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Abstract

The lying oracle problem is a problem of finding the optimal strategies in a two-person
game where an oracle predicts the outcomes of coin flips and a player bets on the outcomes.
The oracle announces whether the coin will land heads or tails, but may at times lie. We
analyze the variant of the game which uses a biased coin, where the probability p that
the coin lands heads is common knowledge. We determine optimal strategies for both
the oracle and player, and we give an explicit expression for the expected payoff to the
player when the coin is flipped n times and the oracle may lie at most k times.
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1. Introduction

The lying oracle problem as given in [3] is the problem of finding the optimal strategies
in a two-person game between an oracle and a bettor (the player). The oracle agrees to flip
a coin n times and will predict the outcome accurately, except that the oracle may lie up to k

times. Before each prediction, the player places a bet of any amount up to the player’s current
holdings. The oracle will then announce the outcome, after which the player must state the
outcome on which to bet. The problem is to determine the optimal wagers and strategy for the
player, and to determine with what probabilities the oracle should tell the truth and lie about
the coin’s outcome.

It was shown in [3] that in the game of n flips and k lies, there is a unique critical wager
wc = wc(n, k) (represented as a proportion of the player’s current holdings) such that any
wager w satisfying wc ≤ w ≤ 1 is optimal. Furthermore, given that wc ≤ w ≤ 1, the
oracle should tell the truth with probability Pt = 1

2 + 1
2wc and the player should agree with

the oracle’s prediction with probability Qa = 1
2 + 1

2 (wc/w). With these optimal wagers and
strategies, Theorem 3 of [3] gives an explicit formula for the critical wager and expected value
for this game:

wc =
(

n − 1

k

)/ k∑
i=0

(
n

i

)
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and

En,k = 2n

/ k∑
i=0

(
n

i

)
.

Subsequent work by Ravikumar [5] demonstrated a reciprocal relationship between the lying
oracle problem and the continuous version of Ulam’s liar game. In that game, a questioner
searches for a number in the interval [0, 1], chosen by a responder. The questioner’s task is to
find a subset of smallest measure that contains the number. The questioner asks the responder
n questions about the number’s location in the interval, but the responder may lie up to k times.
This game has been studied in connection with binary search in the presence of errors in [6].
There it was shown that optimal play by both the questioner and responder yields a set of
measure

∑k
i=0

(
n
i

)
/2n, which is the reciprocal of the expected value of the game in the lying

oracle problem.
Additionally, work in [4] described a path-guessing game in which two players traverse a

directed graph. At each vertex, one player attempts to guess to which of the available vertices
the other player will choose to visit next. The goal is for the first player to place wagers on which
vertex the guide will choose so as to maximize his final winnings after multiple steps. This
model also provides the means for the analysis of a lying oracle problem of infinite duration,
as was shown in [4].

1.1. Using a biased coin

In this paper we investigate the variant of the lying oracle problem posed in [3], in which the
oracle uses a biased coin. Specifically, the coin will land heads with probability p; the value of
p is common knowledge. Related work on games involving biased coins includes [1], where
the authors used a coin-matching game to motivate their analysis, and [2], where the game of
paper-scissors-stone is played with a biased coin.

The analysis of the lying oracle game is facilitated by considering the sequence of steps that
the oracle and the player take. Prior to the beginning of play, the oracle and the player agree
on the number of times the coin will be flipped, n, and the restrictions governing when or how
often the oracle may lie. For example, they may agree that the oracle may lie at most k times,
for some k ≤ n, or they may agree that the oracle may not lie twice in a row, or any other
rule governing the oracle’s behavior (see [5] for the lying oracle game played using a set of lie
patterns). The game then proceeds as follows.

1. The player makes a wager w, given as a proportion of the player’s current holdings.

2. The oracle flips the coin.

3. The oracle announces the result, but may lie about the result.

4. The player states the outcome on which to bet.

5. The player wins or loses the proportion w of his fortune, depending on whether the player
correctly guessed the coin’s outcome.

6. The game then repeats until the sequence of plays is completed.

In order to analyze the effect that the oracle’s and player’s particular strategies have on
the player’s payoff at the conclusion of the entire game, it is helpful to consider this game in
two stages. Stage one consists of steps 1–5 above, and stage two consists of multiplying the
player’s resulting fortune from stage one by a ‘fortune multiplier’. This incorporates step 6
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by recognizing that the player’s future expected payoff depends on the oracle’s ability to lie in
the future. Hence, if the oracle told the truth during stage one then the expected value of the
player’s fortune F at the end of the game is expressed as E[F | F1] = αt F1, where F1 is his
fortune at the end of stage one. Similarly, if the oracle lied, we have E[F | F1] = α� F1. Thus,
we can think of α� and αt as values (to the player) of a lie or truth on the part of the oracle.
Of course, the specific values of αt and α� depend on the particular restrictions governing the
game (e.g. the values of n and k), and on the stage of play that the game has reached.

