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MOVING BOUNDARY PROBLEMS IN THE FLOW
OF LIQUID THROUGH POROUS MEDIA
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Abstract

The movement of the interface between two immiscible fluids flowing through a porous
medium is discussed. It is assumed that one of the fluids, which is a liquid, is much more
viscous than the other. The problem is transformed by replacing the pressure with an
integral of pressure with respect to time. Singularities of pressure and the transformed
variable are seen to be related.

Some two-dimensional problems may be solved by comparing the singularities of
certain analytic functions, one of which is derived from the new variable. The implications
of the approach of a singularity to the moving boundary are examined.

1. Introduction

A viscous liquid flows through a porous medium. It will be assumed that Darcy's
law holds so that the velocity of the liquid is proportional to the gradient of
pressure; the constant of proportionality is negative. By fluid velocity we mean
the local velocity averaged throughout some representative region, which is much
larger than the pores but much smaller than the total system, and which includes
both the pores and the matrix (the local velocity is taken to be zero in the matrix).
The porous medium is isotropic and homogeneous [2].

The region occupied by the viscous liquid bounds a region in which there is a
much less viscous fluid. This is immiscible with the former liquid and it is
assumed that if one fluid displaces the other it does so totally so that there is a
well defined interface between the two regions.
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172 A. A. Lacey [2]

If the viscosity of the first fluid, /x,, is considerably larger than the viscosity of
the second, /w2, then the pressure gradient in the second is much less than that in
the first; so that to leading order the pressure along the boundary of the first fluid
may be considered to be independent of position. Taking asymptotic expansions
of pressure and velocity for e = n2/i

l\ ~* 0. e8> pressure ~ po + ept + • • •, then
the model considered in this paper describes the first order terms (e.g.,pQ) in the
first fluid. In the other fluid p0 is a function only of time and may be considered
to be zero. The interface between the fluids is a material boundary so that its
normal velocity is that of the liquid.

This problem is motivated by the system of oil and water (or gas) flowing
through a porous rock.

A two-dimensional problem which is modelled by the same equations concerns
the injection of molten plastic into moulds. In this case a viscous fluid flows
between two parallel plates, this is Hele-Shaw flow [4].

Again the average fluid velocity (averaged across the gap) is proportional to the
pressure gradient. The liquid is in contact with air. At the interface the air
pressure is taken to be constant and the pressure difference between the liquid
and air, due to surface tension, is also assumed to be constant.

The flow of the liquid is driven by a singularity within the region, for example a
source or sink (corresponding to an oil well) or by having a specified flow or
pressure at some fixed boundary. The moving boundary problem for pressure is
investigated by replacing pressure with a transformed variable. The resulting free
boundary problem has time appearing only as a parameter in known boundary
conditions.

The same mathematical system models electro-chemical machining [1]. In this
problem electric potential takes the place of pressure and current density replaces
fluid velocity. The rate of dissolution of the anode, on which the potential is
constant, is proportional to the normal current density.

2. Formulation

We scale the pressure p so that the velocity v satisfies

v = -Vp (1)

in the fluid-occupied region D(t).
We are able to do this since the medium is homogeneous and isotropic. This

equation is assumed to hold up to the interface. Edge effects, such as the fountain
effect [5], are neglected. For an incompressible fluid in a homogeneous medium
conservation of mass gives

V • v = 0 in D. (2)
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The interface is a material boundary so that it moves with normal velocity vn

equal to the normal velocity of the fluid. Also on the free boundary 3Z)(/),

P = 0. (3)

Eliminating v, the moving boundary problem that is to be solved becomes

V2p = 0 in D(t) (4)

the normal velocity of 3D, vn, satisfies

»• = - £ • <«
also/> has specified singularities in D and (3) holds on 8 £>(/)•

3. The transformation of the dependent variable

The problem (3)-(5) has the disadvantage of time appearing implicitly in the
moving boundary condition (5) through vn. We seek to transform the problem,
replacing p by a variable u which will be seen to be related to the volume
occupied by the fluid, so that the time only appears as a parameter in a free
boundary problem. In this way the position of the boundary may be located at
any time f, without having to compute its location for all intervening times /,
0 < f < / , .

As long as the solution to (3), (4) and (5) exists, which is to say that our model
is valid, the equation describing the location of the boundary dD(t) can be
written in the form

«(r) = /. (6)
We expect that the system is well behaved so that w is a smooth function. In this
case we take the total time derivative of equation (6) and use (5) to find

V / > V « + 1 = O ondD(t). (7)

In writing 9£> in the form (6) we assume that the boundary crosses no point more
than once. The quantity a is not defined for points r which at no time lie on the
boundary.

