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Abstract

Burn-in is a method of ‘elimination’ of initial failures (infant mortality). In the
conventional burn-in procedures, to burn-in a component or a system means to subject it to
a fixed time period of simulated use prior to actual operation. Then those which fail during
the burn-in procedure are scrapped and only those which survived the burn-in procedure
are considered to be of satisfactory quality. Thus, in this case, the only information used
for the elimination procedure is the lifetime of the corresponding item. In this paper
we consider a new burn-in procedure which additionally employs a dependent covariate
process in the elimination procedure. Through the comparison with the conventional
burn-in procedure, we show that the new burn-in procedure is preferable under commonly
satisfied conditions. The problem of determining the optimal burn-in parameters is also
considered and the properties of the optimal parameters are derived. A numerical example
is provided to illustrate the theoretical results obtained in this paper.
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1. Introduction

Burn-in is a method of ‘elimination’ of initial failures (infant mortality). Usually, to burn-in
a component or a system means to subject it to a fixed time period of simulated use prior to
actual operation. That is, before delivery to the customers, the components or systems are
operated under operating conditions that approximate at best the working conditions in field
operation. Then those which fail during the burn-in procedure will be scrapped or repaired and
only those which survived the burn-in procedure will be considered to be of satisfactory quality.
These will then be shipped to the customers or put into field operation. Under the assumption of
decreasing or bathtub-shaped failure rate functions, various problems of determining optimal
burn-in have been intensively studied in the literature (e.g. Mi (1994), Cha (2000), (2001)).
Due to the high failure rate in the early stages of a component’s life, burn-in has been widely
accepted as an effective method of screening out these initial failures. An introduction to this
important area of reliability engineering can be found in Jensen and Petersen (1982) and Kuo
and Kuo (1983).
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As burn-in is usually costly, one of the major problems is to determine the duration of this
procedure. The best (usually in terms of costs involved) time to stop the burn-in process for
a given criterion is called the optimal burn-in time. In the literature, in addition to different
reliability performance criteria (see, e.g. Kim and Kuo (2009)), various cost structures have
been proposed, and the corresponding problem of finding the optimal burn-in time has been
considered (see, e.g. Clarotti and Spizzichino (1990), Mi (1994), Cha (2000), and Cha and
Finkelstein (2011)). See Block and Savits (1997) for excellent survey of research in this area.

As described above, in the studies on conventional burn-in procedures, the only information
used for the elimination procedure is the corresponding ‘lifetime’ of the item. That is, if the
lifetime is not sufficiently large then the corresponding item is eliminated from the population
that will be put into field use. However, if there is an observable evolving covariate process
which is dependent on the lifetime of the component then this information can additionally be
employed for the elimination procedure.

In this paper we consider a new burn-in procedure which employs a dependent covariate
process in the elimination procedure with the aim of improving the reliability performance of
the items in the population that passes the burn-in. In spite of the practical importance, to the
authors’best knowledge, this type of burn-in procedure has not been considered in the literature.
We show that the new burn-in procedure is preferable to the conventional burn-in procedure.
We will also consider the problem of determining the optimal burn-in parameters and derive the
properties of the optimal parameters. A numerical example which illustrates the application of
the theoretical results is given.

The paper is organized as follows. In Section 2 the basic probabilistic setup for considering
the new burn-in procedure is established. The conditions for justifying the new burn-in
procedure are defined and the properties of the covariate process for satisfying such conditions
are derived. For this purpose, a new conditional dependence concept between a random variable
and a stochastic process is defined in this section. In Section 3 the problem of determining
the optimal joint burn-in parameters is considered and the properties of the optimal burn-
in parameters are derived. In Section 4, assuming the gamma process as the corresponding
covariate process, the detailed theoretical results are described and an illustrative example is
given. Finally, in Section 5, some meaningful remarks are given.

2. Dependent covariate process

In order to employ the covariate process to the burn-in decision problem, there should be
a certain type of dependency between the lifetime and the covariate process. In this section,
in order to further our discussions on the new burn-in procedure, a probabilistic model for
stochastic dependence between the lifetime and the covariate process will be built.

2.1. Dependence concept

We start our discussion by introducing a dependence concept. LetX and Y be two dependent
random variables. The most basic and weakest condition for the positive (negative) dependence
betweenX and Y is that cov(X, Y ) ≥ (≤) 0. A stronger definition for the dependence between
X and Y is the ‘positive and negative quadrant dependencies’ defined as follows.

Definition 1. (Lehmann (1966). Positive and negative quadrant dependencies (PQD, NQD).)
Two random variables X and Y are PQD if the following inequality holds:

P{X > x, Y > y} ≥ P{X > x}P{Y > y} for all x and y. (1)

If (1) holds with the inequality sign reversed, then X and Y are NQD.
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Note that the condition for the negative quadrant dependency can equivalently be expressed
as follows:

P{X > x, Y > y} ≤ P{X > x}P{Y > y}
⇐⇒ P{X > x, Y ≤ y} ≥ P{X > x}P{Y ≤ y}. (2)

It is notable that PQD (NQD) is shown to be a stronger notion of dependence than the positive
(negative) covariance, but weaker than the ‘association’ which is a main concept of positive
dependence discussed in Barlow and Proschan (1981). See also Nelsen (1992) and Shaked and
Spizzichino (1998) for these concepts and other forms of positive (negative) dependence.

We will now discuss a new dependence concept which will be employed in our further
discussions on the new burn-in procedure. Let T be the lifetime of the item randomly selected
from the population and {W(t), t ≥ 0} be a ‘dependent’ covariate process. Here, the type of
dependency will be precisely defined later in this subsection. In practice, the covariate processes
are most often monotonically increasing. For example, the ‘wear’, ‘erosion’, ‘corrosion’, or
‘degradation’processes of an item are monotonically increasing covariate processes. Therefore,
throughout this paper, we will basically assume that the covariate process {W(t), t ≥ 0} is
monotonically increasing. However, the discussions can be straightforwardly modified for
the case when the covariate process is monotonically decreasing. When {W(t), t ≥ 0} is
monotonically increasing, the following new burn-in procedure will be considered.

Joint burn-in procedure for an increasing covariate. An item randomly chosen from the
population is operated for time b > 0, and if the item fails then it is discarded. Furthermore,
depending on the observed value of the covariate at time b, W(b), the item is eliminated or it
is put into field operation as follows:

(i) if W(b) ≤ w then the item is put into field operation,

(ii) if W(b) > w then the item is eliminated,

where w is a fixed constant.
Note that the above new burn-in procedure is composed of two stages: (stage 1) ordinary

time burn-in; (stage 2) elimination based on the value of the covariate at time b. Then, in order
to justify and employ the above joint burn-in procedure, the second elimination procedure
(stage 2) should further improve the quality of the population that has passed stage 1. Now, to
assess this, we have to define a conditional version of the NQD in (2).

Definition 2. (Conditional negative quadrant dependency (CNQD) with respect to T > b.)
The lifetime T and the covariate process {W(t), t ≥ 0} are NQD on condition that {T > b} if
the inequality

P{T > b + t,W(b) ≤ w | T > b}
≥ P{T > b + t | T > b}P{W(b) ≤ w | T > b} for all t and w, (3)

holds for all fixed b.

Intuitively, (3) can be interpreted as follows. Given that the item has survived the interval
[0, b], the ‘remaining lifetime’ and the covariate at time b are NQD. That is, the shorter the
covariate at time b, the longer the remaining lifetime. This condition can also be practically
justified, as the lower the degradation of an item at a time point generally implies the longer
remaining lifetime in practice.
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Let Tb be the residual lifetime of an item that has passed the usual time burn-in (stage 1) and
Tb,w be that of an item that has passed the joint burn-in procedure defined above. Rearranging
(3), it obviously holds that

P{T > b + t | T > b,W(b) ≤ w} ≥ P{T > b + t | T > b} for all t and w,

which then implies that Tb,w ≥st Tb for all fixed b and w, where ‘≥st’ represents the usual
stochastic order between two random variables (Shaked and Shanthikumar (2007)). Therefore,
(3) implies the following important property: for any fixed burn-in time b and elimination
level w, the joint burn-in outperforms the usual time burn-in in the sense that the joint burn-
in further improves the survival probability. Therefore, if the lifetime T and the increasing
covariate process {W(t), t ≥ 0} satisfy (3), then it is reasonable to perform the joint burn-in
procedure.

