is based on a

result of Perret [16], to estimate similar bilinear sums of multiplicative characters.
∗ Present address: Claude Shannon Institute, University College Dublin, Dublin 4, Ireland (omran.

ahmadi@ucd.ie).
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We combine this bound with an argument of Garaev [7] to study two versions of the
sum–product problem on E. We show that, for any sets A,B ⊆ Z

∗
T , at least one of the

sets
S = {x(aP ) + x(bP ) : a ∈ A, b ∈ B},
T = {x(abP ) : a ∈ A, b ∈ B}

}
(1.1)

is large. Furthermore, in some ranges of #A, #B and T we obtain a matching lower
bound.

Finally, we also show that at least one of the sets

X = {x(aP )x(bP ) : a ∈ A, b ∈ B},
Y = {x(abP ) : a ∈ A, b ∈ B}

}
(1.2)

is large.
These problems are motivated by a series of recent results on the sum–product problem

over Fq, which assert that, for any sets A,B ⊆ Fq, at least one of the sets

G = {a + b : a ∈ A, b ∈ B} and H = {ab : a ∈ A, b ∈ B}

is large (see [2,3,6,7,10–13,19] for the background, various modifications of the original
problem and further references).

We note that yet another variant of the sum–product problem for elliptic curves has
recently been considered in [18] (which in turn is based on the estimate of some other
bilinear character sums given in [17]). It is shown in [18] that, for sets P,Q ⊆ E(Fq), at
least one of the sets

{x(P ) + x(Q) : P ∈ P, Q ∈ Q} and {x(P ⊕ Q) : P ∈ P, Q ∈ Q} (1.3)

is large, where ⊕ denotes the group operation on the points of E.
Throughout the paper, the implied constants in the symbols ‘O’ and ‘�’ may depend

on an integer parameter ν � 1. We recall that X � Y and X = O(Y ) are both equivalent
to the inequality |X| � cY with some constant c > 0.

2. Bilinear sums over elliptic curves

Let ψ and ϕ be a non-trivial additive character and a non-trivial multiplicative character
of Fq, respectively.

We consider the bilinear sums

Tρ,ϑ(ψ, K,M) =
∑
k∈K

∣∣∣∣ ∑
m∈M

ρ(k)ϑ(m)ψ(x(kmP ))
∣∣∣∣,

Wρ,ϑ(ϕ, K,M) =
∑
k∈K

∣∣∣∣ ∑
m∈M

ρ(k)ϑ(m)ϕ(x(kmP ))
∣∣∣∣,

where K,M ⊆ Z
∗
T , ρ(k) and ϑ(m) are arbitrary complex functions supported on K and

M with
|ρ(k)| � 1, k ∈ K, and |ϑ(m)| � 1, m ∈ M.
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The sums Tρ,ϑ(ψ, K,M) were introduced and estimated in [1]. Here we obtain a
stronger result by using the approach to sums of this type given in [8].

Theorem 2.1. Let E be an ordinary elliptic curve defined over Fq, and let P ∈ E(Fq)
be a point of order T . Then, for any fixed integer ν � 1, for all subsets K,M ⊆ Z

∗
T and

complex functions ρ(k) and ϑ(m) supported on K and M with

|ρ(k)| � 1, k ∈ K, and |ϑ(m)| � 1, m ∈ M,

uniformly over all non-trivial additive characters ψ of Fq we have

Tρ,ϑ(ψ, K,M) � (#K)1−1/2ν(#M)(ν+1)/(ν+2)T (ν+1)/ν(ν+2)q1/4(ν+2)(log q)1/(ν+2).

Proof. We follow the scheme of the proof of [8, Lemma 4] in the special case when
d = 1 (and also ZT plays the role of Zp−1). Furthermore, in our proof K, M and Z

∗
T play

the roles of X , Ld and Ud in the proof of [8, Lemma 4], respectively. In particular, for
some integer parameter L with

1 � L � T (log q)−2 (2.1)

we define V as the set of the first L prime numbers which do not divide #E(Fq) (clearly
we can assume that, say, T � (log q)3, since otherwise the bound is trivial). We also note
that in this case

max
v∈V

v = O(#V log q). (2.2)

Then we arrive at the following analogue of [8, Bound (4)]:

Tρ,ϑ(ψ, K,M) � (#K)1−1/2ν

#V
∑
t∈Z

∗
T

M
1/(2ν)
t ,

where

Mt =
∑

z∈ZT

∣∣∣∣ ∑
v∈V

ϑ(vt)χM(vt)ψ(x(zvP ))
∣∣∣∣
2ν

and χM is the characteristic function of the set M. We only deviate from that proof at
the point where the Weil bound is applied to the sums

