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Abstract

For a point set in the multidimensional unit torus we introduce an L" -measure of uniformity of dis-
tribution, which for K = 2 reduces to diaphony (and thus in this case essentially coincides with Weyl
Z.2-discrepancy). For K e [1, 2] we establish a sharp asymptotic for this new measure as the number of
points of the set tends to infinity. Upper and lower-bound estimates are given also for K > 2.
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1. Introduction

Let 5 be a finite weighted point set in the s-dimensional unit torus I1. How uniformly
are the points of 5 distributed? This problem goes back to Weyl [18]. Since then,
a number of measures for the uniformity of distribution have been proposed, the
most widely studied are various versions of discrepancy. The most common kind of
discrepancy is the U -average of the local discrepancies on all aligned rectangular
boxes with the 'left bottom corner' at the origin:

DK(S) = - V(x)

where x<k) are the points of the set S, pk are the corresponding weights, V(x) is
the volume of the aligned rectangular box with the 'minimum' at the origin and
the 'maximum' at x, and the sum is extended over all points of 5 in this box. An

© 1999 Australian Mathematical Society 0263-6115/99 $A2.00 + 0.00

1

https://doi.org/10.1017/S1446788700036235 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036235


2 Vsevolod F. Lev [2]

obvious drawback of this discrepancy is that it is biased in giving more attention to
the irregularities of S which are closer to the origin than to those far from it. This
is harmless for the metric of L00, as the supremum of local discrepancies on all the
boxes with the 'left bottom corner' at x can easily be seen to be of the same order of
magnitude for all x e IF. However, the situation changes drastically for K < oo, see
[7].

A natural way to improve the definition is to average local discrepancies on all
aligned rectangular boxes with 'floating left bottom corner'. In fact, it is this kind of
discrepancy which was originally considered in the pioneering paper of Weyl, and we
call it Weyl discrepancy below. Unlike regular discrepancy, that of Weyl is invariant
under translates and symmetry reflections of 5, and is easier to handle due to its
averaging nature; clearly, it is an L" -average of regular discrepancies of the translates
S + x of S by all the vectors x e 0s:

DAS) =' '

where DK stands for the regular discrepancy, and DK for Weyl discrepancy.
Another (and undeservedly less known) measure of uniformity of distribution of

S is diaphony, which we denote below F(S) and define formally in Section 3. It
was introduced in 1976 by Zinterhof (see [20]), who used an analytical definition
via absolutely convergent series and to the best of our knowledge, did not know
that the analytic construction he brought into consideration also has a transparent
geometric interpretation. This geometric face of diaphony was discovered almost
20 years later in [13], where it is shown that diaphony essentially (up to a bounded
multiplicative factor) coincides with Weyl L2-discrepancy. This allows one to use
Weyl L2-discrepancy and diaphony interchangeably, applying either a geometrical
or analytical definition, whichever is more convenient. It is worth mentioning that
diaphony, like Weyl discrepancy, is invariant with respect to translates and symmetry
reflections of 5. To summarize, compared to the 'usual' discrepancy, Weyl discrepancy
and diaphony (which are two faces of the same coin)

- are more natural, giving non-biased treatment to all irregularities of S;
- are easier to handle due to the existence of equivalent definitions of distinct

types and the averaging character of the geometric definition;
- have a number of nice invariance properties, which one expects a 'good' measure

of irregularity of distribution to possess and which the usual discrepancy lacks.
Since 1976, diaphony has been considered in numerous papers (see, for instance, the

citations below and the references given there). Many authors use diaphony implicitly,
without introducing any special notation, to study distribution problems. Most of the
papers that explicitly investigate diaphony concentrate on the one-dimensional case or
on estimates of diaphony of particular sequences (as, for instance, [2,3,14-16,19]). A
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[3] The exact order of generalized diaphony 3

remarkable exception is the paper of Bykovsky [1], where the asymptotic behavior of
F(S) is studied in general case, as N = \S\ approaches infinity. Results of Bykovsky
imply that

(lnA0(s-1)/2

for any dimension s (with a constant depending only on s). However, the question of
sharpness of this estimate remained open for s > 1. In this paper we answer it in the
affirmative.