In the above discussion, we assumed that the covariate process is monotonically increasing.
However, in practice, the covariate can be any monotonically decreasing quality measure that
can represent the state of the item’s performance. For instance, the accuracy of performing the
requested jobs and certain quality measures (e.g. the efficiency of an electronic device) which
are randomly decreasing with time are several practical examples of such covariate processes.
We denote such a monotonically ‘decreasing covariate process’ by {V (t), t ≥ 0}. In such a
case, the larger V (t) implies the better performance of the item. Thus, in this case, the joint
burn-in procedure defined above should be modified by replacing the conditions ‘W(b) ≤ w’
and ‘W(b) > w’ with ‘V (b) ≥ v’ and ‘V (b) < w’, respectively. Now, letting W(t) ≡ −V (t)
and w ≡ −v, the covariate W(t) ≡ −V (t) is increasing and the condition of CNQD (with
respect to T > b) in (3) can be written as

P{T > b + t, V (b) ≥ v | T > b}
≥ P{T > b + t | T > b}P{V (b) ≥ v | T > b} for all t and v.

In this case, the lifetime T and the covariate process {V (t), t ≥ 0} can be defined as PQDt
on condition that {T > b} (CPQD with respect to T > b).

The discussions in the following will be focused only on the increasing covariate process
{W(t), t ≥ 0}. However, as shown above, they can be straightforwardly modified for the case
with decreasing covariate process {V (t), t ≥ 0}.
2.2. Dependence structure and basic property

In this subsection, for our further discussions on optimal burn-in, the composition of popu-
lation and a more detailed dependence structure will be formulated. Burn-in has been widely
accepted as an effective method of screening out the initial failures due to the large failure
rate in the early stages of a component’s life. Thus, the ‘sufficient condition’ for employing
the burn-in is the initially decreasing failure rate. An important question arises: why does
the failure rate initially decrease? It is observed that a population of the manufactured items
is often composed of two subpopulations: the subpopulation with normal lifetimes (main
distribution) and the subpopulation with relatively shorter lifetimes (‘freak’ distribution). In
practice, items belonging to the ‘freak distribution’ can be produced along with the items of
the main distribution, due to, for example, defective resources and components, human errors,
unstable production environment caused by uncontrolled significant quality factors, etc. (see
Jensen and Petersen (1982) and Kececioglu and Sun (1997)). In this case, the freak distribution
generally exhibits a greater failure rate than the main distribution, which results in a mixture
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of stochastically ordered subpopulations (see Cha and Finkelstein (2011), (2012)). As stated
in Badía et al. (2003) and Finkelstein (2008), the mixture of ordered failure rates is the main
cause of the decreasing population failure rate. From this point of view, in order to consider the
application of burn-in, it would be natural to assume that the whole population is the mixture of
two ‘stochastically ordered’ subpopulations: the strong subpopulation (i.e. the subpopulation
with normal lifetimes) and the weak subpopulation (i.e. the subpopulation with relatively shorter
lifetimes).

Furthermore, the dependency between the lifetime and covariate process can be well for-
mulated via the mixture setting described above. Often in practice, the covariate itself can also
cause the failure of the item. For example, items can fail due to degradation or wear when
the accumulated degradation exceeds the predetermined threshold level κ > 0. Thus, in the
following discussions, we will assume that the item also fails when W(t) > κ . In this case,
if the elimination level w satisfies w ≥ κ , then the joint burn-in time obviously reduces to the
ordinary burn-in time.

Therefore, in the following, we assume that there are two causes of failure: (i) catastrophic
failure due to shock or normal ageing (cause I); (ii) failure by the ‘increasing covariate process’
{W(t), t ≥ 0} (such as wear, erosion, and corrosion) (cause II). However, the following
discussions can easily be extended to the case when the covariate does not cause the failure of
the item and there is only cause I (see Remark 3). In some instances in the following discussions,
we will use the terms ‘covariate process’ and ‘degradation process’, interchangeably. The real
field data for the items with these types of two causes of failure can be observed in, e.g. Huang
and Askin (2003), where an electronic device has two kinds of failure mode: solder/Cu pad
interface fracture (a catastrophic failure) and light intensity degradation (a degradation failure).
See also Bocchetti et al. (2009) for a competing risks model with two failure modes: the
catastrophic failure due to thermal cracking and the failure by wear.

Denote the time to the failure of an item from the ‘strong subpopulation’ due to catastrophic
failure (cause I) byTC1 and its absolutely continuous cumulative distribution function (CDF), the
probability density function (PDF), and the failure rate function by FC1(t), fC1(t) and λC1(t),
respectively. Similarly, the time to the failure of an component from the ‘weak subpopulation’
due to cause I, the corresponding CDF, PDF, and the failure rate function are denoted by TC2,
FC2(t), fC2(t), and λC2(t), accordingly.

Let {Wi(t), t ≥ 0}, i = 1, 2, be the process of the covariate (accumulated degradation) of
an item selected from strong and weak subpopulations, respectively. That is, {Wi(t), t ≥ 0},
i = 1, 2, are the corresponding conditional covariate processes of {W(t), t ≥ 0}. Denote the
time to the failure of a component from the strong subpopulation due to cause II by TD1 and
that of a component from the weak subpopulation by TD2. The corresponding survival function
(SF), CDF, PDF, and the failure rate function are denoted by F̄Di (t), FDi (t), fDi (t), and λDi (t),
i = 1, 2, respectively. Obviously,

F̄Di (t) = P{TDi > t} = P{Wi(t) ≤ κ}, i = 1, 2.

We assume that the covariate processes {Wi(t), t ≥ 0}, i = 1, 2, possess independent and
possibly nonstationary increments.

The initial (t = 0) composition of our mixed population is as follows: the proportion of the
strong items is π , whereas the proportion of the weak items is 1 − π , which means that the
distribution of the discrete frailty random variable Z with realizations 1 and 2 in this case is

π(z) =
{
π, z = 1,

1 − π, z = 2,
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and 1 and 2 correspond to the strong and the weak subpopulations, respectively. From the
above setting, the mixture (population) survival function is given by

F̄m(t) = πF̄1(t)+ (1 − π)F̄2(t),

where F̄1(t) = F̄C1(t)F̄D1(t) and F̄2(t) = F̄C2(t)F̄D2(t). Therefore, the two causes of failures
are ‘conditionally’independent. However, clearly, the two causes of failures are unconditionally
dependent. Under the above assumptions, the PDF of the mixed population is given by

fm(t) = πf1(t)+ (1 − π)f2(t),

where fi(t) = fCi (t)F̄Di (t)+ F̄Ci (t)fDi (t), i = 1, 2, and the failure rate is

λm(t) = ρ(t)λ1(t)+ (1 − ρ(t))λ2(t),

where λi(t) = λCi (t) + λDi (t), i = 1, 2, and ρ(t) = [πF̄1(t)/πF̄1(t)+ (1 − π)F̄2(t)]. See,
e.g. Finkelstein (2008) and Cha and Finkelstein (2012) for more general discussions on the
mixture populations.

In the previous subsection, it was mentioned that the reasonable condition for justifying the
consideration of joint burn-in is given by (3) (CNQD) and, at the same time, the subpopulations
should be stochastically ordered as mentioned in the first part of this subsection. Then Theorem 1
below provides a sufficient condition of the covariate process {W(t), t ≥ 0} for satisfying all
these properties. For our discussions, we need some basic definitions and preliminary lemmas,
which can be found in Shaked and Shanthikumar (2007).

Definition 3. Let X and Y be two nonnegative continuous random variables with the corre-
sponding CDFs FX(t) and FY (t), SFs F̄X(t) and F̄Y (t), PDFs fX(t) and fY (t), and the failure
rate functions λX(t) and λY (t), respectively.

(i) If fX(t)/fY (t) decreases over the union of the supports of X and Y (here a/0 is taken to
be equal to ∞ whenever a > 0) then X is smaller than Y in the likelihood ratio order,
denoted by X ≤lr Y .

(ii) If λX(t) ≥ λY (t) for all t ≥ 0 then X is smaller than Y in the failure rate order, denoted
by X ≤fr Y .

(iii) If FY (t) ≤ FX(t) for all t ≥ 0 then X is smaller than Y in the usual stochastic order,
denoted by X ≤st Y .

Lemma 1. (i) IfX and Y are two nonnegative continuous random variables such thatX ≤lr Y

then X ≤fr Y .

(ii) If X and Y are two nonnegative continuous random variables such that X ≤fr Y then
X ≤st Y .