The paper is organized as follows. In Section 2 we derive the optimal strategies for both the
oracle and the player in terms of p, w, αt, and α�. In Section 3 we apply the analysis to the
original lying oracle game of n flips and k lies. Section 4 gives an extended example of this
game. We conclude in Section 5 with some conjectures and open problems.

2. Optimal play in stage one

This section addresses the game that consists of a single coin toss, after which the payoff
from that coin toss is multiplied by one of the values αt or α�. Subsequently, we will extend
the results of this section to multiple-flip games. Our goal is to derive optimal strategies for the
player and the oracle in this one-step game. To simplify the presentation, we will assume that
p ≥ 1

2 and α� > αt. There is no loss of generality here, because the complementary cases are
covered by reversing the roles of heads and tails, and truth and lies. (The case where α� = αt

is trivial.)
Intuitively, three basic principles seem necessary for optimal play.

Principle 1. The oracle must make sure that his announcement gives the player no real infor-
mation as to the actual outcome of the coin toss.

Principle 2. The player, knowing this, should make his decision of whether to agree or disagree
with the oracle completely independently of the oracle’s announcement.

Principle 3. Because the player benefits more when the oracle lies than when he tells the truth,
the oracle should tell the truth with higher probability than he lies.

With the help of these principles we will derive a class of strategies for the players. We will
then prove that these strategies are in fact optimal.

We begin by delineating the strategies available to the oracle and the player. First consider
the oracle. The oracle’s basic decision is whether to lie or tell the truth, but this decision may
well depend on whether the coin landed heads or tails. Thus, the oracle actually has two separate
decisions: whether to lie when the coin lands heads and whether to lie when the coin lands
tails. We allow the oracle to play probabilistically, so there is a probability that the oracle tells
the truth when the coin lands heads,

Pt|H = Pr(oracle tells the truth | coin is heads),

and a probability that the oracle tells the truth when the coin lands tails,

Pt|T = Pr(oracle tells the truth | coin is tails).

A strategy for the oracle in stage one is a choice of values for Pt|H and Pt|T. Note that there are
precisely four pure (deterministic) strategies for the oracle, corresponding to

(Pt|H, Pt|T) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
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Note also that, by the law of total probabilities, the unconditional probability that the oracle
tells the truth is

Pt = Pr(oracle tells the truth) = Pt|Hp + Pt|T(1 − p). (1)

Now consider strategies for the player. The player’s basic decision is whether to agree or
disagree with the oracle, but this decision may depend on whether the oracle announces heads
or tails. Therefore, the player’s decision is specified by the two probabilities

Qa|says H = Pr(player agrees with oracle | oracle announces heads)

and
Qa|says T = Pr(player agrees with oracle | oracle announces tails).

The player’s pure strategies correspond to

(Qa|says H, Qa|says T) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
We will denote the unconditional probability that the player agrees with the oracle by

Qa = Pr(player agrees with oracle).

In addition, the player must also choose a wager w ∈ [0, 1]. We consider the player’s wager to
be deterministic, but still the player must choose the optimal value for the wager.

The player’s fortune at the end of the one-step game (i.e. after multiplication by αt or α�)
will be denoted by F . Optimal play can be derived by considering the expected value of F

under a given player’s pure strategies as a function of the other player’s strategy. Looking at
the oracle’s pure strategies, we have the following.

1. Pt|H = 0, Pt|T = 0: the oracle lies. Then

E[F ] = [(1 − Qa)(1 + w) + Qa(1 − w)]α�. (2)

2. Pt|H = 0, Pt|T = 1: the oracle announces tails. Then

E[F ] = αt(1 − p)[(1 + w)Qa|says T + (1 − w)(1 − Qa|says T)]
+ α�p[(1 + w)(1 − Qa|says T) + (1 − w)Qa|says T]. (3)

3. Pt|H = 1, Pt|T = 0: the oracle announces heads. Then

E[F ] = αtp[(1 + w)Qa|says H + (1 − w)(1 − Qa|says H)]
+ α�(1 − p)[(1 + w)(1 − Qa|says H) + (1 − w)Qa|says H]. (4)

4. Pt|H = 1, Pt|T = 1: the oracle tells the truth. Then

E[F ] = [Qa(1 + w) + (1 − Qa)(1 − w)]αt. (5)

For the player, we have

1. Qa|says H = 0, Qa|says T = 0: the player disagrees with the oracle. Then

E[F ] = (1 + w)(1 − Pt)α� + (1 − w)Ptαt. (6)
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2. Qa|says H = 0, Qa|says T = 1: the player bets on tails. Then

E[F ] = (1 − p)(1 + w)[Pt|Tαt + (1 − Pt|T)α�]
+ p(1 − w)[Pt|Hαt + (1 − Pt|H)α�]. (7)

3. Qa|says H = 1, Qa|says T = 0: the player bets on heads. Then

E[F ] = p(1 + w)[Pt|Hαt + (1 − Pt|H)α�]
+ (1 − p)(1 − w)[Pt|Tαt + (1 − Pt|T)α�]. (8)

4. Qa|says H = 1, Qa|says T = 1: the player agrees with the oracle. Then

E[F ] = (1 + w)Ptαt + (1 − w)(1 − Pt)α�. (9)

Equilibria can be found by equating the expected values for each player, and then solving for
the other player’s strategy. We take a different approach here. We will use Principles 1–3 above
to derive candidate optimal strategies. We will then prove that these strategies are optimal using
(2)–(9).