For any point that has been crossed during the interval [0, /] we can define a
new dependent variable u by

« ( r , 0 = / ' />(r,/ ,)*,. (8)
Ju(r)

If the fluid-occupied region is expanding, u is defined for r in the region
D(t) - D(0) (r is in D). If the region is contracting, (8) applies in £>(0) - D(t),
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which is to say, since r is outside D, that p is actually the analytic continuation of
the pressure.

If p and w are sufficiently smooth (8) can be differentiated twice within the
region in which u is defined:

V 2 w = l . (9)

Equation (9) can be used to continue u analytically elsewhere, up to any
singularities, branch cuts, or natural boundaries of u.

The definition (8) also reveals that on the boundary 3Z)(/)

« = 0, (10)

£ = • • <»>
or equivalently (disregarding a constant),

V« = 0. (11')

We can now see that if we know what the region D is at any time t we have a
Cauchy problem, (9), (10) and (11), for w. This is necessarily ill-posed. In
particular, since we know the initial boundary, w(r, 0) is, in principle at least,
determined.

If we differentiate u with respect to time we see from (9) that

V 2 | y = 0 (12)

away from singularities of u. We also have, from (8),

%-r 03)
in some region (p is the continuation of pressure for a contracting region).
Equation (4) can be used to analytically continue p. Hence, apart from the
singularities and branch cuts of u and p, (13) applies everywhere. Outside D(t),
du/dt is simply the continuation of p; its exterior singularities may be regarded as
applied singularities of pressure, which, in conjunction with the real (and known)
internal singularities, give rise to a moving boundary which has normal velocity
equal to -9/?/9n and on which p vanishes.

Integrating (13) between 0 and t gives

/ ' ( r , / , ) < * , (14)

except at the singular points of p and u. Since a priori p is unknown, (14) cannot
be used to determine u directly. However, the singularities of p within D, for
example applied sources and sinks, are known. Thus (14) defines the correspond-
ing interior singularities of u. The exterior singularities are of course as yet
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undetermined since there is no direct information on the behaviour of p outside
D. Other internal singularities of w(r, /) are those of u(r, 0) which are given by the
solution to (9), (10) and (11) at t - 0.

The variable u is related to the amount of fluid distributed in the region D.
Taking some region fi lying within D such that there is no singularity of u
between 3fl and 3D we see that the volume of fluid in D — fl is

f \d3x = f

Hence the amount of fluid lying outside Q is given by the integral of -du/dn over
its boundary. (If there are no singularities of u in fl, then the volume in B is
ha 9"/9" d3x.) Any change in the volume outside u is seen to be given by the
integral of the change of -3M/3/I , but this is also the time integral of
-Jaadp/dnd2x (directly from (1)). Note from (13) the identity of the two
expressions.

Figure I. Fluid-occupied region D and the singularities of u. + constant singularities of u(r, 0 =
singularities of u(r,0). ® singularities of pressure, e.g. sources: the singularities of u are known but
not constant. X unknown exterior singularities of u.
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Applying (13) to the integral - / 3 0 dp/dn d2x for some small region around an
isolated source (or sink) we again see that the increase in -/3C du/dn d2x is just
the volume added at the source.

We are now in a position to restate the moving boundary problem for p as a
free boundary problem for u (see Figure 1):

(i) V 2 u — 1 in D except at the singularities and branch cuts,
(ii) u has specified internal singularities which are the singularities of «(r, 0) that

lie within D(0) together with the time integrals of the known singularities of
pressure,

(iii) u = du/dn = 0 on the unknown boundary 3D.
The last condition may be replaced by VM = 0 on 3D. If the problem (i), (ii) and
(iii) has solutions the solution which admits a continuous deformation of 3D from
3D(0) is selected.

Having solved the problem for u and 3D the pressure p, if required, can be
determined in two ways. Firstly u can be differentiated to give p = du/dt.
Secondly the equation v2/> = 0 in D can be solved subject lop = 0 on 3D with;?
having the required singularities.

We now give an example of the type of problem to be posed in two dimensions.
We write the similar three-dimensional problem in brackets, { }, underneath.
3.1 Problem of a circle or sphere with an off-centre source.

A source, strength Q(t), is located at r = a. The point a lies within the initial
region which is a circle {sphere} of radius R centered at r = b.