(iii) If X ≤st Y and g(·) is any increasing [decreasing] function then g(X) ≤st [≥st]g(Y ).
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As mentioned before, natural conditions for considering the joint burn-in are that the
subpopulations should be stochastically ordered and (3) (CNQD) should be satisfied. Clearly,
the basis for these conditions could be verbally stated as ‘the weak items fail (with respect to
cause I) earlier than the strong ones’ and ‘the weak items deteriorate faster than the strong
ones (with respect to cause II)’. This basis is precisely stipulated in the following theorem as
assumptions.

Theorem 1. Suppose that λC1(t) ≤ λC2(t) for all t ≥ 0,W1(t + s)−W1(t) ≤st W2(t + s)−
W2(t) for all t, s ≥ 0, and W1(t) ≤lr W2(t) for all t ≥ 0. Then

(i) the subpopulations are stochastically ordered in the sense of failure rate ordering:

λC1(t)+ λD1(t) ≤ λC2(t)+ λD2(t) for all t ≥ 0;

(ii) {W(t), t ≥ 0} satisfies the condition CNQD in (3):

P{T > b + t,W(b) ≤ w | T > b}
≥ P{T > b + t | T > b}P{W(b) ≤ w | T > b} for all t and w

for all fixed b.

Proof. Observe that

λDi (t) = lim
�t→0

P{t < TDi ≤ t +�t | TDi > t}
�t

, i = 1, 2.

For any fixed �t > 0,

P{t < TDi ≤ t +�t | TDi > t}
= P{Wi(t +�t) > κ | Wi(t) ≤ κ}
=

∫ κ

0
P{Wi(t +�t) > κ | Wi(t) = y}fWi(t) |Wi(t)≤κ(y) dy

=
∫ κ

0
P{Wi(t +�t)−Wi(t) > κ − y}fWi(t) |Wi(t)≤κ(y) dy

=
∫ κ

0
gi(y)fWi(t) |Wi(t)≤κ(y) dy,

where gi(y) ≡ P{Wi(t+�t)−Wi(t) > κ−y}, i = 1, 2, which is an increasing function of y.
On the other hand,

fWi(t) |Wi(t)≤κ(y) = fi(y; t)
P{Wi(t) ≤ κ} , i = 1, 2,

and
fW1(t) |W1(t)≤κ(y)
fW2(t) |W2(t)≤κ(y)

= P{W2(t) ≤ κ}
P{W1(t) ≤ κ}

f1(y; t)
f2(y; t)

is decreasing in y due to the assumption W1(t) ≤lr W2(t), where fi(y; t) is the PDF of
Wi(t), i = 1, 2. Thus, we can conclude that {W1(t) | W1(t) ≤ κ} ≤lr {W2(t) | W2(t) ≤ κ}.
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Now, for any fixed �t > 0, we have

P{t < TD1 ≤ t +�t | TD1 > t} =
∫ κ

0
g1(y)fW1(t) |W1(t)≤κ(y) dy

≤
∫ κ

0
g2(y)fW1(t) |W1(t)≤κ(y) dy

≤
∫ κ

0
g2(y)fW2(t) |W2(t)≤κ(y) dy

= P{t < TD2 ≤ t +�t | TD2 > t},
where the first inequality holds due to the fact that

W1(t + s)−W1(t) ≤st W2(t + s)−W2(t) for all t, s ≥ 0,

and the second inequality holds due to the fact that

{W1(t) | W1(t) ≤ τ } ≤lr {W2(t) | W2(t) ≤ τ } for all t ≥ 0,

and Lemma 1(iii). Therefore, we can conclude that λD1(t) ≤ λD2(t) for all t ≥ 0, and (i) is
proved.

Theorem 1(ii) will now be proved. For w ∈ (−∞, 0] ∪ [κ,∞), it obviously holds that

P{T > b+ t,W(b) ≤ w | T > b} = P{T > b+ t | T > b}P{W(b) ≤ w | T > b} for all t .

For w ∈ (0, κ), (3) is equivalent to

P{T > b + t | T > b,W(b) ≤ w} ≥ P{T > b + t | T > b}, (4)

where

P{T > b + t | T > b,W(b) ≤ w}

=
2∑
i=1

P{T > b + t | Z = i, T > b,W(b) ≤ w}P{Z = i | T > b,W(b) ≤ w}, (5)

and

P{T > b + t | T > b} =
2∑
i=1

P{T > b + t | Z = i, T > b}P{Z = i | T > b}.

Thus, we can see that both P{T > b + t | T > b,W(b) ≤ w} and P{T > b + t | T > b} are
given by the weighted averages of P{T > b + t | Z = i, T > b,W(b) ≤ w}, i = 1, 2, and
P{T > b + t | Z = i, T > b}, i = 1, 2, respectively. To show the inequality in (4), we now
analyze the corresponding elements and weights (proportions) of these weighted averages. Let
us now assume that the following inequalities hold:

(a) P{T > b + t | Z = 1, T > b} ≥ P{T > b + t | Z = 2, T > b},
(b) P{T > b+ t | Z = 1, T > b,W(b) ≤ w} ≥ P{T > b+ t | Z = 2, T > b,W(b) ≤ w},
(c) P{T > b + t | Z = i, T > b,W(b) ≤ w} ≥ P{T > b + t | Z = i, T > b}, i = 1, 2,

(d) P{Z = 1 | T > b,W(b) ≤ w} ≥ P{Z = 1 | T > b},
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(these inequalities will be proved successively). If (a)–(d) are true then the inequality in (4)
can be shown by considering the two exclusive cases separately: case I, when P{T > b +
t | Z = 1, T > b} ≤ P{T > b + t | Z = 2, T > b,W(b) ≤ w}, and case II, when
P{T > b + t | Z = 1, T > b} > P{T > b + t | Z = 2, T > b,W(b) ≤ w}.

In case I, from (a) and (b) we have

P{T > b + t | Z = 2, T > b} ≤ P{T > b + t | Z = 1, T > b}
≤ P{T > b + t | Z = 2, T > b,W(b) ≤ w}
≤ P{T > b + t | Z = 1, T > b,W(b) ≤ w}.

From these inequalities, we can see that the elements in the weighted average of P{T >

b + t | T > b,W(b) ≤ w} are greater than (or equal to) those in the weighted average of
P{T > b + t | T > b} and, therefore, the inequality in (4) obviously holds.

In case II, from (c),

P{T > b + t | Z = 2, T > b} ≤ P{T > b + t | Z = 2, T > b,W(b) ≤ w}
< P{T > b + t | Z = 1, T > b}
≤ P{T > b + t | Z = 1, T > b,W(b) ≤ w}.

Also, we have P{Z = 1 | T > b,W(b) ≤ w} ≥ P{Z = 1 | T > b} (see (d)). Therefore,

P{T > b + t | T > b,W(b) ≤ w}
= P{T > b + t | Z = 1, T > b,W(b) ≤ w}P{Z = 1 | T > b,W(b) ≤ w}

+ P{T > b + t | Z = 2, T > b,W(b) ≤ w}P{Z = 2 | T > b,W(b) ≤ w}
≥ P{T > b + t | Z = 1, T > b,W(b) ≤ w}P{Z = 1 | T > b}

+ P{T > b + t | Z = 2, T > b,W(b) ≤ w}P{Z = 2 | T > b}
≥ P{T > b + t | Z = 1, T > b}P{Z = 1 | T > b}

+ P{T > b + t | Z = 2, T > b}P{Z = 2 | T > b}
= P{T > b + t | T > b}.

Therefore, the inequality in (4) also holds in this case.
For completeness of the proof, it is now sufficient to show (a)–(d).
(a) In the result (i) of this theorem, it already has been shown that

λC1(t)+ λD1(t) ≤ λC2(t)+ λD2(t) for all t ≥ 0.

Then, the inequality P{T > b + t | Z = 1, T > b} ≥ P{T > b + t | Z = 2, T > b} directly
follows.

(b) If we set κ ≡ w then

P{T > b + t | Z = i, T > b,W(b) ≤ w} = P{T > b + t | Z = i, T > b}, i = 1, 2.