∑
z∈H

exp
(

2πia
p

( ν∑
j=1

ztvj −
2ν∑

j=ν+1

ztvj

))
� max

1�j�2ν
vjq

1/2,

where H is an arbitrary subgroup of F
∗
q and v1, . . . , v2ν are positive integers (such that

(vν+1, . . . , v2ν) is not a permutation of (v1, . . . , vν)). Here, as in [1], we use instead the
following bound from [15]:

∑
Q∈H,
Q�=O

ψ

( ν∑
j=1

x(vjQ) −
2ν∑

j=ν+1

x(vjQ)
)

� max
1�j�2ν

v2
j q1/2, (2.3)
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where H is a subgroup of E(Fp) (in our particular case H = 〈P 〉 is generated by P )
and v1, . . . , v2ν are the same as in the above, that is, such that (vν+1, . . . , v2ν) is not a
permutation of (v1, . . . , vν).

Now, since #E(Fq) = O(q), using an argument similar to that given in [8] and recall-
ing (2.2), we obtain

Mt �
∑
v1∈V

· · ·
∑

vν∈V

( ν∏
j=1

χM(vjt)
)

T +
∑
v1∈V

· · ·
∑

v2ν∈V

( 2ν∏
j=1

χM(vjt)
)

q1/2(#V log q)2.

Therefore,

Mt �
( ∑

v∈V
χM(vt)

)ν

T +
( ∑

v∈V
χM(vt)

)2ν

q1/2(#V log q)2.

This leads to

Tρ,ϑ(ψ, K,M) � (#K)1−1/2ν

#V T 1/2ν
∑
t∈Z

∗
T

( ∑
v∈V

χM(vt)
)1/2

+
(#K)1−1/2ν

#V (#V log q)1/νq1/4ν
∑
t∈Z

∗
T

( ∑
v∈V

χM(vt)
)

.

On the other hand, we have

∑
t∈Z

∗
T

( ∑
v∈V

χM(vt)
)

= #M#V,

and by the Cauchy inequality we get

∑
t∈Z

∗
T

( ∑
v∈V

χM(vt)
)1/2

� (#Z∗
T )1/2

( ∑
t∈Z

∗
T

∑
v∈V

χM(vt)
)1/2

� T 1/2(#M#V)1/2.

Thus,

Tρ,ϑ(ψ, K,M) � (#K)1−1/2ν

(#V)1/2 T 1/2ν+1/2(#M)1/2 + (#K)1−1/2ν(#V log q)1/νq1/4ν#M.

(2.4)
Let

L =
⌊

T (v+1)/(v+2)

q1/(2v+4)(log q)2/(v+2)(#M)v/(v+2)

⌋
.

We note that if L = 0, then

T (v+1)/(v+2) � q1/(2v+4)(log q)2/(v+2)(#M)v/(v+2)

� q1/(2v+4)(log q)2/(v+2)
T v/(v+2)
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and thus
T � q1/2(log q)2.

It is easy to check that in this case

(#K)1−1/2ν(#M)(ν+1)/(ν+2)T (ν+1)/ν(ν+2)q1/4(ν+2)(log q)1/(ν+2)

#K#M
� (#K)−1/2ν(#M)−1/(ν+2)T (ν+1)/ν(ν+2)q1/4(ν+2)(log q)1/(ν+2)

� T−1/2νT−1/(ν+2)T (ν+1)/ν(ν+2)q1/4(ν+2)(log q)1/(ν+2)

= T−1/2(ν+2)q1/4(ν+2)(log q)1/(ν+2) � 1,

and thus the result is trivial.
We now assume that L � 1 and choose V to be of cardinality #V = L. Then we have

T (v+1)/(v+2)

q1/(2v+4)(log q)2/(v+2)(#M)v/(v+2) � #V � T (v+1)/(v+2)

2q1/(2v+4)(log q)2/(v+2)(#M)v/(v+2) ,

and L � T (log q)−2 provided that q is large enough. Now the result follows from (2.4). �

We also have the same result for sums of multiplicative characters.

Theorem 2.2. Let E be an ordinary elliptic curve defined over Fq, and let P ∈ E(Fq)
be a point of order T . Then, for any fixed integer ν � 1, for all subsets K,M ⊆ Z

∗
T and

complex functions ρ(k) and ϑ(m) supported on K and M with

|ρ(k)| � 1, k ∈ K, and |ϑ(m)| � 1, m ∈ M,

uniformly over all non-trivial additive characters ψ of Fq:

Wρ,ϑ(ϕ, K,M) � (#K)1−1/2ν(#M)(ν+1)/(ν+2)T (ν+1)/ν(ν+2)q1/4(ν+2)(log q)1/(ν+2).