It is easily found that

u(r,0) = i | r - b | 2 - i J ? 2 l n | r - b | - i J ? 2 + i i i 2 l n / l , (15)

{ii(r.O) = i\r - b | 2 + ^ / l r - b | - i H 2 } , (15')

so that w(r, 0) has a singularity

« ii?2lnjr - b | , (16)

( U ~ J R 2 / ( 3 | r - b | ) } , (16')

at r = b, lying within D(0).
The pressure has a singularity

a | , (17)

|)}, (17')

at r = a.

Thus, at time t, u has the known singularities in D:

n | r - a | , (18)

| r - a | ) } , (18')
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where

A{t)=f'Q(tl)dtl
Jn

(19)

is the amount of fluid added at r = a between 0 and t. The two-dimensional
problem of off-centre blowing has been solved in [4] using a complex variable
method (see also below).

We are not limited to considering cases where p has isolated singularities. If
fluid is added or removed through a line or surface (line or surface sources or
sinks) then p or dp/dn, or indeed some linear combination of the two, may be
known on a fixed line or surface. In this case (14) can be applied to give the
appropriate condition for u at this fixed boundary (see Figure 2). If this boundary
is closed it must be remembered that the contained region is not part of D.

u or | U known

D
u=|H=o

Figure 2. Distributed pressure singularities. + known singularity of u. X unknown singularity of u.

4. Application of complex variable theory

For two-dimensional problems we write r = (x, y) and z = x + iy. Since
V2M = 1, the difference u — \{x2 + y2) is harmonic. So d/dx{u — \(x2 + y2)}
— / d/dy{u — \(x2 + y2)} = 3M/3X — / du/dy — \(x — iy) is an analytic func-
tion of z away from singularities of u.

If 3D is analytic its equation may be written in the form

z- = g(z) (20)

where g is analytic in some neighbourhood of 3D, [4].
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On this boundary du/dx = du/dy = 0 so

du/dx - idu/dy - \(x - iy) = -{z = -\g(z). (21)

Both sides of (21) are analytic so this equation holds everywhere, apart from
singularities and branch cuts. Thus u and g are related by

du/dx-idu/dy = \[z-g{z)\. (22)

Equations (22) and (14) yield a relationship between g(z, t) and g(z, 0):

g(z, t) = g(z,0) - 2J\dp/dx{z, /,) - idp/dy(z, /,)} dtv (23)

Equation (23) can be used directly to find the internal singularities of g.
The relationship between the internal singularities of g and those of p obtained

from (23) was found for the special case of a single point source (or sink) in a
bounded region in [4].

Knowing the internal singularities of g is equivalent to knowing ge where
g = ge + g, and g, is analytic in D whereas ge is analytic outside D. This
decomposition for g can always be carried out for bounded D. Defining ge and g,
by

L T ^ 7 ^ zinsidejD' (25)

results in the required functions.
As a simple example of the use of (23) we consider the problem of a source or

sink a t Jc=l ,_y = 0 i n a region D which is initially the right hand half plane
x > 0 .

At t = 0 the boundary 3£> is x = 0 which may be written

z = -z, (26)

and g(z,0) = -z has the singularity -z located at infinity in D(0). The source at
z = 1 has strength Q(t) so

P~ ~[Q(t)/2ir]la\z-l\ asz-*l. (27)

( 0 < 0 for a sink).
We deduce from (23) that the internal singularities of g at time / are at z = 1

and at z = oo.

g(z,t)~-z + o(l) asz-oo, (28)

g(z,t)~A(t)/(«(z-\)) + O(\) a s z - 1 , (29)

where A(t) = Jo
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We now conformally map the unit circle in the f plane onto D with a function
/: z = /(O- We specify that the point f = 0 is mapped onto z = 1 and that the
boundary point f = 1 is mapped to z = oo. The latter condition requires that /
has a singularity at £ = 1. Comparing with the transformation at / = 0 (where
A = 0) , /= (1 + 0 / (1 ~~ 0 . w e expect/to have a simple pole at f = 1.

The boundary condition z = g(z) is now used. For | f | = 1, f = 1/f so

(30)

Hence / ( l / O = g(/(O) away from the boundary since both sides are analytic
functions of f.

For | f | < 1, f(X) is analytic and z = /(f) lies in £>, where g(z) has the known
singularities (28) and (29). Also | 1/f |> 1 so / ( I / O can have singularities.
Letting f tend to zero we find that / ( I / O must have a simple pole at f = 0.