However, as the result (i) of this theorem holds for any value of κ > 0, we have the desired
result.
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(c) Observe that

P{T > b + t | Z = i, T > b}
= exp

(
−

∫ t

0
λCi (b + u) du

)
P{Wi(b + t) < κ | Wi(b) ≤ κ}

= exp

(
−

∫ t

0
λCi (b + u) du

) ∫ κ

0
P{Wi(b + t)−Wi(b) < κ − y}f{Wi(b) |Wi(b)≤κ}(y) dy,

and

P{T > b + t | Z = i, T > b,W(b) ≤ w}
= exp

(
−

∫ t

0
λCi (b + u) du

)
P{Wi(b + t) < κ | Wi(b) ≤ κ,Wi(b) ≤ w}

= exp

(
−

∫ t

0
λCi (t + u) du

) ∫ w

0
P{Wi(b + t)−Wi(b) < κ − y}fWi(b) |Wi(b)≤w(y) dy,

(6)

where P{Wi(b + t)−Wi(b) < κ − y} is a decreasing function of y. On the other hand,

fWi(b) |Wi(b)≤κ(y) = fi(y; b)
P{Wi(b) ≤ κ} , i = 1, 2

and
fWi(b) |Wi(b)≤w(y)
fWi(b) |Wi(b)≤κ(y)

= P{Wi(b) ≤ κ}
P{Wi(b) ≤ w}

fi(y; b) 1{y≤w}
fi(y; b) 1{y≤κ}

is given by P{Wi(b) ≤ κ}/P{Wi(b) ≤ w} for y ≤ w and is 0 forw < y ≤ κ . Thus, the ratio of
the conditional PDFs of (Wi(b) | Wi(b) ≤ w) and (Wi(b) | Wi(b) ≤ κ) is decreasing, which
implies that

(Wi(b) | Wi(b) ≤ w) ≤lr (Wi(b) | Wi(b) ≤ κ),

and, by (ii) and (iii) of Lemma 1,

P{T > b + t | Z = i, T > b,W(b) ≤ w} ≥ P{T > b + t | Z = i, T > b}.
(d) Note that, as mentioned before, the joint burn-in is composed of two stages: (stage 1)

ordinary time burn-in; (stage 2) elimination based on the wear amount. In stage 2, the probabil-
ities of survival (i.e. successfully passing stage 2) are given by P{W1(b) ≤ w}/P{W1(b) ≤ κ}
and P{W2(b) ≤ w}/P{W2(b) ≤ κ}, for the strong and weak subpopulations, respectively.
Thus, if

P{W1(b) ≤ w}
P{W1(b) ≤ κ} ≥ P{W2(b) ≤ w}

P{W2(b) ≤ κ}
then the proportion of strong items in the population is higher after a joint burn-in with burn-in
parameters (b,w) than that after the ordinary time burn-in of length b. However, from the
proof of result (i), we see that if W1(t) ≤lr W2(t) for all t ≥ 0 then (W1(t) | W1(t) ≤ κ) ≤lr
(W2(t) | W2(t) ≤ κ). Therefore, we have

P{W1(b) ≤ w}
P{W1(b) ≤ κ} ≥ P{W2(b) ≤ w}

P{W2(b) ≤ κ} ,

which implies that P{Z = 1 | T > b,W(b) ≤ w} ≥ P{Z = 1 | T > b}.
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Remark 1. Suppose that the increments of the covariate process are absolutely continuous
random variables. Then P{Wi(b + t)−Wi(b) < κ − y} is a strictly decreasing function of y.
In this case, for w ∈ (0, κ), the strict inequality

P{T > b + t | Z = i, T > b,W(b) ≤ w} > P{T > b + t | Z = i, T > b}, i = 1, 2,

holds, and we have the following strict inequality:

P{T > b + t | T > b,W(b) ≤ w} > P{T > b + t | T > b}.
Remark 2. IfW1(t+s)−W1(t) ≤lr W2(t+s)−W2(t), for all t, s ≥ 0, then the conditions on
{W(t), t ≥ 0} in Theorem 1 are satisfied. Therefore, the conditions in Theorem 1 are weaker
than the condition that ‘W1(t + s)−W1(t) ≤lr W2(t + s)−W2(t), for all t, s ≥ 0’. Note that
X ≤lr Y implies the stochastic orders of residual random variables, i.e. (X − t | X > t) ≤hr
(Y−t | Y > t) and (X−t | X > t) ≤st (Y−t | Y > t), whereasX ≤st Y does not necessarily.
Therefore, the class of degradation processes satisfying the conditions in Theorem 1 is larger
than that of degradation processes satisfying W1(t + s) −W1(t) ≤lr W2(t + s) −W2(t), for
all t, s ≥ 0.

Based on our discussions in this section, we can see that the conditions stated in Theorem 1
are reasonable assumptions for justifying the application of the joint burn-in.

Remark 3. When the covariate itself does not cause the failure of the item (i.e. κ = ∞ and
there is no cause II), we have

P{T > b + t | Z = i, T > b,W(b) ≤ w} = exp

(
−

∫ t

0
λCi (b + u) du

)
= P{T > b + t | Z = i, T > b}

and, thus, (a)–(d) in the proof of Theorem 1 still hold. Accordingly, Theorem 1 still holds in
this case. Thus, even when there is no cause II, the elimination based on the covariate process
further improves the survival probability of the item, and the joint burn-in procedure is still
justified.

3. Optimal joint burn-in procedure

In this section we will now consider the problem of finding the optimal joint burn-in
parameters. As burn-in is usually a costly procedure, most often, the optimal burn-in is
determined to minimize the corresponding cost function. We will now adopt a cost structure to
determine the optimal burn-in, which is similar to those in Mi (1994) and Cha (2000).

Before discussing the optimization problem, we need to describe the population distribution
after the joint burn-in. From (5), it can be seen that the mixture survival function of the burned-
in items, that is the (conditional) probability for an item that has survived the joint burn-in to
survive a further time t , is given by

F̄m(t | b,w)
≡ P{T > b + t | T > b,W(b) ≤ w}

=
2∑
i=1

P{T > b + t | Z = i, T > b,W(b) ≤ w}P{Z = i | T > b,W(b) ≤ w},
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where, from (6),

P{T > b + t | Z = i, T > b,W(b) ≤ w}
= exp

(
−

∫ t

0
λCi (t + u) du

) ∫ w

0
P{Wi(b + t)−Wi(b) < κ − y}

× fWi(b) |Wi(b)≤w(y) dy, i = 1, 2,

and the weights

P{Z = 1 | T > b,W(b) ≤ w}

= πF̄C1(b)P{W1(b) ≤ w}
πF̄C1(b)P{W1(b) ≤ w} + (1 − π)F̄C2(b)P{W2(b) ≤ w} ,

P{Z = 2 | T > b,W(b) ≤ w}

= (1 − π)F̄C2(b)P{W2(b) ≤ w}
πF̄C1(b)P{W1(b) ≤ w} + (1 − π)F̄C2(b)P{W2(b) ≤ w}

are, respectively, the proportion of strong and weak items in the population of items which
survived the joint burn-in with parameters (b,w).

For a notational convenience, we will use the following notation in the following discussions:

F̄Ci (t | b) ≡ exp

(
−

∫ t

0
λCi (t + u) du

)
, i = 1, 2,

F̄Di (t | b,w) ≡
∫ w

0
P{Wi(b + t)−Wi(b) < κ − y}fWi(b) |Wi(b)≤w(y) dy, i = 1, 2,

π(b,w) ≡ P{Z = 1 | T > b,W(b) ≤ w} = πF̄C1(b)P{W1(b) ≤ w}
p(b,w)

,

where
p(b,w) ≡ πF̄C1(b)P{W1(b) ≤ w)} + (1 − π)F̄C2(b)P{W2(b) ≤ w},

which is the probability for a generic item of the population to survive the joint burn-in.
Let τ be the mission time during the field operation. A component is chosen at random

from our initial population and the joint burn-in procedure with parameters (b,w) is applied.
If it survives the joint burn-in procedure then it is put into the field operation, otherwise the
corresponding component is discarded and another new one is chosen from the population, and
so on. This procedure is repeated until the first surviving component is obtained. Let csr be the
shop replacement cost (actually, it is the cost of a new item) and c0 be the cost for conducting
the joint burn-in procedure for one time. Let c1(b,w), as a function of (b,w), be the expected
cost for eventually obtaining a component which has survived the joint burn-in. Then

c1(b,w) = c0 + csr [1 − p(b,w)]
p(b,w)

,

where 1/p(b,w) is the total number of trials until the first ‘success’. Assume that if a mission
(of length τ) is successful (in field operation) then the gain K > 0 is ‘earned’; otherwise a
penalty C > 0 is imposed. Then the expected cost during the field operation is

c2(b,w) = −KF̄m(τ | b,w)+ CFm(τ | b,w) = −(K + C)F̄m(τ | b,w)+ C
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and the total expected cost c(b,w) is

c(b,w) = c1(b,w)+ c2(b,w) = c0 + csr [1 − p(b,w)]
p(b,w)

− (K + C)F̄m(τ | b,w)+ C. (7)

Note that, for any w ≥ κ , the joint burn-in with burn-in parameters (b,w) corresponds to the
ordinary time burn-in with burn-in time b. Furthermore, c(b, 0) = ∞ for any b > 0. Therefore,
the parameter space should be restricted to {(b,w) | b ≥ 0, w ∈ (0, κ]}. The objective is now
to find the joint optimal burn-in parameters (b∗, w∗) that satisfy

c(b∗, w∗) = min
b≥0,w∈(0,κ] c(b,w).