Proof. The proof is fully analogous to that of Theorem 2.1 and so we only briefly
indicate a few changes.

First of all we notice that the proof of [15, Lemma 3], which implies that the sums

ν∑
j=1

x(vjQ) −
2ν∑

j=ν+1

x(vjQ), v1, . . . , v2ν ,

are non-constant rational functions of components x(Q) and y(Q) of Q of degree
O(max1�j�2ν v2

j ) (unless (vν+1, . . . , v2ν) is a permutation of (v1, . . . , vν)), extends to
the products

ν∏
j=1

x(vjQ)
2ν∏

j=ν+1

x(vjQ)−1, v1, . . . , v2ν ,
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at the cost of only minor changes. Furthermore, using the bound of Chen [4, Propo-
sition 1] instead of the bound of [14] used in [15], we obtain the following analogue
of (2.3): ∑

Q∈H,
Q�=O

ϕ

( ν∏
j=1

x(vjQ)
)

ϕ̄

( 2ν∏
j=ν+1

x(vjQ)
)

� max
1�j�2ν

v2
j q1/2,

where ϕ̄ is the complex conjugate character (we also recall that ϕ(z−1) = ϕ̄(z) for any
z ∈ F

∗
q). The rest of the proof follows that of Theorem 2.1 without any changes. �

3. Lower bounds for sum–product problems on elliptic curves

Theorem 3.1. Let A and B be arbitrary subsets of Z
∗
T . Then for the sets S and T ,

given by (1.1), we have

#S#T � min{q#A, (#A)2(#B)5/3q−1/6T−4/3(log q)−2/3}.

Proof. Let
H = {ab : a ∈ A, b ∈ B}.

Following the ideas in [7], we now denote by J the number of solutions (b1, b2, h, u) to
the equation

x(hb−1
1 P ) + x(b2P ) = u, b1, b2 ∈ B, h ∈ H, u ∈ S. (3.1)

Since the vectors

(b1, b2, h, u) = (b1, b2, ab1, x(aP ) + x(b2P )), a ∈ A, b1, b2 ∈ B,

are obviously all pairwise distinct solutions to (3.1), we obtain

J � #A(#B)2. (3.2)

To obtain an upper bound on J we use Ψ to denote the set of all q additive characters
of Fq and write Ψ∗ for the set of non-trivial characters. Using the identity

1
q

∑
ψ∈Ψ

ψ(z) =

{
1 if z = 0,

0 otherwise,
(3.3)

we obtain

J =
∑
b1∈B

∑
b2∈B

∑
h∈H

∑
u∈S

1
q

∑
ψ∈Ψ

ψ(x(hb−1
1 P ) + x(b2P ) − u)

=
1
q

∑
ψ∈Ψ

∑
b1∈B

∑
h∈H

ψ(x(hb−1
1 P ))

∑
b2∈B

ψ(x(b2P ))
∑
u∈S

ψ(−u)

=
(#B)2#S#H

q
+

1
q

∑
ψ∈Ψ∗

∑
b1∈B

∑
h∈H

ψ(x(hb−1
1 P ))

∑
b2∈B

ψ(x(b2P ))
∑
u∈S

ψ(−u).
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Applying Theorem 2.1 with ρ(k) = ϑ(m) = 1, K = H and M = {b−1 : b ∈ B} and also
taking ν = 1, we obtain ∣∣∣∣ ∑

b1∈B

∑
h∈H

ψ(x(hb−1
1 P ))

∣∣∣∣ � ∆,

where
∆ = (#H)1/2(#B)2/3T 2/3q1/12(log q)1/3.

Therefore,

J � (#B)2#S#H
q

+
1
q
∆

∑
ψ∈Ψ∗

∣∣∣∣ ∑
b∈B

ψ(x(bP ))
∣∣∣∣
∣∣∣∣ ∑

u∈S
ψ(−u)

∣∣∣∣. (3.4)

Extending the summation over ψ to the full set Ψ and using the Cauchy inequality, we
obtain

∑
ψ∈Ψ∗

∣∣∣∣ ∑
b∈B

ψ(x(bP ))
∣∣∣∣
∣∣∣∣ ∑

u∈S
ψ(u)

∣∣∣∣ �

√√√√∑
ψ∈Ψ

∣∣∣∣ ∑
b∈B

ψ(x(bP ))
∣∣∣∣
2
√√√√∑

ψ∈Ψ

∣∣∣∣ ∑
u∈S

ψ(u)
∣∣∣∣
2

. (3.5)

Recalling the orthogonality property (3.3), we derive

∑
ψ∈Ψ

∣∣∣∣ ∑
b∈B

ψ(x(bP ))
∣∣∣∣
2

= q#{(b1, b2) ∈ B2 : b1 ≡ ±b2 (mod T )} � q#B.