This suggests that/(O is of the form a/(f — 1) + fcf + c. From the choice of
/(0) and/(I) the constants a, fe, c will be real and/ = /.

Taking the limits ? -» 0 and f -» 1 in (30) gives the values of a, b and c:

fl = - | ( p + 2), (31)

6 = i(p-0, (32)

c = - i (2p+l) , (33)

where

/ * ] I / 2 . (34)
The continuity of the boundary, which requires that b -> 0 as A -> 0, is used in

determining the sign of p.
The above solution applies for A 3= — w/3. At the critical value /I = —TT/3 a

cusp develops in the boundary (located at z = f) and the solution cannot be
extended for more negative A. This indicates that the model we have been using
can no longer be valid for the physical problem. As A approaches — TT/3 terms
that we have been neglecting, e.g., inertial terms or the variation of pressure in
the less viscous fluid, become significant. The method of determining the map-
ping function / by comparison of the internal singularities comes from [4]. In [4]
the method is limited to bounded regions unlike the above example (however this
may be thought of as a limiting case of bounded regions D, say circles).

It may be noted that for more singularities the algebraic equations derived from
consideration of the singularities become too complicated to solve explicitly.
Moreover, for the problems for which this method of determining / works and
which have a single source or sink, the function / can actually be found directly
from the motion of the boundary.

If the internal singularities g at t = 0 are of types other than poles we are no
longer able to compare the singularities to obtain a finite system of algebraic
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equations for the parameters in / . This happens for the initial region being an
ellipse. In this case there are square-root singularities at the foci. To get the
correct corresponding singularities at later time the terms which are locally
73/2 z5/2 _ _ n e a r ^ focj m u s t jje c o n s ide r e ( j [n addition to the basic z l / 2 .

5. Three-dimensional problems

The equation z = g(z) for the two-dimensionl analytic boundary dD may be
written in the form

x-iy = Qx- i<&y (35)

for some harmonic function $. For the three-dimensional problem with an
analytic boundary we write dD as

r = V * (36)

where <J» is harmonic in some neighbourhood of the surface. With such a O we can
easily verify that up to a constant

« = i2'}2-i*- (37)
j

Taking the gradient of (37),

V« = | ( r - V$) (38)

which vanishes on the boundary. Thus du/dn vanishes and w is a constant on 3D.
This constant is zero if the arbitrary constant in 3> is chosen suitably. The
divergence of (38) shows that V2M = 1.

The free boundary problem for u in Section 3, (i)-(iii) can now be re-posed in
terms of the function $. From (14) and (37)

/ ' ( r , / , ) * , . (39)

Hence the internal singularities of <&(r, 0) and the specified singularities of
pressure are sufficient to give the internal singularities of 4>(r, /). If $ is
decomposed so that $ = <&, + $e with $, analytic in D and 4>e analytic outside D,
then the singularities of $e are known.
5.1 Relationship between the variable u and a gravitational potential

We note in passing that for bounded regions D there is a relationship between u
and the gravitational potential U due to matter of unit density occupying D. They
are related by

« = ! / , - Ue, (40)
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where U, is the internal potential or its analytic continuation into the exterior of D
(V2Ut — 1), and Ue is the external potential or its continuation into D (V2Ue = 0).
The singularities of Ue and U, lie within and outside D respectively. The boundary
conditions for u, (10) and (11) follow from the continuity of U and Vf/ at 9Z>.
Using (40) and the results of [6] we can derive (24) and (25) in two dimensions. In
three dimensions (40) and [7] give (37). Papers [6] and [7] were concerned with the
location of concentrations of heavy minerals from the measurement of their
resulting gravitational potential UH outside D. The quantity UH is given by
UM — Ue where UM is the total measured potential while Ue is the potential from
an assumed unit mass density in D. The problem of determining dD that we are
discussing here is an inverse problem: we wish to find D from knowledge of the
external potential Ue assuming that the mass in D has unit density.

It may be possible to use the equivalence to some effect. Any known solutions
to the gravitional problem with external potential Ue provide solutions to the free
boundary problem for u with internal singularities equal and opposite to those of
U..

6. Examples

The one-dimensional problem of sucking from a point, at which there is a jump
discontinuity in the slope of pressure, may be solved very simply either directly or
by the u method. Two-dimensional problems may be solved by determining a
mapping function / from the unit circle to D by examination of the singularities
of g (see [4] or above).
6.1 Distributed singularity in an oblate spheroid

For three dimensions there is a difficulty in that there is no result analogous to
the composition of analytic complex functions being analytic as in two dimen-
sions. This property was crucial to the success of the solution to two-dimensional
problems.