Then, in order to find the joint optimal burn-in parameters (b∗, w∗) efficiently, the following
procedures will be applied.

(i) At the first stage, we fix the elimination level w ∈ (0, κ] and find the optimal b∗(w) that
satisfies

c(b∗(w),w) = min
b≥0

c(b,w). (8)

(ii) At the second stage, we search for w∗ that satisfies

c(b∗(w∗), w∗) = min
w∈(0,κ] c(b

∗(w),w).

Then the joint optimal solution is given by (b∗(w∗), w∗), since the above procedure implies
that

c(b∗(w∗), w∗) ≤
{
c(b∗(w),w) for all w ∈ (0, κ],
c(b,w) for all b ≥ 0, w ∈ (0, κ].

Following the procedure described above, first search for the optimal b∗(w) satisfying (8) for
each fixed w. In this case, as the burn-in time has no given finite upper bound, the existence of
a finite upper bound for b∗(w) for each fixed w would make the search for b∗(w) substantially
more efficient. For the existence of a finite upper bound for b∗(w), compared with the conditions
in Theorem 1, we need additional conditions on the degradation process {W1(t), t ≥ 0} in
Theorem 2: W1(t1) ≤lr W1(t2),W1(t1 + s)−W1(t1) ≤st W1(t2 + s)−W1(t2), for any t2 > t1
and s ≥ 0. These conditions imply that the degradation rate of the component increases as the
age of the component increases, which is, practically, a reasonable assumption.

Theorem 2. Assume that λC1(t) ≤ λC2(t) for all t ≥ 0, and that λC1(t) is strictly increasing
with λC1(∞) ≡ limt→∞ λC1(t) = ∞. Let {Wi(t), t ≥ 0}, i = 1, 2, be any covariate
processes which possess the independent increments property. Suppose that W1(t + s) −
W1(t) ≤st W2(t + s)−W2(t) for all t, s ≥ 0,W1(t) ≤lr W2(t) for all t ≥ 0, and, further, that
W1(t1) ≤lr W1(t2),W1(t1 + s)−W1(t1) ≤st W1(t2 + s)−W1(t2) for any t2 > t1 and s ≥ 0.
Then, for each fixed w ∈ (0, κ], the upper bound for b∗(w), which is denoted by bU(w), is
given by the unique solution of the equation:

ψ(b | w) ≡ F̄C1(τ | b)F̄D1(τ | b,w)− F̄C2(τ | 0)F̄D2(τ | 0, w) = 0, (9)

where ψ(b | w) is strictly decreasing in b with

ψ(0 | w) > 0 and ψ(∞ | w) ≡ lim
b→∞ψ(b | w) < 0.
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Proof. It will be shown that for a fixed elimination level w ∈ (0, κ], c(0, w) < c(b,w),
for b > bU(w), where bU(w) is the unique solution of (9). Note that, as p(b,w) is strictly
decreasing in b ≥ 0 for a fixed elimination level w ∈ (0, κ], c1(b,w) is strictly increasing in
b ≥ 0. Accordingly, it is now sufficient to show that c2(0, w) < c2(b,w), for b > bU(w), or,
equivalently, F̄m(τ | 0, w) > F̄m(τ | b,w), for b > bU(w).

Fix w ∈ (0, κ]. Observe that F̄m(τ | b,w) is of the form of the weighted average of
F̄C1(τ | b)F̄D1(τ | b,w) and F̄C2(τ | b)F̄D2(τ | b,w), i.e.

F̄m(τ | b,w) = π(b,w)F̄C1(τ | b)F̄D1(τ | b,w)+ (1 − π(b,w))F̄C2(τ | b)F̄D2(τ | b,w).
(10)

Here, the weight π(b,w) can be rewritten as

π(b,w)

= π exp(− ∫ b
0 λC1(u) du)P{W1(b) ≤ w}

p(b,w)

= π exp(− ∫ b
0 λC1(u) du) exp(− ∫ b

0 λD1(u;w) du)

π exp(− ∫ b
0 λC1(u) du) exp(− ∫ b

0 λD1(u;w) du)+(1−π) exp(− ∫ b
0 λC2(u) du) exp(− ∫ b

0 λD2(u;w) du)
,

where λDi (u;w) is the failure rate of the lifetime TDi when the threshold level κ is replaced by
the elimination level w. As the result (i) of Theorem 1 holds for any positive κ > 0, we have
λD1(t;w) ≤ λD2(t;w) for all t ≥ 0. Then

π(b,w) =
[

1 + 1 − π

π
exp

(
−

∫ b

0
[λC2(u)− λC1(u)] du

)

× exp

(
−

∫ b

0
[λD2(u;w)− λD1(u;w)] du

)]−1

,

and, therefore, π(b,w) is increasing in b.
Now we look at the corresponding components in the weighted average of (10), say

F̄C1(τ | b)F̄D1(τ | b,w) and F̄C2(τ | b)F̄D2(τ | b,w). Due to the assumption that λC1(t)

is strictly increasing with λC1(∞) ≡ limt→∞ λC1(t) = ∞, F̄C1(τ | b) is strictly decreasing in
b, with limb→∞ F̄C1(τ | b) = 0. Furthermore, due to the assumption that

W1(t1) ≤lr W1(t2), W1(t1 + s)−W1(t1) ≤st W1(t2 + s)−W1(t2),

for any t2 > t1 and s ≥ 0, for any b′ < b′′,

F̄D1(τ | b′, w) =
∫ w

0
P{[W1(b

′ + τ)−W1(b
′)] ≤ κ − y}fW1(b′) |W1(b′)≤w(y) dy

≥
∫ w

0
P{[W1(b

′′ + τ)−W1(b
′′)] ≤ κ − y}fW1(b′) |W1(b′)≤w(y) dy

≥
∫ w

0
P{[W1(b

′′ + τ)−W1(b
′′)] ≤ κ − y}fW1(b′′) |W1(b′′)≤w(y) dy

= F̄D1(τ | b′′, w).

Then the function F̄C1(τ | b)F̄D1(τ | b,w) is strictly decreasing in b, with limb→∞ F̄C1(τ | b)×
F̄D1(τ | b,w) = 0, and, therefore, there exists a value bU(w) such that

F̄C2(τ | 0)F̄D2(τ | 0, w) > F̄C1(τ | b)F̄D1(τ | b,w) for all b > bU(w).
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Clearly, bU(w) is the unique solution of the equation

ψ(b | w) ≡ F̄C1(τ | b)F̄D1(τ | b,w)− F̄C2(τ | 0)F̄D2(τ | 0, w) = 0.

To complete the proof, we have to show that bU(w) is actually the upper bound for b∗(w), that
is, that for fixedw the optimal burn-in time b∗(w) cannot be greater than bU(w). Similar to the
procedure given in the poof of Theorem 1, we have

F̄D1(τ | b,w) =
∫ w

0
P{[W1(b + t)−W1(b)] ≤ κ − y}fW1(b) |W1(b)≤w(y) dy

≥
∫ w

0
P{[W2(b + t)−W2(b)] ≤ κ − y}fW1(b) |W1(b)≤w(y) dy

≥
∫ w

0
P{[W2(b + t)−W2(b)] ≤ κ − y}fW2(b) |W2(b)≤w(y) dy

= F̄D2(τ | b,w) for all b ≥ 0

and, thus,

F̄C1(τ | 0)F̄D1(τ | 0, w) ≥ F̄C2(τ | 0)F̄D2(τ | 0, w)

> F̄C1(τ | b)F̄D1(τ | b,w)
≥ F̄C2(τ | b)F̄D2(τ | b,w) (11)

for all b > bU(w). From (11), we can see that the minimum of the elements of the weighted
average in F̄m(τ | 0, w) is greater than the maximum of the elements of the weighted average
in F̄m(τ | b,w) for all b > bU(w). Therefore, we have

F̄m(τ | 0, w) > F̄m(τ | b,w) for all b > bU(w).