Principle 1 states that the oracle’s announcement should convey no information about the
coin toss. Another way of saying this is that the oracle’s announcement should be independent
of the oracle’s decision whether to lie or not:

Pr(oracle tells the truth | oracle announces heads) = Pt.

Expanding the conditional probability, we obtain

Pt|Hp

Pt|Hp + (1 − Pt|T)(1 − p)
= Pt. (10)

Principle 2 states that the player should make his decision to agree or disagree independently
of the oracle’s announcement:

Qa|says H = Qa|says T = Qa. (11)

Principle 3 states that the oracle should tell the truth with higher probability than he lies. But
how much higher? Perhaps the simplest choice is to make the probability of telling the truth
(or lying) inversely proportional to the value of telling the truth (or lying):

Pt = α−1
t

α−1
t + α−1

�

= α�

α� + αt
. (12)

We shall take (10)–(12) as the starting points for our derivation of candidate optimal strategies.
Solving (1) and (10) simultaneously in light of (12) gives

Pt|H = α�

α� + αt

α� − αt(1 − p)/p

α� − αt
(13)

and

Pt|T = α�

α� + αt

α� − αtp/(1 − p)

α� − αt
. (14)
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Note that, when p = 1
2 , we have Pt|H = Pt|T = α�/(α� + αt), while p = α�/(α� + αt) gives

Pt|H = 1 and Pt|T = 0. Therefore, (13) and (14) are valid probabilities as long as p satisfies

1

2
≤ p ≤ α�

α� + αt
. (15)

Accordingly, we restrict to this case first. What is the player’s expected fortune if the oracle
adopts the strategy given by (13) and (14)? Substituting (13) and (14) into (6)–(9), we see that,
for each of the player’s pure strategies, we have

E[F ] = 2α�αt

α� + αt
≡ H.

Note that H is the harmonic mean of the values αt and α�. Since any mixed strategy is a
convex combination of the pure strategies, it follows that the player’s expected fortune under
any strategy whatsoever is still equal to H , provided that the oracle uses the strategy given by
(13) and (14). Moreover, it is straightforward to show that if the oracle uses any other strategy
then the player can find a strategy that makes his expected fortune strictly greater than H . (For
instance, if the oracle chooses a strategy that makes Pt < α�/(α� + αt) then the player could
use his pure strategy (6) with w = 1, which yields E[F ] = 2(1 − Pt)α� > H . Other cases
are handled similarly.) This proves that (13) and (14) constitute an equilibrium strategy for the
oracle.

Still assuming (15), now consider the situation from the player’s point of view: he knows
that the coin is heads with probability p, while the oracle tells the truth with probability Pt =
α�/(α� +αt) ≥ p (because (15) holds). Thus, the oracle is at least as reliable as the coin in this
case, and it would seem that the player could not do any better than to agree with the oracle.
This along with (11) gives

Qa|says H = Qa|says T = Qa = 1. (16)

The player also needs to decide on a wager. Here we adopt the usual procedure of choosing
a wager such that the player’s expected fortune is the same whether or not the oracle lies. An
easy calculation gives

w = α� − αt

α� + αt
. (17)

Substituting (16) and (17) into the oracle’s pure strategies, (2)–(5), we find that not only does
(2) continue to hold for all the pure strategies, but in fact the player’s fortune is nonrandom:

F = H with probability 1.

Since this is the case for each of the oracle’s pure strategies, it must hold for any mixed strategy
as well. Thus, by adopting the strategy given by (16) and (17), the player can guarantee
himself a fortune of H , no matter which strategy the oracle adopts. But all that is required
for an equilibrium is that the expected value of the player’s fortune equals the harmonic mean.
This leads to a wider class of equilibrium strategies for the player. Necessary and sufficient
conditions for an equilibrium strategy are found by equating (2)–(5) under assumption (15).
This is a straightforward exercise that results in a class of mixed strategies for the player. To
describe them, denote the value given by (17) as the critical wager wc:

wc = α� − αt

α� + αt
.
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The equilibrium strategies for the player are characterized by a wager w that is at least as large
as the critical wager,

w ∈ [wc, 1], (18)

and a probability of agreement given by

Qa|says H = Qa|says T = 1

2

(
1 + wc

w

)
. (19)

Substituting (18) and (19) into (2)–(5), we see that the expected value of the player’s fortune
under all the oracle’s pure strategies is again equal to H . It can also be shown that if the player
uses any strategy other than those given by (18) and (19), then the oracle has a strategy that
reduces the player’s expected fortune below H . (In particular, if Qa|says H �= Qa|says T then one
of (3) or (4) will be less than H , while if (2Qa − 1)w �= wc then either (2) or (5) will be less
than H .) This shows that (18) and (19) constitute the equilibrium strategies for the player in
the case (15).