We can use (10) and (11') to derive the initial singularities of an oblate
spheroid. This result could be used to determine the position of the boundary
after sucking or blowing through a disc has occured in certain special ways.

Taking an oblate spheroid to have its axis of symmetry along the z-axis with its
centre at the origin, the oblate spherical co-ordinates | , TJ, <p are used:

x = K cosh £ cos ij cos <p, (41)

y = K cosh £ COST) sin <p, (42)

z = K sinh £ sin TJ . (43)
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The oblate spheroid

(x2 + /)/cosh2£0 + z2/sinh% = K2 (44)

is given by

I = io- (45)

The axisymmetric function u is independent of <p so

X { / c ( | })}

The boundary conditions (11') may be written

0

The solution is

u = (K2/6)(COS2TJ + sinh2£) + ^tan-'sinhS + A2 +(3sin27j - l)

X {^3(3 sinh2£ + l) + A^3 sinh2£ + l) tan-'sinh | + 3A4 sinh £}, (48)

where Ax, A3 and A4 are chosen to satisfy (47) so

Ax=- ( K 2 / 3 ) cosh2£0sinh {„ (49)

and

^ 4 = -(K2/12)cosh2^0sinh^0. (50)

From (48), (49) and (50) this u is continuous but has a jump in its z derivative
across the disc X 2 + ^ 2 < K 2 , Z = 0 (see Figure 3):

| j ~ ± c o s h 2 | 0 s i n h ^ 0 ( K 2 - x 2 - ^ 2 ) ' / 2 a s z - 0 ± . (51)

This initial singularity can be used to predict the deformation of the spheroid
given a distributed source or sink on the disc x2 + y2 < K2, z = 0.

Taking note of the above solution u we may solve a class of problems of
blowing through a disc when there is initially no fluid present. We expect to be
able to find a solution of the form of (48) if we can utilise oblate spherical
co-ordinates. Consider the case of addition of fluid thrpugh the disc x2 + y2 < K2,
z = 0 such that:

(i) The pressure gradient normal to the disc (the normal fluid velocity) is a
smooth function of distance from the centre of the disc (x2 +_y2)l/2, and is
independent of 9 (wherey/x = tan <£).
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Figure 3. Singularities of u for an oblate spheroid. The shaded region denotes the surface of the jump

(ii) The normal pressure gradient is the same above and below the disc so that
there is symmetry about the x, y plane.

3n * * ' y ' ' ' "X y ' ' ' ^ '

(iii) No fluid is added at the edge of the disc, in other words the normal
derivative of pressure vanishes at the edge.

P^O asx2+y2^K2. (53)

(iv) P, is non-negative for x2 + y2 < K2.
A simple case satisfying (i)—(iv) is

Px{x2 +y\t) = (K2 - x 2 - y2)V2P2(t). (54)

For this example the function u satisfies

-jz(x, y, 0+ , /) = £(x, y, 0- , /) = (K2 - x* - y ^ 2
B { t ) (55)
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where

B{t)=j'P2{tx)dtx. (56)
A)

Equation (56) follows from the z derivative of (14) with «(r, 0) = 0.
By comparison with (51) we deduce that the region occupied by the fluid

produced entirely by the distributed source

| f (x, y,0±,t)= +P2(t)(K
2 - x2-y2)i/2, x2+y2< K2,

is the oblate spheroid

(x2 + / ) / cosh 2 £ 0 + z2/sinh2£0 < K2

where £0 and t are related by

cosh2£0 sinh £0 = B(t). (57)

Equally well, we can see that if we initially have the oblate spheroid with
boundary 3Z)(0) given by (44) then if we suck through the disc,

dp
dz
| f (x, y,0±,t)= ±P2(t)(*

2 ~ x2-y2)l/2, x2+y2< K2,

then the region shrinks to the disc when B(t) = cosh2£0sinh £0.
Similar results may be obtained for a prolate spheroid. This has a distributed

logarithmic singularity on the straight line joining its foci.

7. The external singularities of u and D

As can be seen from the example of off-centre suction from a circle, [4], the
solution to the problem ceases to exist if an external singularity of g approaches
the boundary. This, together with the relationships between g, u and p(— du/dt),
suggests in general the importance of locating all the singularities of u. Clearly the
solution "blows-up" if a singularity of p, and hence of u, reaches 3Z>.