As c1(b,w) is strictly increasing in b ≥ 0, this inequality now means that c(0, w) < c(b,w),
for b > bU(w), and, thus, any b ∈ (bU(w),∞) cannot be the optimal burn-in time for fixed w.
Therefore, the solution of (9) is the upper bound for the optimal burn-in time b∗(w) for fixedw.

In Theorem 2, only the increasing failure rate of λC1(t) is considered. However, actually,
the results hold for a more general class of failure rates. For this discussion, we first need to
define the notion of the eventually (ultimately) increasing function (Mi (2003)).

Definition 4. The failure rate λ(x) is eventually increasing if there exists 0 ≤ x0 < ∞ such
that λ(x) strictly increases in x > x0.

For the eventually increasing failure rate λ(x), the first and the second wear-out points t∗
and t∗∗ are defined in Mi (2003) as

t∗ = inf{t ≥ 0 : λ(x) is nondecreasing in x ≥ t},
t∗∗ = inf{t ≥ 0 : λ(x) strictly increases in x ≥ t}.

Then, clearly, the strictly increasing failure rate is a special case of the eventually increasing
failure rate when t∗ = t∗∗ = 0.

Corollary 1. Assume that λC1(t) ≤ λC2(t) for all t ≥ 0, and that λC1(t) is eventually
increasing with the second wear-out point t∗∗ and λC1(∞) ≡ limt→∞ λC1(t) = ∞. Under
the same assumption for the covariate processes as those stated in Theorem 2, for each fixed
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w ∈ (0, κ], the upper bound bU(w), bU(w) ∈ [t∗∗,∞), is given by the unique solution of the
equation in the interval [t∗∗,∞):

ψ(b | w) ≡ F̄C1(τ | b)F̄D1(τ | b,w)− F̄C2(τ | t∗∗)F̄D2(τ | t∗∗, w) = 0, b ∈ [t∗∗,∞),

where ψ(b | w) is strictly decreasing in b ∈ [t∗∗,∞) with ψ(t∗∗ | w) > 0 and ψ(∞ | w) ≡
limb→∞ ψ(b | w) < 0.

Proof. Due to the assumption that λC1(t) is eventually increasing with the second wear-out
point t∗∗ and λC1(∞) ≡ limt→∞ λC1(t) = ∞, F̄C1(τ | b) is strictly decreasing in b in the
interval b ∈ [t∗∗,∞) with limb→∞ F̄C1(τ | b) = 0. The function F̄C1(τ | b)F̄D1(τ | b,w)
is strictly decreasing for b ∈ [t∗∗,∞) with limb→∞ F̄C1(τ | b)F̄D1(τ | B(b,w)) = 0, and,
therefore, there exists bU(w) such that

F̄C2(τ | t∗∗)F̄D2(τ | t∗∗, w) > F̄C1(τ | b)F̄D1(τ | b,w) for all b > bU(w),

where bU(w) ∈ [t∗∗,∞). Then, by the similar arguments to those of the proof of Theorem 2,
it can be shown that

F̄m(τ | t∗∗, w) > F̄m(τ | b,w) for all b > bU(w).

Therefore, bU(w) is the upper bound for the optimal burn-in time b∗(w) for fixed w.

Based on the discussions and results given above, the optimization procedure can be
summarized as follows:

Algorithm 1. (Optimization procedure.)
Stage 1. Fix the elimination level w ∈ (0, κ] and search for the optimal b∗(w) only in the

interval b ∈ [0, bU(w)] that satisfies

c(b∗(w),w) = min
b∈[0,bU(w)]

c(b,w).

Stage 2. Search for w∗ in the interval (0, κ] that satisfies

c(b∗(w∗), w∗) = min
w∈(0,κ] c(b

∗(w),w).

Joint optimal solution. The two-dimensional joint optimal solution is given by (b∗(w∗), w∗).
Alternatively to the cost function (7), we now assume that during the field operation the gain

is proportional to the mean time to failure. Therefore, the total average cost function in this
case is

c(b,w) = c0 + csr [1 − p(b,w)]
p(b,w)

−K

∫ ∞

0
F̄m(t | b,w) dt. (12)

We will now consider the problem of finding the optimal joint burn-in parameters (b∗, w∗)which
minimize c(b,w). In order to find the joint optimal burn-in parameters (b∗, w∗) efficiently, the
optimization procedures described in the previous case will be applied. In this case, as before,
the existence of a finite upper bound for b∗(w) for each fixed w would make the search for
b∗(w) substantially more efficient.
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Theorem 3. Assume that λC1(t) ≤ λC2(t) for all t ≥ 0, and that λC1(t) is strictly increasing
with λC1(∞) ≡ limt→∞ λC1(t) = ∞. Let {Wi(t), t ≥ 0}, i = 1, 2, be any covariate processes
which possess the independent increments property. Suppose that W1(t + s) − W1(t) ≤st
W2(t + s)−W2(t) for all t, s ≥ 0,W1(t) ≤lr W2(t) for all t ≥ 0, and, further, thatW1(t1) ≤lr
W1(t2),W1(t1 + s) −W1(t1) ≤st W1(t2 + s) −W1(t2) for any t2 > t1 and s ≥ 0. Then, for
each fixed w ∈ (0, κ], the upper bound for b∗(w), which is denoted by bU(w), is given by the
unique solution of the equation:

ψ(b | w) ≡
∫ ∞

0
F̄C1(t | b)F̄D1(t | b,w) dt −

∫ ∞

0
F̄C2(t | 0)F̄D2(t | 0, w) dt = 0,

where ψ(b | w) is strictly decreasing in b with

ψ(0 | w) > 0 and ψ(∞ | w) ≡ lim
b→∞ψ(b | w) < 0.

Proof. Fix w ∈ (0, κ] and let

M(b,w) ≡ π(b,w)

∫ ∞

0
F̄C1(t | b)F̄D1(t | b,w) dt

+ (1 − π(b,w))

∫ ∞

0
F̄C2(t | b)F̄D2(t | b,w) dt.

As in the proof of Theorem 2, the cost c1(b,w) during the burn-in procedure is strictly increasing
in b ≥ 0. Thus, it is sufficient to show that M(0, w) > M(b,w) for b > bU(w). Observe
that M(b,w) is of the form of a weighted average of

∫ ∞
0 F̄C1(t | b)F̄D1(t | b,w) dt and∫ ∞

0 F̄C2(t | b)F̄D2(t | b,w) dt . Then, by similar arguments as those described in the proof of
Theorem 2, it can be shown that F̄C1(t | b) is strictly decreasing in bwith limb→∞ F̄C1(t | b) =
0 for any fixed t and F̄D1(t | b,w) is decreasing in b for any t . This implies that

∫ ∞
0 F̄C1(t | b)×

F̄D1(t | b,w) dt is strictly decreasing in b with limb→∞
∫ ∞

0 F̄C1(t | b)F̄D1(t | b,w) dt = 0.
Therefore, there exists bU(w) such that∫ ∞

0
F̄C2(t | 0)F̄D2(t | 0, w) dt >

∫ ∞

0
F̄C1(t | b)F̄D1(t | b,w) dt for all b > bU(w).

Clearly, bU(w) is the unique solution of the equation

ψ(b | w) ≡
∫ ∞

0
F̄C1(t | b)F̄D1(t | b,w) dt −

∫ ∞

0
F̄C2(t | 0)F̄D2(t | 0, w) dt = 0.

Then, similar to the procedure given in the poof of Theorem 2,∫ ∞

0
F̄C1(t | 0)F̄D1(t | 0, w) dt ≥

∫ ∞

0
F̄C2(t | 0)F̄D2(t | 0, w) dt

>

∫ ∞

0
F̄C1(t | b)F̄D1(t | b,w) dt

≥
∫ ∞

0
F̄C2(t | b)F̄D2(t | b,w) dt,

and, thus, M(0, w) > M(b,w) for all b > bU(w). This inequality implies that any b ∈
(bU(w),∞) cannot be the optimal burn-in time for fixed w. Therefore, bU(w) is the upper
bound for the optimal burn-in time b∗(w) for fixed w.
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Note that, as in Corollary 1, the results in Theorem 3 can be extended without difficulty
to the more general setting of the eventually increasing failure rate λC1(t), but the details are
not stated. Furthermore, based on the results in Theorem 3, the two-dimensional optimization
algorithm, which is similar to that described previously, can be employed.