Note that if the player wagers the critical amount wc then this is the same pure strategy
derived above. Wagers greater than the critical amount give optimal mixed strategies. In the
extreme case, when w = 1, the optimal probability of agreement is

Qa|says H = Qa|says T = 1

2
(1 + wc) = α�

α� + αt
,

which is the same as the oracle’s probability of telling the truth. An interesting aspect of case
(15) is that it actually benefits the oracle to be more reliable than the coin. This in turn entails
another interesting fact: the player’s optimal strategies do not depend on p so long as (15)
holds.

The remaining case is

p >
α�

α� + αt
. (20)

Note that in the boundary case when p = α�/(α� + αt) the oracle is announcing heads with
probability 1 by (13) and (14). Thus, the oracle and the coin are equally reliable at this boundary
case. If (20) holds, however, then the oracle can no longer be more reliable than the coin and
still avoid giving information to the player. But he can remain equally as reliable as the coin,
and still avoid giving information to the player, by simply continuing to announce heads with
probability 1. This is in fact optimal for the oracle. To see this, note that if the player bets his
entire fortune on heads regardless of what the oracle announces then his expected fortune is at
least 2pαt (recall that αt < α�), with equality if and only if the oracle announces heads with
probability 1. So the oracle cannot hope to reduce E[F ] below this value. Can the player do
any better than an expected fortune of 2pαt? In other words, could it possibly benefit the player
to bet on tails with positive probability? We claim not. To see this, let QT be the unconditional
probability that the player bets on tails. Let the oracle’s strategy continue to be to announce
heads with probability 1. Then the player’s expected fortune is

E[F ] = (1 − p)[(1 + w)QT + (1 − w)(1 − QT)]α�

+ p[(1 + w)(1 − QT) + (1 − w)QT]αt

= w(1 − 2QT)[pαt − (1 − p)α�] + [pαt + (1 − p)α�]. (21)

Note that the first term in square brackets is positive because of (20). Therefore, (21) is uniquely
maximized when w = 1 and QT = 0, and the maximum value is 2pαt. In other words, the

https://doi.org/10.1239/aap/1261669584 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1261669584


1030 R. KOETHER ET AL.

oracle can limit the player’s expected fortune to 2pαt by always announcing heads, and a
positive probability of betting on tails only decreases the player’s expected fortune against this
strategy. This proves our claim. We have now shown that optimal play when p > α�/(α� +αt)

is given by
Pt|H = 1 and Pt|T = 0,

and
Qa|says H = 1, Qa|says T = 0, and w = 1.

We summarize this discussion in the following theorem.

Theorem 1. (Optimal play.) Assume without loss of generality that p ≥ 1
2 and α� > αt. The

optimal strategy for the oracle in stage one is given by

Pt |H =

⎧⎪⎨
⎪⎩

α�

α� + αt

α� − αt(1 − p)/p

α� − αt
if p ≤ α�

αt + α�

,

1 otherwise,

and

Pt |T =

⎧⎪⎨
⎪⎩

α�

α� + αt

α� − αtp/(1 − p)

α� − αt
if p ≤ α�

αt + α�

,

0 otherwise.

For the player, if p ≤ α�/(α� + αt) then the optimal strategy is given by

w ≥ wc and Qa|says H = Qa|says T = 1

2

(
1 + wc

w

)
,

while if p > α�/(α� + αt) then

w = 1, Qa|says H = 1, and Qa|says T = 0

is optimal, where wc = (α� − αt)/(α� + αt) is the player’s critical wager. Under optimal play,
the player’s fortune satisfies

E[F ] =

⎧⎪⎨
⎪⎩

2αtα�

αt + α�

if p ≤ α�

αt + α�

,

2pαt otherwise.

3. The analysis of the n flip, k lie game

We now use the above analysis to solve a problem posed in [3]. As in the original lying
oracle problem, the oracle will flip a coin n times and may lie at most k times, with k ≤ n, but
as above, the oracle will use a biased coin, where the coin will land on heads with probability
p > 1

2 . If the player and the oracle play optimally, then define En,k to be the expected payoff
for the game of n flips and k lies.

Under these conditions, if the game begins with n flips and k lies, then αt = En−1,k and
αl = En−1,k−1, as these represent the expected payoffs for the game with one fewer flip and
either the same number of lies (the oracle told the truth) or one less lie (the oracle lied about
the outcome). The task is to specify these expected payoffs in terms of n, k, and p.
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We first recall from the previous results that En,0 = 2n and that En,n = (2p)En−1,n−1 =
(2p)n. Furthermore, Theorem 1 asserts that if

p <
αl

αt + αl

then the player’s expected payoff under optimal play is

En,k = 2En−1,kEn−1,k−1

En−1,k + En−1,k−1
,

while if
p ≥ αl

αt + αl

then the player will bet on heads and will have an expected payoff of

En,k = (2p)En−1,k = (2p)n.

It is convenient to work with the reciprocals of our expected payoffs En,k . We therefore
summarize the above results as follows:

E−1
n,k =

⎧⎪⎪⎨
⎪⎪⎩

1

(2p)n
, p ≥ αl

αt + αl

,

1

2
(E−1

n−1,k + E−1
n−1,k−1), p <

αl

αt + αl

.