It has been shown that the internal singularities of u are determined by the
initial boundary shape through u(r, 0) and by the singularities of pressure within
D. By the very definition of internal singularity, the boundary 3D never crosses
any of these points. For a system with a contracting region, if an internal
singularity were approached at some time the boundary would become non-ana-
lytic at that point so the solution would fail to exist for later times. However, for
some simple two-dimensional problems with suction from a point (such as the
example in Section 4 or that of [4]) it is easily seen that the model breaks down
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with non-analyticity in dD due to an external singularity overtaking the boundary.
The form of this external singularity of g, being associated with a stationary value
of the mapping function/, is in general that of a square root.

-+-.©. -e-

Figure 4. The movement of external singularities for an initial half-plane x > 0, (a) blowing, (b)
suction. X point source, ® point sink, ffi position of external singularity at t = 0, + external
square-root singularity. — deformed boundary, • • • trajectory of external square-root singularity.
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The typical behaviour upon the approach of such a singularity at time tc is for
both the singularity and boundary to move at a speed of O([tc — t]']/2). The
singularity in g becomes of type z3 / 2 and the boundary forms a cusp at / = tc.
This behaviour is most easily seen in the example of a point sink located at z = 0
within the cardioid whose boundary is described by

2 = a(t)$ + b{t)$2 (58)

for | f | = 1. Here 0 < b < {a for / < tc (see [3]). The cusp forms at z = b(tc) -
a(tc), tc being given by a(tc) = 2b(te).

Previously considered examples ([4] or above) show the following features:
(i) Initially the pressure has an induced logarithmic singularity at a point, zs,

outside D. This point is related to the position of the applied singularity by
reflection for the half plane and by conjugacy for off-centre suction or blowing in
a circle.

(ii) The function g develops two branch points of square-root type with a
branch cut linking them. These form in pairs at the point zs in (i). For blowing
they initially move parallel to the boundary (Figure 4a), whereas for suction one
moves directly towards the boundary while the other moves directly away (Figure
4b).

(iii) There is no induced singularity at infinity.
(iv) The function g, may be written as a Cauchy integral along the branch cut

joining the square-root singularities.
(v) For small values of time, so that the external singularities are close to the

point zs at which they form, and for distances from the singularities much greater
than the length of the branch cut, to leading order p behaves as a logarithm about
zs. The leading term for g has a simple pole at zs.

In connection with property (v), solutions for small time may be sought as
asymptotic expansions for t -»0. In particular the half-plane problem can be
discussed in this way. The expansions for p and s, where the boundary 3D is
written in the form x = s(y, t), are power series in /:

P ~ P o + tP\ + • • • > s ~ t s } + t 2 s 2 + ••• .

The leading term p0 has the logarithmic behaviour of (i) and (v) at z — zs.
Using p0 to determine s, the position of the boundary is correctly found to an
error of O(t2). Then />, is found to have r'2 cos 20 type behaviour near the
external singularity.

In general in the expansion of p the O(tm) term pm has a singularity of type
r'2mcos2md near zs. Thus (23) predicts that in the expansion g ~ g0 + /g, + • • •,

gm~am/(z - z j 2 m + 1 a s z - ^ z s , m = 0 , l , . . . , (59)

where the am are constants.
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The expansions of p and g are non-uniform for \z — zs\~ O(/1/2). To de-
termine the precise nature of the external singularities, or, equivalently, to
evaluate the leading term in the expansion for g in the small region \z — zs\~
O(tl/2), the gm must be determined for all m since there are no boundary
conditions imposed near zs. Matching between the regions | s — zs |~ 0(1) and
| z — zs |~ O(/1/2) could then be used to find each term in the expansion of g in
the "inner region" as a descending power series in (z — zs)

2/t. Effectively the full
problem must be solved to obtain p to leading order everywhere although t is very
small.

For the half-plane problem we can deduce some information about the boundary
by writing g(- as an integral as in (iv) and examining the consequences of z = g(z)
on the boundary.

We have seen above that, apart from the role played by the external singulari-
ties in describing the boundary through r = v($(- + $e), they can have the
additional direct importance in the breakdown of the model as they approach 3D.
We believe that in general the boundary fails to exist due to an exterior
singularity catching up with the boundary both for two and three dimensions. If
the boundary approached an internal singularity at r = 0 where u ~ O(r^) as
r -» 0 for some /? < 1 then, unless some exterior singularity was also in the
neighbourhood of r = 0, 3u/3« would become large, contradicting (11).