Actually, we do not consider diaphony by itself, but instead introduce a parametric
family of measures for the uniformity of distribution of S, diaphony F(S) being
obtained for some particular values of the parameters. This is motivated primarily
by the requirements of numerical integration applications. (One possible application
is given in Theorem 1 below.) We extend the lower bound of Bykovsky to our
generalized diaphony, and give a construction of S for which this lower bound is
attained. In fact, this construction is borrowed from [4] where it was used to obtain
lower-bound estimates of discrepancy; it can be characterized as a weighted version
of Frolov's algebraic nets (see [5]).

All our results are obtained in the general setting of weighted S.

2. Notation

Fix s e Z, j > 1. We denote vectors of 1RS by lower italic or Greek letters, with
or without superscripts; subscripts are reserved for vector coordinates (say, Xjk) is the
7-th coordinate of the vector x(k)). To distinguish them from scalars, the following
two constant vectors will be written in boldface: 0 = (0 , . . . , 0) and 1 = ( 1 , . . . , 1).
The s -dimensional unit cube is

IJ = {x € r | 0 < x < 1};

here JC > 0 means Xj > 0 (/ = 1, . . . , s) and x < 1 means Xj < 1 (j = 1 , . . . , s).
Other vector inequalities below should be interpreted similarly.

By a net we mean a pair 5 = (X, p), where X is a finite set of points in ¥:

X = { x ( k ) 6 0 J | k = l , . . . , N ] ,

and p is a set of non-negative real weights, corresponding to these points:

p = {pt> 0 | * = ! , . . . , # } .
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The pair (x(k), pk) is called the &-th node of 5. Numeration of nodes is not essential:
we will not distinguish nets which differ only in the order of their nodes.

We put Po = P\ + • • • + PN- The case p0 = 0 is of no interest and we assume
below that at least one of the weights is strictly positive. If p0 = 1 we say that S is
normalized.

The exponential sum of 5 is the complex-valued function on ZJ defined by

angular brackets standing for the standard inner product. Clearly, 7(0) = p0, and
\T(m)\ <p0form / 0.

For* 6 K, we write x = max{|x|, 1}. Forx, a e K1 we write

— — — —a —ct\ —a,
X ^= X i • • * X s , X ^= X i • • • X .

3. Preliminaries

The original diaphony of Zinterhof was defined with a normalized net 5 in mind by

1/2

(here and below, primed sums extend over all non-zero vectors). Generalizing this
definition, for a > 0, K > 1 and arbitrary (not necessarily normalized) S we consider

FK,a
mel*

The second summand may look somewhat odd at first, but deeper examination shows
that it arises very naturally (see Theorem 1 below or [13, Theorem 1]). Qualitatively,
it allows one to exclude the situation where a poorly distributed net has small diaphony
only because all its weights are very small. However, the principal part of the definition
is, of course, the first summand: if it is small, we can make the entire diaphony small
by normalizing the weights (save for the above mentioned exotic case of 'very small
weights').

Without loss of generality, we assume that the coordinates of a are arranged in
ascending order, and write r e [1, s] for the number of appearances of the minimal
coordinate:

ad = • • • = ar < ar+l <••• < a s .
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[5] The exact order of generalized diaphony 5

Throughout the paper, we assume Ka\ > 1; since T(m) is bounded, this guarantees
the absolute convergence of the series for FK<a.

Our primary objective is to prove the following theorem, in which the constants
depend on a and K only (possible dependence of the constants on s is always assumed
by default).

MAIN THEOREM.

(i) Assume K € [1,2], and let S be a net with N nodes. Then

(ii) Assume K > 2, and let S be a net with N nodes. Then

FK.a(S) »

(iii) For each K > 1, there exists a net S with N nodes (and even a normalized
one) such that

(lnAO<r-I)A

F*,a(S) « 1 — ^ •

For K < 2 this theorem establishes the exact order of infs FKa(S), the infimum
being taken over all normalized net with N nodes. In particular, for the 'usual'
diaphony F(S) = F2,i(S), it immediately implies

(1) ir

For K > 2 we have a gap between the estimates. It is not clear what exactly in our
argument gives rise to this gap.

The proof of Main Theorem will consist of two independent counterparts: the
lower-bound estimate of FKa (Section 4) and an explicit construction of S for which
this estimate is attained (Section 5).

For the important special case K = 2, a{ — • • • — as, the lower-bound estimate
was obtained in [1] by Bykovsky. We show that the general case K < 2 reduces to
this one (while the case K > 2 requires certain additional considerations). To keep
the paper self-contained, we then give a proof of this particular case. Our proof is
inspired by that of Bykovsky, though it differs somewhat from the original; the idea
behind both proofs comes from the classical paper of Roth [17].