Notice that b1 ≡ −b2 (mod T ) has been included, since x(P ) = x(−P ) for P ∈ E(Fq).
Similarly, ∑

ψ∈Ψ

∣∣∣∣ ∑
u∈S

ψ(u)
∣∣∣∣
2

� q#S.

Substituting these bounds in (3.5), we obtain

∑
ψ∈Ψ∗

∣∣∣∣ ∑
b∈B

ψ(x(bP ))
∣∣∣∣
∣∣∣∣ ∑

u∈S
ψ(u)

∣∣∣∣ � q
√

#B#S,

which, after substitution in (3.4), yields

J � (#B)2#S#H
q

+ ∆(#S)1/2(#B)1/2. (3.6)

Thus, comparing (3.2) and (3.6), we derive

(#B)2#S#H
q

+ ∆(#S)1/2(#B)1/2 � #A(#B)2.

Thus, either

(#B)2#S#H
q

� #A(#B)2 (3.7)
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or

∆(#S)1/2(#B)1/2 � #A(#B)2. (3.8)

If (3.7) holds, then we have
#S#H � q#A.

If (3.8) holds, then, recalling the definition of ∆, we derive

(#S)1/2(#H)1/2(#B)5/3T 2/3q1/12(log q)1/3 � #A(#B)2.

It only remains to note that #T � 0.5#H to conclude the proof. �

We now consider several special cases.

Corollary 3.2. For any fixed ε > 0 there exists δ > 0 such that if A,B ⊆ Z
∗
T are

arbitrary subsets with
q1−ε � #A � #B � T 4/5+εq1/10,

then for the sets S and T , given by (1.1), we have

#S#T � (#A)2+δ.

In particular, if T � q1/2+ε, then there is always some range of cardinalities #A and
#B in which Corollary 3.2 applies non-trivially.

Corollary 3.3. If A,B ⊆ Z
∗
T are arbitrary subsets with

#A = #B � T 1/2q7/16(log q)1/4,

then for the sets S and T , given by (1.1), we have

#S#T � q#A.

We now obtain the multiplicative analogue of the above results for the sets X and Y,
given by (1.2).

Theorem 3.4. Let A and B be arbitrary subsets of Z
∗
T . Then for the sets X and Y,

given by (1.2), we have

#X#Y � min{q#A, (#A)2(#B)5/3q−1/6T−4/3(log q)−2/3}.

Proof. Let
G = {ab : a ∈ A, b ∈ B}.

We remove, if necessary, at most two elements a ∈ A, b ∈ B for which x(aP ) = x(bP ) = 0,
and denote by I the number of solutions (b1, b2, g, w) to the equation

x(gb−1
1 P )x(b2P ) = w, b1, b2 ∈ B, g ∈ G, w ∈ X .

As before, we notice that
I � #A(#B)2.
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To obtain an upper bound on I we use Φ to denote the set of all q multiplicative
characters of Fq and write Φ∗ for the set of non-trivial characters. Using the multiplicative
analogue of (3.3):

1
q − 1

∑
ϕ∈Φ

ϕ(z) =

{
1 if z = 1,

0 otherwise,

we obtain

I =
∑
b1∈B

∑
b2∈B

∑
g∈G

∑
w∈X

1
q − 1

∑
ϕ∈Φ

ϕ(x(gb−1
1 P )x(b2P )w−1)

=
1

q − 1

∑
ϕ∈Φ

∑
b1∈B

∑
g∈G

ϕ(x(gb−1
1 P ))

∑
b2∈B

ϕ(x(b2P ))
∑
w∈X

ϕ̄(w)

=
(#B)2#S#H

q − 1
+

1
q − 1

∑
ϕ∈Φ∗

∑
b1∈B

∑
g∈G

ϕ(x(gb−1
1 P ))

∑
b2∈B

ϕ(x(b2P ))
∑
w∈X

ϕ̄(u).

Applying Theorem 2.2 instead of Theorem 2.1, and proceeding as in the proof of
Theorem 3.1, we derive the desired result. �

Accordingly, we also obtain the following result.

Corollary 3.5. For any fixed ε > 0 there exists δ > 0 such that if A,B ⊆ Z
∗
T are

arbitrary subsets with
q1−ε � #A � #B � T 4/5+εq1/10,

then for the sets X and Y, given by (1.2), we have

#X#Y � (#A)2+δ.