3.1. The functions gn,k(x) and fn,k(x)

Since the value of E−1
n,k is defined recursively, we can define functions gn,k(x) recursively

such that the reciprocals E−1
n,k have the following form:

E−1
n,k = gn,k(p)

(2p)n
.

Accordingly, we define

gn,k(x) =

⎧⎪⎨
⎪⎩

xn, k = 0,

1, k = n,

min (1, x(gn−1,k(x) + gn−1,k−1(x))), 0 < k < n.

(22)

Lemma 1. For all n ≥ 0, all 0 ≤ k ≤ n, and all p ∈ [ 1
2 , 1],

En,k = (2p)n

gn,k(p)
.

Proof. Let p ∈ [ 1
2 , 1]. If k = 0 then the oracle cannot lie, so the player’s expected fortune is

En,0 = 2n = (2p)n

pn
= (2p)n

gn,0(p)
.

If k = n then the oracle can lie every time. The player will always bet everything on the coin
(heads), and so the player’s expected fortune is

En,n = (2p)n = (2p)n

gn,n(p)
.
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In the third case, suppose that 0 < k < n. Then the player will either bet on the coin or agree
with the oracle, whichever one produces the greater expected payoff. If the player bets on the
coin, then betting everything on heads is optimal and the player’s expected payoff is

En,k = (2p)En−1,k = (2p)n.

If the player agrees with the oracle then

En,k = 2En−1,kEn−1,k−1

En−1,k + En−1,k−1
.

Since the player chooses the strategy with the greater expected payoff, it follows that

En,k = max

(
(2p)n,

2En−1,kEn−1,k−1

En−1,k + En−1,k−1

)

and

E−1
n,k = min

(
1

(2p)n
,

1

2
(E−1

n−1,k + E−1
n−1,k−1)

)

= min

(
1

(2p)n
,

1

2

(
gn−1,k(p) + gn−1,k−1(p)

(2p)n−1

))
(by induction)

= min

(
1

(2p)n
,
p(gn−1,k(p) + gn−1,k−1(p))

(2p)n

)

= min (1, p(gn−1,k(p) + gn−1,k−1(p)))

(2p)n

= gn,k(p)

(2p)n
.

Thus, in all cases

En,k = (2p)n

gn,k(p)
.

Corollary 1. For all n ≥ 0, all 0 ≤ k ≤ n, and all p ∈ [ 1
2 , 1],

gn,k(p) =
{

1, p ≥ αl/(αt + αl),

p(gn−1,k(p) + gn−1,k−1(p)), p < αl/(αt + αl).

Since the expected payoff to the player depends on how p compares to

αl

αt + αl

= En−1,k−1

En−1,k + En−1,k−1
,

we would like to find a way to compare p involving the functions gn,k(x). We accomplish this
in the next lemma.

Lemma 2. For all n ≥ 1 and all 0 ≤ k ≤ n, the player should bet on heads (regardless of the
oracle’s prediction) if and only if

pgn−1,k−1(p) + p − 1 ≥ 0.
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Proof. The optimal strategy for the player is to bet on heads regardless of the oracle’s
prediction if and only if p ≥ αl/(αt + αl). So, suppose that p ≥ αl/(αt + αl). Then

p ≥ En−1,k−1

En−1,k + En−1,k−1
,

p(En−1,k + En−1,k−1) ≥ En−1,k−1,

pEn−1,k ≥ (1 − p)En−1,k−1,

pE−1
n−1,k−1 ≥ (1 − p)E−1

n−1,k,

pgn−1,k−1(p) ≥ (1 − p)gn−1,k(p),

pgn−1,k−1(p) − (1 − p)gn−1,k(p) ≥ 0.

By assumption, p ≥ αl/(αt + αl), so that gn,k(x) = 1, so that gn−1,k(x) = 1 as well. Thus,
we have pgn−1,k−1(p) + p − 1 ≥ 0, as desired.

Conversely, if p < αl/(αt + αl) then the above computation yields

0 > pgn−1,k−1(p) + (p − 1)gn−1,k(p).

However, by (22), gn−1,k(p) ≤ 1. Therefore,

0 > pgn−1,k−1(p) + (p − 1)gn−1,k(p) ≥ pgn−1,k−1(p) + (p − 1),

as desired. Therefore, let us define

fn,k(x) = xgn−1,k−1(x) + x − 1. (23)

Lemma 2 may thus be restated by saying the player should bet on heads if and only if fn,k(p) ≥
0. The following two lemmata describe some of the basic properties of the function gn,k(x).

Lemma 3. Let gn,k(x) be defined as in (22). Then gn,k(x) ≤ gn−1,k(x) for 1
2 ≤ x ≤ 1, 0 ≤

k ≤ n, and n ≥ k + 1.

Proof. The proof is by induction on n and k. We need to establish two base cases: k = 0
and k = 1, each for all n ≥ k + 1.