As to the lower-bound estimate in (1), it was observed in [10] that there is another
and immediate way to obtain it using Roth's well-known lower-bound estimate for
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L2-discrepancy. Namely, if S + x is the translate of 5 modulo Is by a vector x € ¥,
and if D2(S + x) is the L2-discrepancy of S + x, then as shown in [10,13]

F(S)x(JD2
2(S

and the estimate in question now follows from Roth's result:

D2(S + x) ~3> uniformly in x.
N

We turn to the numerical integration problem. For M > 0 and r e [1, oo], denote
by £r , a (M) the class of all continuous [F-periodic functions/ : W —> IR with Fourier
coefficients / satisfying

f(m)m° < M

(with the standard interpretation for r = oo). This classifies Ov-periodic functions
according to the rate of decrease of their Fourier coefficients.

It can easily be shown that the error of numerical integration on Exa (M) using a net
S is intimately related to the generalized diaphony FK±a(S), where K is the conjugate
to r: \JK + l/r = 1.

THEOREM 1. Assume Kax > 1. Then

sup
feE,.a(M)

f = MFK.a(S).

The quantity on the left is the maximal possible error which can occur when we
approximate the integral of a function from £ T a (M) by a finite sum over the points
of S = (X, p). The proof will be given in Section 6.

Theorem 1 along with our Main Theorem solve the problem of numerical integration
on £ r a ( M ) as follows.

COROLLARY 1. Let r e [2, oo] and assume cc\ > 1 — l / r . Then

inf sup
5

f f{x)dx-YjPkf(x^) M-
5 f€E,M(M)

the infimum being taken over all normalized nets with N nodes.

For K < 2, the results of this paper were obtained in [8] (using a somewhat more
complicated argument) and announced without proof in [12]. The case K > 2 has
never been considered before.
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[7] The exact order of generalized diaphony 7

4. Lower-bound estimate of FKa{S)

Let S be a net with N nodes. If 7(0) < 1/2 then FK_a(S) > 1/2 by the definition
and so the lower-bound estimate of Main Theorem is trivial. Otherwise, dividing all
the weights of S by p0 = T(0) (which may increase the diaphony at most twice) we
get into the situation when 5 is normalized.

We first consider the case K e [1,2] and prove that

(2)
m

We can assume r = s. For, if S' is the net in Dr obtained by the projection of the
points of 5 onto the first r coordinates, if V is the exponential sum of S', and if
a' = (ot i , . . . , ctr), then the sum 5Z'meZ, \T'(m)\" /mKa is included in the sum on the
left-hand side of (2) when mr+y = • • • = ms = 0, and hence (2) will follow from the
analogous estimate for S'.

Next, we can replace \T(m)\" on the left-hand side of (2) by |7(m)|2, since \T{m)\ <
T(0) — 1 (as 5 is normalized). Therefore, it suffices to prove

•|7\m)|2 (\nNy~1

mel'

under the assumptions ax = • • • = as, T(0) = 1.
Fix a non-negative function <p: U. —>• K with finite support, having derivatives of

any order and satisfying <p(0) = 2, f™oo<p(x)dx = 1 (the values of ^(0) and of
the integral have no special meaning; those indicated above are chosen to somewhat
simplify the calculations below). For t e Rs, 0 < t < 1 and* e Rs we define

'xs +ns"

k=\

(Note that for any x the series for (p,(x) actually has only a finite number of non-zero
terms.) Obviously, both <p, and <t>, are Os-periodic.

Consider the Fourier expansion of <t>,:

mel'

Since <t>,(x) is smooth, the series on the right-hand side converges absolutely, and
therefore

(4)
k=\ raeZ' k=\
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The Fourier coefficients <t>,(m) can be evaluated as follows:

N

•x(k))e-27"{m-x)dx
k=\

N

' dx

C
/ <p,(x -

•'I'

= T(-m) I q>,{x)e-2n'{m-x)dx
Jv

= n-m) TU f <p(^±

f y-*'"**, dxs

S y»

= T(-m) Y\ /
; = 1 • ' -

dxj

h)e-l7"

(5) = T(—m)t\ • t s \ I (p(Xi)e >'>x> dx,./

In particular,

(6) *,(0) = r, •••*,.