4. Nonhomogeneous gamma process

In this section more detailed results on the joint burn-in are stated, assuming that the condi-
tional covariate processes {Wi(t), t ≥ 0}, i = 1, 2, follow nonhomogeneous gamma processes.
In practice, the gamma process is intensively used in degradation modeling. For instance, in
Wu et al. (2011), a gamma process is employed to model gradual damage monotonically
accumulating over time. In Tseng et al. (2009) and Tsai et al. (2012), optimal testing plans
of gamma degradation models are discussed. In Xu and Wang (2012), an adaptive gamma
process is used to describe the deteriorating nature of the observed condition indicator. In
Pan and Balakrishnan (2011), gamma processes are used to model degradation of products
with multiple performance characteristics. An excellent survey on the application of gamma
processes in maintenance modeling can be found in van Noortwijk (2009).

For a practical formulation of the setting, we will call the corresponding covariate process
the ‘degradation process’ in the following discussions. For our further discussions, we briefly
summarize some properties of the gamma process.

The gamma process (see, e.g. Çinlar (1980)) possesses the property of independent
increments stated in Subsection 2.2 and is commonly used to describe degradation phenomena
whose growth depends on the age of the system. The widespread use of the gamma process is
due to its mathematical tractability and its flexibility, making it suitable to model the growth of
wear, fatigue, corrosion, crack, erosion, degrading health index, etc. (see, e.g. van Noortwijk
(2009)). Under the gamma process assumption, the PDFs of Wi(t), i = 1, 2, are given by

fi(y; t) = βαi(t)yαi(t)−1

�(αi(t))
exp(−βiy), i = 1, 2, y ≥ 0, (13)

where βi > 0 and αi(t) is monotonically increasing in t ≥ 0 with αi(0) = 0, i = 1, 2.
Under the gamma process defined in (13), the cumulative distribution of the degradation level
accumulated up to the generic time t of an item from the ith subpopulation, i = 1, 2, is given
by

P{Wi(t) ≤ y} =
∫ y

0

βαi(t)uαi(t)−1

�(αi(t))
exp(−βiu) du, i = 1, 2.

Thus, the survival probability due to cause II (the degradation failure) is

F̄Di (t) = P{TDi > t} = P{Wi(t) ≤ κ} =
∫ κ

0

βαi(t)uαi(t)−1

�(αi(t))
exp(−βiu) du, i = 1, 2,

and the corresponding failure rate function can be obtained by

λDi (t) = −d ln(F̄Di (t))

dt

= − d

dt

[∫ κ

0

β
αi(t)
i uαi(t)−1

�(αi(t))
exp(−βiu) du

][∫ κ

0

β
αi(t)
i uαi(t)−1

�(αi(t))
exp(−βiu) du

]−1
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=
[∫ κ

0

β
αi(t)
i uαi(t)−1

�(αi(t))
exp(−βiu) du

(∫ ∞

0
vαi(t)−1 exp(−v) dv

)2]−1

×
∫ κ

0

[
−(ln βi + ln u)α′

i (t)β
αi(t)
i uαi(t)−1 exp(−βiu)

(∫ ∞

0
vαi(t)−1 exp(−v) dv

)

+ β
αi(t)
i uαi(t)−1 exp(−βiu)

(∫ ∞

0
α′
i (t)(ln v)v

αi(t)−1 exp(−v) dv

)]
du

for i = 1, 2. On the other hand,

fWi(b) |Wi(b)≤w(y) = fi(y; b)∫ w
0 fi(u; b) du

= yαi(b)−1 exp(−βiy)∫ w
0 uαi(b)−1 exp(−βiu) du

, 0 ≤ y ≤ w,

and, therefore, the conditional probability that a strong or weak component survives up to time
t + b in the presence of only cause II, given that it has survived the joint burn-in, is

F̄Di (t | b,w)
=

∫ w

0
P{Wi(b + t)−Wi(b) < κ − y}fWi(b) |Wi(b)≤w(y) dy

=
∫ w

0 (
∫ κ−y

0 (βαi(b,t)vαi(b,t)−1/�(αi(b, t))) exp(−βiv) dv)yαi(b)−1 exp(−βiy) dy∫ w
0 yαi(b)−1 exp(−βiy) dy

,

where αi(b, t) ≡ αi(b + t)− αi(b). Furthermore, the proportion of the strong subpopulation
after the joint burn-in is:

π(b,w) = π exp

(
−

∫ b

0
λC1(u) du

) ∫ w

0

β
α1(b)
1 vα1(b)−1

�(α1(b))
exp(−β1v) dv[p(b,w)]−1,

where

p(b,w) = π exp

(
−

∫ b

0
λC1(u) du

) ∫ w

0

βα1(b)vα1(b)−1

�(α1(b))
exp(−β1v) dv

+ (1 − π) exp

(
−

∫ b

0
λC2(u) du

) ∫ w

0

βα2(b)vα2(b)−1

�(α2(b))
exp(−β2v) dv.

As stated before, in order to justify the consideration of joint burn-in, (3) (CNQD) should hold
and, at the same time, the subpopulations should be stochastically ordered. In the following
corollary the conditions for general covariate processes {Wi(t), t ≥ 0}, i = 1, 2, suggested in
Theorem 1 will be detailed for the gamma processes.

Corollary 2. Let the degradation processes {Wi(t), t ≥ 0}, i = 1, 2, be the nonhomogeneous
gamma processes defined in (13). If β1 ≥ β2 and α1(t, s) ≤ α2(t, s) for all t, s ≥ 0, then

(i) the subpopulations are stochastically ordered in the sense of failure rate ordering:

λC1(t)+ λD1(t) ≤ λC2(t)+ λD2(t) for all t ≥ 0,

(ii) {W(t), t ≥ 0} satisfies the condition CNQD in (3):

P{T > b + t,W(b) ≤ w | T > b} ≥ P{T > b + t | T > b}P{W(b) ≤ w | T > b}
for all t and w for all fixed b.
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Proof. Observe that the PDFs of W1(t + s)−W1(t) and W2(t + s)−W2(t) are given by

βαi(t,s)yαi(t,s)−1

�(αi(t, s))
exp(−βiy), i = 1, 2,

respectively, and their ratio (PDF of W1(t + s)−W1(t))/(PDF of W2(t + s)−W2(t)) is

�(α2(t, s))

�(α1(t, s))

β
α1(t,s)
1

β
α2(t,s)
2

yα1(t,s)−α2(t,s) exp{−(β1 − β2)y},

which is decreasing in y ≥ 0. This implies that W1(t + s) −W1(t) ≤lr W2(t + s) −W2(t)

for all t, s ≥ 0, and, thus, W1(t + s) − W1(t) ≤st W2(t + s) − W2(t) for all t, s ≥ 0, and
W1(t) ≤lr W2(t) for all t ≥ 0. Therefore, all the conditions in Theorem 1 are fulfilled.

Now we consider the problem of minimizing the cost function c(b,w) in (7). In the following
corollary, the upper bound for b∗(w) for each fixed w will be given and the conditions in
Theorem 2 will be described for the gamma processes.

Corollary 3. Assume that λC1(t) ≤ λC2(t) for all t ≥ 0, and that λC1(t) is strictly increasing
with λC1(∞) ≡ limt→∞ λC1(t) = ∞. Let the degradation processes {Wi(t), t ≥ 0}, i = 1, 2,
be the nonhomogeneous gamma processes defined in (13). If β1 ≥ β2, α1(t, s) ≤ α2(t, s) for
all t, s ≥ 0, and α1(t, s) is increasing in t for all s ≥ 0, then, for each fixed w ∈ (0, κ],
the upper bound for b∗(w), which is denoted by bU(w), is given by the unique solution of the
equation:

ψ(b | w) ≡ exp

(
−

∫ τ

0
λC1(b + u) du

)

×
∫ w

0 (
∫ κ−y

0 [βα1(b,τ )
1 vα1(b,τ )−1/�(α1(b, τ ))]e−β1v dv)yα1(b)−1e−β1y dy∫ w

0 yα1(b)−1e−β1y dy

− exp

(
−

∫ τ

0
λC2(u) du

) ∫ κ

0

β
α2(τ )
2 uα2(τ )−1

�(α2(τ ))
e−β2u du

= 0,

where ψ(b | w) is strictly decreasing in b with

ψ(0 | w) > 0 and ψ(∞ | w) ≡ lim
b→∞ψ(b | w) < 0.