It is desirable to have some means of calculating these external singularities for
three dimensional problems.

For the problem of suction from (0,0,1) in the half-space z > 0 a small time
perturbation analysis can be used to find there is an induced singularity of
pressure,

) (G>°) at (0,0,-1).

The position of the perturbed boundary is

z ~ Q(O)t/ (2TT(X2 + y2)1'2) + O(t2) for / - 0. (60)

Following the ideas suggested by (iii) and (iv) we can try to write $, as an
integral along some interval of the negative z-axis. [We conjecture that for three
dimensions the singularities of <& are, in general, of three types: (a) Point \/r
singularities as for a sphere, (b) logarithmic singularities along an arc as for a
prolate spheroid, (c) jumps in derivative across a surface as for an oblate
spheroid.] However, after consideration of large values of x2 + y2 we are led to
the conclusion that the boundary moves a distance of less than O([x2 + y2]~m/2)
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for any m. This contradicts the small time analysis. We find a similar contradic-
tion if we assume that

*,= 2 amrrPm-Mz + \)/rt)
m=\

where r, = [x2 + y1 + (z + l ) 2 ] l / 2 and the Pm are the Legendre polynomials.
This suggests that in this case at least some singularities of 0 (and p) are

induced at infinity. This possibility is given some strength by the two-dimensional
example of a sink within an ellipse. In this case the small time solution indicates
an infinity of induced external singularities of p; the set of these singularities is
unbounded.

8. Some limits on the existence of a solution

We shall now use the function u to estimate some upper bounds on the times
for which solutions to some of our problems can exist. The fact that the boundary
cannot cross internal singularities of u (as noted in the previous section) will be
applied.

If there is suction from a fixed sink at r = a in D, p Q{t)/(4ir | r — a |) as
•" ~* a (Q > 0). For such a system for r in D with r ¥= a, p < 0. We define a
potential <j> in D by

* = P + G ( 0 / ( 4 » | r - a | ) . (61)

If we suppose that the point E(t) is the point of the boundary nearest to a, at a
distance p(?)> then the sphere | r — a | = p is tangent to 3D at E and lies within D
elsewhere. Thus <j> — Q(t)/4irp at E and <f> < Q(t)/4wp on | r — a |= p. Since
V2<#> = 0 in | r — a |< p the maximum principle leads to <j> < Q(t)/4irp in D.
Hence at E

| U 0 and ^>Q(t)/4npi. (62)

The inward normal speed of the boundary at E is greater than or equal to
Q(t)/4irp2, so dp/dt < -Q(t)/4irp2 and

Y/3, (63)
where A(t) — loQ(t\)dtv

Equation (63) predicts that p must vanish no later than the time t0 at which
p3(0) = 3A(IO)/4TT. We deduce that the solution to the problem exists up to some
time f, where r *£ tn.
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Using the estimate of (63) to obtain an upper bound on tc we find that, for
off-centre suction from a sphere of radius R and centre b,

A(tc)<4v(R-\a-b\f/3.

For the half-space problem of suction from (0,0,1) the estimate is

A(te) <4w/3.

Similar analysis in two dimensions (for the purposes of gaining information about
some of the unsolvable problems, for example, the ellipse) gives A(tc) < wp2(0).
For the half plane problem this estimate gives A(tc) < m compared to the true
value A(tc) = -n/3 (see Section 4).

The estimate A(tc) < 4irp3(0)/3 comes from the boundary failing to travel past
the sink. We now wish to use the fact that 3D cannot cross the internal
singularities of w(0).

Clearly the problem of off-centre suction from a sphere does not admit an
improved estimate using this property. We shall consider instead a dipole in a
sphere.
8.1 A dipole singularity of pressure within a sphere

At r = (0,0, a), which lies in D(0), the unit sphere | r |< 1, there is a dipole so
that

p ~(z — a)[x2 + y 2 + ( z — a)\ as x, y -> 0 and z -> a.

At t = 0 we can find/; exactly:

p = (z - a)[x2 + y2 + (z - a

2- z/a)[x2 + y2 + (z - l/a)

From this we find that initially the point of the boundary which moves most
quickly inwards is at (0,0,-1): this is where dp/dn is largest. We expect at any
later time the point which is travelling inwards most rapidly to be that which lies
on the negative z-axis. (The speed is expected to increase as the distance to
(0,0, a) decreases, moreover the decrease in curvature of the boundary will, being
most marked where the inward velocity is greatest, tend to reinforce this effect.)