We now return to (4) and estimate the sum on the left-hand side from below:

N N N os / N \ 2 -,s

i

(8)

k=\ k=l k=\ n \k=\ I n

Then, for tx • • • ts < \/N from (4), (6) and (7) we obtain

2s - 1

N

To estimate O(w), we use (5). If \rrijtj | > 1, then integrating by parts c + 1 times
on the right-hand side of (5) (with a sufficiently large integer c, say c = [ ^ ^ J ] ) we
obtain

1
f <p(.Xj)e-2*iWdxj

J-oo
« •t+i

(with a constant depending only on <p and c), and of course, this holds also if | mttj \ < 1.
Therefore,

••tsms)
c+l '
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and substitution into (8) gives

• • tsms)
cJr

Recalling that tx • • • ts < l/N, c > Kat we obtain

I T " / \ I?

••tsms)

To prove (3) it remains to integrate this last inequality over the region

using the following technical lemma:

LEMMA 1. Let K e R and c e R, c > 1. Then

JQAK)K) K

dt

where the constants depend only on s and c.

PROOF, (i) We denote the integral by IS(K) and use induction on s. The case s
is trivial. Let s > 2. Then

> f (f d t l - - d t s . l ) dt,

= I I,_y{Kts)dt,
J\/K

» - / dt,

t -dt,

(In KY~2

(\nfcy-1
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(ii) We denote the integral by Js(K) and use induction on s. Observe, that tjirij =
max{l, \tjntj |} > max}/,, tj \nij |} = tjtrij, and hence

<i/2K hmx m\ JX,2K t{ m\

Now let s > 2. If A < 1/2, then QS(K) is empty and the proof is complete. If
1/2 < K < 1 and t e QS(K), then tj > l/(2K) > 1/2 0' = 1, . . . , s) and thus
tj nij > tj nij > mj /2, hence

1 A"'1"1

•/,(^) « — =r-r; « — =rr?.
(mi---ms) (mi---ms)

Finally, if K > 1, then by the induction hypothesis

JX/2K tsms

Kc

and it suffices to observe that

/ —* dt, < / + / = / f dr, H / — <3C — .
J™T7PT+l Jo J\r- L w'+1 7i/- r2 7T

D

We now return to the proof of the Main Theorem and consider the case K > 2. As
above, we may assume r = s, and using the same argument we get

NC+2 " L

••tsms)

for any positive integer c. The problem is that the sum we wish to estimate incorporates
\T(m)\" < \T(m)\2. To overcome this difficulty, we define x by 1/(K/2) + 1/r = 1
and use Holder's inequality to obtain

(
\ 2/K I \ l/T

But

(y
) ) \ m 6 Z . ( d m , •••tsms)

1 2̂r ̂  E , ! ,2 = f l E = ?
• • tsms) mez> (timi---tsms) j=\m,<a.hmi
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[11] The exact order of generalized diaphony 11

forti---ts > l / (2/V); hence,

•tsms) /2
cic/2

Since c is arbitrary, it follows that

^ i- \*<»i+i

i* \t\m\ • • • t5ms)

and Lemma 1 now gives

(In

which was to be proved.

5. Nets with small order of FK,a(S)

First, note that constructing a net with small F*,O(S) we may ignore the issue of
normality: if a net S satisfies

(9) FK.a(S) «

then automatically 7(0) > 1/2 for sufficiently large TV, and so the net obtained by a
normalization of S will also satisfy (9).

We now describe a construction of nets, proposed by Dobrovolsky in [4]. Denote
by DC the doubled unit cube:

K' = {x e r | - 1 < x < 1}.

For a real non-singular matrix A e MJXS[R] let A = [A'n \ n e Zs] be the lattice,
generated by A, and let A* = {A~^n \ n e Z'} be the dual lattice. The set of points of
our net is the set of fractional parts of all those points of A* which fall into Ks:

X = {{A-ln} \n £AKsnls}.

To define the weights, we fix a non-negative function xj/: R -> R, having derivatives
of any order, vanishing outside [—1, 1] and satisfying t/f (x) + \j/(x — 1) = 1 for every
real* 6 [0, 1] (the existence of such functions can be easily verified). Next, we define
* : K1 -»• Rby V(x) = f(xi) • • • \jr{xs). Now, with each point x = {A~ln} e X we
associate the weight p(x) — 4'(A~1n)/det A.
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Let S(A) be the net obtained in this way. Denote

s [ l ifm = 0,

[0 otherwise.

LEMMA 2. For m e If the exponential sum ofS(A) is

T(m) = 8m+ Y ] ' f V(x)e2"iim-zx)dx.