Corollary 3.6. If A,B ⊆ Z
∗
T are arbitrary subsets with

#A = #B � T 1/2q7/16(log q)1/4,

then for the sets X and Y, given by (1.2), we have

#X#Y � q#A.

4. Upper bound for a sum–product problem on elliptic curves

We now show that in some cases the sets S and T are not very big.
As usual, we use ϕ(T ) = #Z

∗
T to denote the Euler function.

Theorem 4.1. Let q = p be prime and let T � p3/4+ε. Then there are sets A = B ⊂
Z

∗
T of cardinality

#A = #B = (1 + o(1))
ϕ(T )2

2p

such that for the sets S and T , given by (1.1), we have

max{#S, #T } � (
√

2 + o(1))
√

p#A

as p → ∞.
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Proof. We recall the bound from [14] of exponential sums over subgroups of the
group of points on elliptic curves, which, in particular, implies that, for any subgroup G
of E(Fp), the bound ∑

G∈G
exp(2πiλx(G)/p) � p1/2 (4.1)

holds uniformly over all integers λ with gcd(λ, p) = 1.
Let µ(d) be the Möbius function, that is, µ(1) = 1, µ(m) = 0 if m � 2 is not square-free

and µ(m) = (−1)ω(m) otherwise, where ω(d) is the number of distinct prime divisors of
d � 2 [9, § 16.2].

Using the inclusion–exclusion principle, we obtain

T∑
a=1,

gcd(a,T )=1

exp(2πiλx(aP )/p) =
∑
d|T

µ(d)
T∑

a=1,
d|a

exp(2πiλx(aP )/p)

=
∑
d|T

µ(d)
T/d∑
b=1

exp(2πiλx(bdP )/p).

Using (4.1) and recalling that [9, Theorem 317]∑
d|T

1 = T o(1),

we derive
T∑

a=1,
gcd(a,T )=1

exp(2πiλx(aP )/p) � p1/2+o(1).

Combining this with the Erdős–Turán inequality [5, Theorem 1.21], we see that, for any
positive integer H, there are Hϕ(T )/p + O(p1/2+o(1)) elements a ∈ Z

∗
T with x(aP ) ∈

[0, H − 1]. Let A = B be the set of these elements a. For the sets S and T , we obviously
have

#S � 2H and #T � ϕ(T ).

We now choose H = ϕ(T )/2. Since T � p3/4+ε and also since [9, Theorem 328]

ϕ(T ) � T

log log T
,

we have

#A = #B =
ϕ(T )2

2p
+ O(p1/2+o(1)) = (1 + o(1))

ϕ(T )2

2p

as p → ∞. Therefore,

max{#S, #T } � (
√

2 + o(1))
√

p#A,

which concludes the proof. �
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We note that if T � p23/24+ε, then the cardinality of the sets A and B of Theorem 4.1
is

#A = #B = T 2+o(1)p−1 � T 1/2p7/16(log p)1/4,

and thus Corollary 3.3 also applies and we have

(
√

2 + o(1))
√

p#A � max{#S, #T } �
√

#S#T �
√

p#A,

showing that both Corollary 3.3 and Theorem 4.1 are tight in this range.

5. Comments

We note that, using Theorems 2.1 and 2.2 with other values of ν in the scheme of the proof
of Theorems 3.1 and 3.4, respectively, one can obtain a series of other statements. How-
ever, they cannot be formulated as a lower bound on the products #S#T and #X#Y.
Rather, they only give a lower bound on max{#S, #T } and max{#X , #Y}, which,
however, may in some cases be more precise than those which follow from Theorems 3.1
and 3.4, respectively.

We note also that we do not have any upper bound for the sets X and Y, given
by (1.2). Some analogue of Theorem 4.1 can also be obtained for such sets, but only
when Fq contains a subgroup of a desired size.

Certainly, extending the range in which the upper and lower bounds on #S and #T
coincide is also a very important problem.

Finally, we note that, using the bound of [16] (see also [4]) on multiplicative character
sums along an elliptic curve, one can obtain an analogue of the estimate of [17] for the
bilinear multiplicative character sum with x(P ⊕Q) over P ∈ P, Q ∈ Q for two arbitrary
sets P,Q ⊆ E(Fq). In turn, this allows the derivation of an analogue of the results of [18],
obtained for (1.3), and also for the sets

{x(P )x(Q) : P ∈ P, Q ∈ Q} and {x(P ⊕ Q) : P ∈ P, Q ∈ Q}.
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