Examining the potential function <j> = p — (z — a)[x2 + y2 + (z — a)2]'3/2 in
a manner similar to that for the sink, we find that the inward speed of the
boundary at the point E, where E is the point on dD at which (z — a)[x2 + y2 +
(z — a) 2 ]" 3 / 2 is least, is greater than or equal to p~4[p2 + 3(z — a ) 2 ] l / 2 . Here, p
is the distance between (0,0, a) and E.
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From the above E will be lying on the negative z-axis at (0,0, -[p — a]). From
consideration of the speed of E

Initially p = 1 + a so at later times

+ a ) 4 -8 / ] ' / 4 . (64)

From (64) the boundary must reach (0,0,0) by

t = i[(l + a? - a4].

Since there is a singularity at (0,0,0), tc < |[(1 + a)4 - a4].
8.2 Two-dimensional parabola with suction from a point on the axis

Finally as a two-dimensional example we consider a point sink p ~ In | z + a | ,
where z = x + iy, on the axis of symmetry of the parabola x = \{\ — y2) (see
Figure 5). The function g a t / = 0 i s 2 + z — 2(2z)1/2 where z1/2 is real positive
for z real positive and the branch cut of z1/2 lies along the negative real axis. We
now seek conditions on the number a so that initially the boundary point moving
most quickly is at z = { so we may expect that the boundary point closest to
z = 0 (and the fastest travelling) lies on the positive real axis.

Writing z = jf 2 we conformally map the region 0 < £ < 1, where f = £ + /TJ,
onto £>(0) less the branch cut. The line £ = 1 is mapped onto dD(fi) and 1 = 0
onto the branch cut. We must solve

V?p = 0

in the strip, subject to p — 0 on £ = 1, 9/>/3£ = 0 on £ = 0 for TJ =£ 0, and
p ~ in | f ± ib | as f -» +• ib where a = \b2. The solution gives

| | = - |Re{l / s in[w(f + ib)/2] + l/sin[w(f - ib)/2\).

Since dp/dn on 3D(0) is given by dp/dn = (1 + 7]2)~'/29p/3£, we can now
determine those values of a which give rise to a local maximum of dp/dn at TJ = 0
(which corresponds to z = {).

Since

| f = f (1 +^r'/2{l/coshf (, + 6) + l/coshf

I f ~ w{l + (2T2 - 3/2)T,2 + {IT4 - 10r2/3

for small TJ, = WTJ/2. Here T = tanh(wf>/2).
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Hence we need to have b < 2tanh"'(\/I/2)/7r. Taking a with 0 =£ a <
2{i7~'tanh"'(\/J/2)}2 the condition that the boundary does not cross z = 0
together with the two-dimensional form of (63) yields tc «£ {[{a + \)2 — a2] = \a

u=o

o

Figure 5. Suction from a parabola.
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9. Discussion of results

We have found that the moving boundary problem (l)-(3), (5) describing the
flow of a liquid in a porous medium with the hquid in contact with an immiscible
fluid of much lower viscosity can be related to a free boundary problem for the
variable u, which is a transformation of the pressure. The new problem takes the
form of Poisson's equation for u inside the unknown region except at certain
known singularities, with u and du/dn both zero on the free boundary.

For two-dimensional problems (Section 4) where the initial boundary is
described in the form z = go(z) (where z = x + iy) and g0 is an analytic function,
the problem can be solved exactly if the driving singularities of pressure take the
form of stationary point sources, sinks and dipoles (or other reasonably simple
isolated types) and g0 is a rational function. To do this the function describing the
boundary, g, is related to the variable u so that the internal singularities of g are
known. For other initial boundaries the problem can still be solved approximately
by taking some rational approximation gr in place of the true g0.

For three-dimensional problems we are limited in our use of the method. We
are able to determine the internal singularities of u0 (the initial function u) and
hence those of u at any later time (see e.g., Section 3.1); so in principle we can
determine u, 9£> and p at any time t > 0 without having to consider intermediate
times. However, except for certain special cases, such as a spheroid with suction
or blowing in an appropriate manner from a distributed singularity (Section 6.1),
we are unable to solve general problems exactly.

But, as we have seen in Section 8, it is still possible to obtain information about
the behaviour of some problems, even if we cannot solve them exactly, by use of
the variable u. We have been able to obtain bounds on the time for which the
model is valid for some problems involving suction (considering a dipole to be a
combination of a source and a sink), which exhibit the appearance of a singularity
in the boundary at some finite time, this being less than our bound.
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