First, when k = 0, it is clear thatgn,0(x) ≤ gn−1,0(x) for allx ∈ [ 1
2 , 1]becausegn,0(x) = xn.

(No induction necessary.)
Now let k = 1 and begin with n = 2. It has been shown above that g2,1(x) ≤ g1,1(x) for

all x ∈ [ 1
2 , 1]. Now suppose that gr,1(x) ≤ gr−1,1(x) for all x ∈ [ 1

2 , 1] and some r ≥ 2. Then

gr+1,1(x) = min (1, x(gr,1(x) + gr,0(x)))

≤ min (1, x(gr−1,1(x) + gr−1,0(x)))

= gr,1(x).

Thus, gn,1(x) ≤ gn−1,1(x) for all x ∈ [ 1
2 , 1] and all n ≥ 2.

We now proceed by induction on k. Suppose that gn,s(x) ≤ gn−1,s(x) for all x ∈ [ 1
2 , 1], all

n ≥ s + 1, and some s ≥ 1. We will show that gn,s+1(x) ≤ gn−1,s+1(x) for all x ∈ [ 1
2 , 1] and

all n ≥ s + 2. This will complete the proof. First, gs+1,s+1(x) = 1 and

gs+2,s+1(x) = min (1, x(gs+1,s+1(x) + gs+1,s(x)))

= min (1, x(1 + gs+1,s(x)))

≤ 1

= gs+1,s+1(x).
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So the statement is true when n = s + 2. Now suppose that it is true when n = r for some
r ≥ s + 2. That is, suppose that

gr,s+1(x) ≤ gr−1,s+1(x)

for all x ∈ [ 1
2 , 1]. Then

gr+1,s+1(x) = min (1, x(gr,s+1(x) + gr,s(x)))

≤ min (1, x(gr−1,s+1(x) + gr−1,s(x)))

= gr,s+1(x).

This completes the proof.

Lemma 4. For every k ≥ 0 and x ∈ [ 1
2 , 1),

lim
n→∞ gn,k(x) = 0.

Proof. By definition (22) of gn,k(x) we have

gn,k(x) ≤ x(gn−1,k(x) + gn−1,k−1(x)).

Exploiting the similarity between this inequality and Pascal’s formula,(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
,

it is easy to show by induction that

gn,k(x) ≤
k∑

j=0

(
n − k − 1 + j

n − k − 1

)
xn−k+j .

It then follows, for fixed k, x, and j , that

lim
n→∞

(
n − k − 1 + j

n − k − 1

)
xn−k+j = 0,

because (
n − k − 1 + j

n − k − 1

)

is a polynomial in n while xn−k+j is an exponential function in n, with base x < 1. Therefore,

lim
n→∞ gn,k(x) = 0.

Therefore, according to (23), for fixed k and p, we have fn,k(p) ≤ 0 for sufficiently large n.
Let mk be the largest value of n such that fn,k(p) > 0, which by Lemma 2 implies that the
player should play a mixed strategy given by Theorem 1 for all n > mk . For n ≤ mk , the player
should bet on heads and the oracle should announce heads.

It is clear from the definitions of gn,k(x) and fn,k(x) that they are increasing functions on
the interval [ 1

2 , 1]. It is also clear that gn,k(
1
2 ) ≤ 1 and gn,k(1) = 1, and, therefore, fn,k(

1
2 ) ≤ 0

and fn,k(1) = 1. Therefore, each function fn,k(x) has a unique real root in the interval [ 1
2 , 1].

Denote this root by pn,k .
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Lemma 5. Let pn,k and mk be defined as above. Then pn+1,k ≥ pn,k for all n ≥ 1, 0 ≤ k ≤ n,
and mk+1 > mk .

Proof. To prove that pn+1,k ≥ pn,k , we evaluate fn+1,k(pn,k):

fn+1,k(pn,k) = pn,kgn,k−1(pn,k) + pn,k − 1

= pn,kgn,k−1(pn,k) − pn,kgn−1,k−1(pn,k) + fn,k(pn,k)

= pn,k(gn,k−1(pn,k) − gn−1,k−1(pn,k)).

This last quantity is nonpositive, since according to Lemma 3, gn,k(x) ≤ gn−1,k(x) for all
x ∈ [ 1

2 , 1]. Thus, by the monotonicity of fn+1,k(x), we have pn+1,k ≥ pn,k .
Similarly, to prove that mk+1 > mk , we first note that, by the definition of mk , fmk,k(p) > 0

and fmk+1,k(p) ≤ 0, so that gmk,k(p) = 1. We now evaluate fmk+1,k+1(p):

fmk+1,k+1(p) = pgmk,k(p) + p − 1 = p · 1 + p − 1 = 2p − 1 > 0.

Therefore, mk+1 > mk .

This lemma implies that each mk is unique and the sequence {mk} is a strictly increasing
sequence.

3.2. Closed-form expressions for gn,k(x) and fn,k(x)

We first motivate the way the functions will be written by developing several special cases.
We begin by noting that gn,0(x) = xn, and we proceed to develop expressions for the functions
when k = 1 and k = 2.