Proof. If the condition that α1(t, s) is increasing in t for all s ≥ 0 is assumed in addition to
the condition that α1(t, s) ≤ α2(t, s) for all t, s ≥ 0, then all the conditions stated in Theorem 3
are fulfilled.

Remark 4. The condition that α1(t, s) ≤ α2(t, s) for all t, s ≥ 0 in Corollary 2 is satisfied
if dα1(t)/dt ≤ dα2(t)/dt for all t ≥ 0. Furthermore, the additional condition that α1(t, s) is
increasing in t for all s ≥ 0 in Corollary 3 is satisfied if α1(t) is a convex function.

Now we consider the problem of minimizing the cost function c(b,w) in (12). In the
following corollary, the upper bound for b∗(w) for each fixedwwill be given and the conditions
in Theorem 3 will be described for the gamma processes.

https://doi.org/10.1239/aap/1435236985 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236985


526 J. H. CHA AND G. PULCINI

Corollary 4. For the nonhomogeneous gamma processes of degradation processes {Wi(t),

t ≥ 0}, i = 1, 2, under the same assumptions as those described in Corollary 3, for each fixed
w ∈ (0, κ], the upper bound bU(w) is given by the unique solution of the equation:

ψ(b | w)
≡

∫ ∞
0 exp(− ∫ t

0 λC1(b+u) du)[∫ w0 (∫ κ−y0 [βα1(b,t)
1 vα1(b,t)−1/�(α1(b,t))]e−β1v dv)yα1(b)−1e−β1y dy] dt∫ w
0 yα1(b)−1e−β1y dy

−
∫ ∞

0
exp

(
−

∫ t

0
λC2(u) du

)(∫ κ

0

βα2(t)uα2(t)−1

�(α2(t))
e−β2u du

)
dt

= 0,

where ψ(b | w) is strictly decreasing in b with

ψ(0 | w) > 0 and ψ(∞ | w) ≡ lim
b→∞ψ(b | w) < 0.

Proof. The proof is similar to that of Corollary 3.

Example 1. Let us consider the case of two subpopulations where the proportion of strong
items is π = 0.6, so 1 − π = 0.4. Then, we assume that the failure times (in days) due to
catastrophic failure (cause I) of the strong and weak subpopulations both follow a distribution
with failure rates equal to λC1(t) = 0.01t + 0.01 days−1 and λC2(t) = t + 1.5 days−1,
respectively, so:

F̄C1(t) = exp

[
−

(
0.01t2

2 + 0.01t

)]
and F̄C2(t) = exp

[
−

(
t2

2
+ 1.5t

)]
.

The assumed failure rate functions satisfy the following ‘practical’properties that: (a) the failure
rate of the weak subpopulation has a relatively large positive value near t = 0 and increases
very steeply, and (b) the failure rate of the strong subpopulation is initially almost negligible
and then increases quite slowly. Examples of linear failure rates can be found, for example,
in Bain (1974) and Lawless (2003). Other suitable expressions for the failure rates are, for
example, the Gompertz (exponential) failure rates (see, e.g. Bagdonavicius et al. (2011), for
the application of the Gompertz model to failure data), say λC1(t) = 0.01 exp(0.3t) days−1

and λC2(t) = 1.5 exp(0.5t) days−1. In both the cases, the suggested failure rates satisfy the
inequality λC1(t) ≤ λC2(t) for all t ≥ 0.

Again, we assume that the degradation processes (cause II) of strong and weak subpopu-
lations follow nonhomogeneous gamma processes with a power-law shape function α1(t) =
(t/2)1.2 and α2(t) = (t/0.2)1.2, and scale parameters β1 = 1.2 and β2 = 0.8. Both the
assumptions that β1 ≥ β2 and α1(t + s) − α1(t) ≤ α2(t + s) − α2(t) for all t, s ≥ 0 in
Corollary 2, as well as the additional assumption in Corollary 3 that α1(t, s) is increasing in t
for all s ≥ 0 are then satisfied.

Thus, the subpopulations are stochastically ordered in the sense of failure rate ordering and
the degradation processes {Wi(t), t ≥ 0} satisfy the condition CNQD in (3).

Then, let the threshold level be κ = 6.0 mm and the mission length τ = 3.0 days. Setting
csr = 1.0, c0 = 0.05, C = 10, and K = 20 unit of cost, the optimal joint burn-in parameters
(b∗, w∗) and the corresponding cost c(b∗, w∗) were obtained. In Table 1, the parameters and
total expected cost of the optimal joint burn-in are compared to the time parameter and the
corresponding expected cost of the optimal ordinary burn-in. Also the success probability
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Table 1: Summary of optimal burn-in procedures.

Burn-in type b∗ w∗ c(b∗, w∗) F̄m(τ | b∗, w∗) M(b∗, w∗)
Joint 0.475 0.476 −16.29 0.908 7.96
Ordinary 1.168 — −15.64 0.881 7.28

Table 2: Results of the study on misspecification.

Failure Covariate Burn-in b∗ w∗ c(b∗, w∗) F̄m(τ | b∗, w∗) M(b∗, w∗)
rate parameter type
λC2(t) β2

10t + 15 0.8 Joint 0.298 1.038 −13.72 0.810 7.20
Ordinary 0.343 — −9.85 0.671 5.98

t + 1.5 0.08 Joint 0.323 0.805 −14.85 0.851 7.54
Ordinary 0.526 — −11.86 0.743 6.49

10t + 15 0.08 Joint 0.223 1.106 −11.67 0.736 6.61
Ordinary 0.277 — −9.17 0.647 5.81

F̄m(τ | b∗, w∗) and the mean residual life M(b∗, w∗) (in days) for an item that survived the
burn-in are compared. We can note that the joint burn-in procedure outperforms the ordinary
burn-in procedure because it allows us to reduce the total expected cost and to increase the
quality characteristics of the items that are put into field operation.

Finally, as suggested by the referee, we have evaluated the effect of misspecifying the
failure rate and/or the covariate process on the optimal burn-in, in particular when the failure
rate function λC2(t) of the weak subpopulation is assumed to be greater than the true function,
say λC2(t) = 10t + 15.0 days−1 and/or when the gamma process parameter β2 of the weak
subpopulation is assumed to be smaller than the true value, say β2 = 0.08 (note that the mean
degradation level E{Wi(t)} = αi(t)/βi is inversely proportional to βi).

In Table 2 we present the results of this study, where the optimal burn-in parameters, say
(b∗, w∗) and b∗ for the joint and ordinary burn-in, respectively, are those obtained under the
misspecified λC2(t) = 10t + 15.0 and/or β2 = 0.08, whereas the expected cost c(b∗, w∗), the
success probability F̄m(τ | b∗, w∗), and the mean residual lifeM(b∗, w∗) are evaluated under
the true λC2(t) function and/or β2 value, say λC2(t) = t+1.5 days−1 and β2 = 0.8. This study
is restricted to the weak subpopulation because this subpopulation affects the optimal burn-in
parameters more than the strong subpopulation parameters.

From the values in Table 2, we see that even when the parameters that index the failure rate
and/or the degradation process of the weak subpopulation are greatly misspecified, the joint
burn-in always outperforms the ordinary one.

5. Concluding remarks

In the conventional burn-in procedure, the only information used for the elimination proce-
dure is the corresponding ‘lifetime’ of the item. In this paper, a new joint burn-in procedure
which additionally employs the information of the dependent covariate is proposed. For a
proper stochastic formulation of the problem, a new type of positive dependence between a
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random variable and a stochastic process is defined and employed. It has been shown that
the conventional time burn-in corresponds to a special case of the joint burn-in procedure
proposed in this paper and that, when the joint burn-in procedure is applicable, it outperforms
the ordinary time burn-in. The proposed general methodology has been applied to the case
when the covariate process follows the gamma process of degradation.

Throughout the paper, the topic is discussed for the models with increasing covariate process
{W(t), t ≥ 0}. However, for a decreasing covariate process {V (t), t ≥ 0}, the theoretical
results obtained in this paper could be straightforwardly modified, as −V (t) ≡ W(t) represents
an increasing covariate. Furthermore, we assume that there exists the threshold level κ , which
defines the second cause of failure (cause II) of the item. However, by letting κ = ∞, the
burn-in model studied in this paper could be easily modified for the case when there is no
second type of cause of failure (Remark 3). Even in this case, the information on the covariate
process is usefully used for the elimination process. From these points of view, the burn-in
model studied in this paper is a very general model.
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