PROOF. Using the multidimensional Poisson summation formula and then changing
the variable of integration, we get:

T(m) = —— V1 1 2 / < * l >

det A 7z?n-

= —— y f

= V] f
nel' J*'

since A'n varies over all the points of A. It remains to evaluate the term with z = 0:

.1

=0 ( I ^̂ "i)e2jrimjxj

elnim'x> dxj = Sm.

y=i

•

COROLLARY 2. For m els we have:

T(m)=8m+oly^2'

where the constant depends only on a and K.
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[13] The exact order of generalized diaphony 13

PROOF. We fix a sufficiently large integer c (say, c = [icces~\) and use Lemma 2,
integrating by parts c times over x, for all j satisfying |m; — Z; | > 1. •

Denote

PROPOSITION 1. Assume £A (*•<*) < C for a positive constant C. Then

te constant depending on C,a,K.

PROOF. By Corollary 2,

17-co) — i r «(?A (*«))•«

and hence also 7*(0) — 0(1) . Thus applying Corollary (2) once again we obtain

r
m

1

f ^ "» z - m

and it can be easily seen (see, for instance, [6, Chapter I, Section 2]) that the inner
sum is bounded by 1 ft"' • •

An important characteristic of A which determines the quality of S(A) is

o(A) = min' z
zeA

(here z assumes non-zero points of A). The following lemma was proved in the
particular case a{ = • • • = as in [4], and in the general case in [9,11].

LEMMA 3. Assume q(A) > 2 and ay > 1. Then
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COROLLARY 3. Assume q(A) > 2. Then

(lnq(A)Y-1

«
fo(A))""'

We are now in a position to choose the matrix A. Let A = nA0, where n is a real
factor, tending to infinity, and Ao is a fixed matrix of special form, described below.
To emphasize the dependence on /x, we will write 5M, gM instead ofS(A),g(A), and
let N^ be the number of nodes of 5M. Since NM is the number of integer points in

s, we have

(10) tf/4 = 2 V

Following the remarkable idea of Frolov [5], we choose

where a/,1', . . . , co[u is an integer algebraic basis of some fixed real extension of the
field of rational numbers, and a>^\ . . . , co^ (j =2 s) are the conjugate bases.
Then the coordinates of any non-zero point z 6 A are of the form

Zj = t i i n i o t ^ + • • • + n , ( o ^ ) (j = 1 , . . . , s )

(for some non-zero n e Zs), and hence

Z> \Zi---Z,\ = \l'

7 = 1

But the product on the right-hand side is the norm of a non-zero algebraic integer,
hence I > ns and q^ > fis ^> N^. Therefore by Corollary 3

«

The only problem remaining is that we cannot guarantee that for any given N there
exists pi such that N^ = N. This can be easily dealt with as follows. By (10), we can
always find fj, in such a way that

(11) N^<N <Nll(l
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[15] The exact order of generalized diaphony 15

Now, based on the net 5M = (X, p), we build another net S = (X, p) with precisely
N nodes defining

(0,0)

Obviously, the exponential sum of S coincides with that of 5, and therefore

Na>

completing the proof.

6. Numerical integration of functions with constrained Fourier coefficients

Recall that for M > 0, r e [ 1, oo] we defined Er>a (M) as the class of all those
continuous IP-periodic functions / : W -> K with Fourier coefficients / satisfying

\meV

< M.

For/ € £r,o(M) denote

;S) = J2 Pkf ( -
•'I'

dx

(the error of numerical integration of/ on the net 5) and let

R(EJ,a(M);S)= sup \R(f;S)\

(the error of numerical integration of Exa(M) on 5).

PROOF OF THEOREM 1. We consider only the case r < oo; the modifications to be
made for r = oo are obvious. For brevity, we write t(m) — T(m), if m ^ 0, and
t(0) = T(0) - 1. Since

E /(») = E
meZ' m€Z»

/(«)«*
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the assumption KCI.\ > 1 ensures the absolute convergence of the Fourier series for/ ,
and therefore (as in (4))

k=l

R(f;S) = Tf{m)t{m) =
meZ' meZ< '"

The estimate

\R(f;S)\<MFK,a(S)

now follows by the inequality of Holder. The equality is attained for the function /
defined by

-> \Ct(m)\t(m)r2/mKa if t(m) ̂  0,
f(m)=\ .

10 otherwise,

where C is a positive real normalizing factor (which, of course, could be written out

explicitly). Note, that/ is real since/ (—m) = / (m).
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