When k = 1, then

fn,1(x) = xgn−1,0(x) + x − 1 = xn + x − 1,

by the definition of fn,k(x) given by (23). Furthermore, when n > m1, we use the recursive
formula for gn,k(x) given by (22) to express gn,1(x) in closed form:

gn,1(x) = x(gn−1,1(x) + gn−1,0(x))

= x2(gn−2,1(x) + gn−2,0(x)) + xgn−1,0(x))

= · · ·
= xn−m1(1 + gm1,0(x)) + xn−m1−1gm1+1,0(x) + · · · + xgn−1,0(x)

=
(n−m1∑

i=1

xign−i,0(x)

)
+ xn−m1

=
(n−m1∑

i=1

xixn−i

)
+ xn−m1

=
(n−m1∑

i=1

xn

)
+ xn−m1

= (n − m1)x
n + xn−m1 .
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We now proceed to the k = 2 case. Using (23), we find that

fn,2(x) = xgn−1,1(x) + x − 1

= x((n − 1 − m1)x
n−1 + xn−1−m1) + x − 1

= (n − 1 − m1)x
n + xn−m1 + x − 1.

Next, when n > m2, we calculate gn,2(x) using the recursive formula (22):

gn,2(x) = x(gn−1,2(x) + gn−1,1(x))

= x2(gn−2,2(x) + gn−2,1(x)) + xgn−1,1(x)

= · · ·
= xn−m2(1 + gm2,1(x)) + xn−m2−1gm2+1,1(x) + · · · + xgn−1,1(x)

=
(n−m2∑

i=1

xign−i,1(x)

)
+ xn−m2

=
(n−m2∑

i=1

xi

((n−i−m1∑
j=1

xn−i

)
+ xn−i−m1

))
+ xn−m2

=
n−m2∑
i=1

n−i−m1∑
j=1

xn +
n−m2∑
i=1

xn−m1 + xn−m2 .

Generalizing from the above, we now state the closed formula for the general case.

Theorem 2. For n > mk ,

gn,k(x) =
n−mk∑
i1=1

n−i1−mk−1∑
i2=1

· · ·
n−(

∑n−1
j=1 ij )−m1∑
in=1

xn

+
n−mk∑
i1=1

n−i1−mk−1∑
i2=1

· · ·
n−(

∑n−2
j=1 ij )−m2∑

in−1=1

xn−m1

+ · · · +
n−mk∑
i1=1

xn−mk−1 + xn−mk

and

fn,k(x) =
n−1−mk−1∑

i1=1

n−1−i1−mk−2∑
i2=1

· · ·
n−1−(

∑n−2
j=1 ij )−m1∑

in−1=1

xn

+
n−1−mk−1∑

i1=1

n−1−i1−mk−2∑
i2=1

· · ·
n−1−(

∑n−3
j=1 ij )−m2∑

in−2=1

xn−m1

+ · · · +
n−1−mk−1∑

i1=1

xn−mk−2 + xn−mk−1 + x − 1.
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Proof. The proof is a rather laborious but straightforward induction. The proofs of the base
cases for both functions are given in the above discussion. Furthermore, the inductive step
simply involves simplifying the expressions(n−mk∑

i1=1

xi1gn−i1,k−1(x)

)
+ xn−mk

and
xgn−1,k−1(x) + x − 1

using the formulae for gn,k(x) and fn,k(x) given by (22) and (23), respectively. The details are
left to the reader.

We conclude this section with the analysis of the special case when k = n − 1. In this case
we begin by noting that gn,n(x) = 1. We then use the recursive formula (22):

gn,n−1(x) = x(1 + gn−1,n−2(x)) = x + x2(1 + gn−2,n−3(x)) = · · · =
n∑

i=1

xi.

From (23) we thus obtain

fn,n−1(x) = xgn−1,n−2(x) + x − 1 = x

(n−1∑
i=1

xi

)
+ x − 1 =

( n∑
i=1

xi

)
− 1.

4. An extended example

Suppose that the player and the oracle decide to play the game G20,4 using a biased coin
with bias p = 2

3 . What is the player’s strategy and expected payoff?
We begin with the case in which k = 1 and find the values of the functions

fn,1(x) = xgn−1,0(x) + x − 1 = xn + x − 1

at x = p. We compute
f1,1(p) = 2p − 1 > 0,

f2,1(p) = p2 + p − 1 > 0,

f3,1(p) = p3 + p − 1 < 0.

This implies that m1 = 2 and, thus, allows us to calculate gn,1(x) for n ≥ 3:

gn,1(x) =
n−2∑
i=1

xn + xn−2 = (n − 2)xn + xn−2.

We now continue with the case in which k = 2, n ≥ 3, and find the values of the functions

fn,2(x) = xgn−1,1(x) + x − 1 = (n − 3)xn + xn−2 + x − 1

at x = p. We compute
f3,2(p) = 2p − 1 > 0,

...

f7,2(p) = 4p7 + p5 + p − 1 > 0,

f8,2(p) = 5p8 + p6 + p − 1 < 0.
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We thus find that m2 = 7, which allows us to calculate gn,2(x) for n ≥ 8:

gn,2(x) =
n−7∑
i=1

n−i−2∑
j=1

xn +
n−7∑
i=1

xn−2 + xn−7

=
n−7∑
i=1

(n − i − 2)xn + (n − 7)xn−2 + xn−7.

We continue with the case in which k = 3, n ≥ 8, in this fashion and evaluate

fn,3(x) = xgn−1,2(x) + x − 1 =
(n−8∑

i=1

(n − i − 3)

)
xn + (n − 8)xn−2 + xn−7 + x − 1

at x = p. We compute
f8,3(p) = 2p − 1 > 0,

...

f12,3(p) = 26p12 + 4p10 + p5 + p − 1 > 0,

f13,3(p) = 35p13 + 5p11 + p6 + p − 1 < 0.

Thus, we have m3 = 12, and we can find gn,3(x) for n ≥ 13:

gn,3(x) =
n−12∑
i1=1

n−i1−7∑
i2=1

n−i1−i2−2∑
i3=1

xn +
n−12∑
i1=1

n−i1−7∑
i2=1

xn−2 +
n−12∑
i1=1

xn−7 + xn−12.

Finally, we analyze the case in which k = 4, n ≥ 13, and evaluate

fn,4(x) =
n−13∑
i1=1

n−i1−8∑
i2=1

n−i1−i2−3∑
i3=1

xn +
n−13∑
i1=1

n−i1−8∑
i2=1

xn−2 +
n−13∑
i1=1

xn−7 + xn−12 + x − 1

at x = p. We compute

f13,4(p) = 2p − 1 > 0,

...

f18,4(p) = 285p18 + 35p16 + 5p11 + p6 + p − 1 > 0,

f19,4(p) = 380p19 + 45p17 + 6p12 + p7 + p − 1 < 0.

We thus find that m4 = 18.
We now see that the player’s strategy is to play a mixed strategy given by Theorem 1

until either the oracle lies or play reaches game G18,4. If play reaches game G18,4 then the
player should bet on heads every time until the coin lands tails or there are no flips remaining.
However, if the oracle lies before reaching game G18,4 and the player disagrees with the oracle’s
prediction, then the player will continue to play a mixed strategy given by Theorem 1 until either
the oracle lies again or play reaches game G12,3, and so on through games G7,2 and G2,1.
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Because the player and oracle begin with game G20,4, the player would like to find the
expected value of this game. This involves evaluating g20,4(x) at x = p. We first compute
gn,4(x):

gn,4(x) =
n−18∑
i1=1

n−i1−12∑
i2=1

n−i1−i2−7∑
i3=1

n−i1−i2−i3−2∑
i4=1

xn +
n−18∑
i1=1

n−i1−12∑
i2=1

n−i1−i2−7∑
i3=1

xn−2

+
n−18∑
i1=1

n−i1−12∑
i2=1

xn−7 +
n−18∑
i1=1

xn−12 + xn−18.

When n = 20, we have g20,4(p) = 870p20 + 101p18 + 13p13 + 2p8 + p2. Therefore, the
expected payoff to the player in the game G20,4 when p = 2

3 is

E20,4 = (2p)20

g20,4(p)
= 274 877 906 944

801 309 129
≈ 343.036.

5. Open questions

The question arises, is there a simple relationship between the integers k and mk? In the
extended example above, we saw that m1 = 2, m2 = 7, m3 = 12, and m4 = 18. Further
calculations show that m5 = 24, m6 = 31, m7 = 37, m8 = 43, and so on. Indeed, for larger
values of k, the value of mk − mk−1 is almost always 7 (and occasionally 8).

More precisely, the question is, does

lim
k→∞

mk

k

exist for all p > 1
2 ? Extensive numerical calculations with MATHEMATICA® and MAPLE®

suggest that the answer is ‘yes’. Indeed, when p = 2
3 , it appears that limk→∞ (mk/k) ≈ 7.1.

This suggests that, when p = 2
3 and n is large, to maintain credibility, the oracle needs to lie

an average of at least once in every 7.1 coin tosses. (This may sound contrary to everyday
experience, but, by lying, the oracle is depleting a valuable resource: its ability to lie.)

Table 1 summarizes some numerical results obtained from MAPLE, using values of k up to
10 000.

Table 1.

p limk→∞ (mk/k)

0.55 ≈ 3.5
0.60 ≈ 4.8
0.65 ≈ 6.5
0.70 ≈ 8.7
0.75 ≈ 11.9
0.80 ≈ 17.0
0.85 ≈ 26.0
0.90 ≈ 45.4
0.95 ≈ 110.3
0.99 ≈ 731.0
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Lastly, a curious phenomenon occurs in the neighborhood of p = 1
2 . When p = 1

2 , mk = k

for all k ≥ 1 and, therefore, mk − mk−1 = 1 for all k ≥ 1. However, if p > 1
2 then numerical

calculations indicate that limk→∞ (mk/k) ≥ 2. This tells us that if the coin is biased, even ever
so slightly, then the oracle must lie at least half the time in order to maintain credibility.
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