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Non-temperate glacier flow over wavy sloping ground

JaN Erixk WEBER
Department of Geophysics, University of Oslo, P.O. Box 1022, Blindern, N-0315 Oslo, Norway

ABSTRACT. The mean, steady-state particle velocity in gravity-driven glacial flow over
sinusoidal, sloping ground is computed using a Lagrangian description of motion. A New-
tonian viscous fluid approximation is used for the ice. The glacier surface is free to move and
is not subject to any stresses. At the bottom, the ice is frozen to the ground. The non-linear
interaction between the basic downslope Poiseuille flow and the bottom corrugations yields a
mean Lagrangian perturbation velocity that is always directed in the upslope direction near
the ground. The requirement of mass balance imposes a mean negative surface slope in the
corrugated region and an associated downslope perturbation flow in the upper part of the
glacier. The no-slip condition at the wavy bottom induces a strong velocity shear in the ice,
and particularly at the base. Analysis shows that the shear heating associated with shortwave
perturbations could, in the case of a marginally frozen ground, lead to melting and sub-
sequent sliding at wave crests along the bottom, while the ice stays frozen at the troughs. It
1s suggested that for glaciers the resulting high strain rates could lead to crevassing;

INTRODUCTION p moving down a sloping plane. The mean inclination angle
with respect to the horizontal is o. The sloping plane has

Progress in glacier flow over wavy ground has mainly sinusoidal corrugations with height h and wavelength A.

. . The layer thickness in the undisturbed state is constant and
focused on temperate glaciers, where a thin water layer acts

equal to H. The motion is two-dimensional and will be de-
scribed in a Cartesian coordinate system, where the z, axis
1s directed along the undisturbed bottom. The z, axis is

as a lubricating agent between the ice and the ground (e.g.
Nye, 1969, 1970; Kamb, 1970; Morland, 1976a, b; Fowler, 1979,
1981). However, partly or wholly non-temperate glaciers are

found in many parts of the world (Hodgkins, 1997). When taken to be perpendicular to this direction and positive up-

the glacier is frozen to the ground, a no-slip condition for the
velocity must be applied here (e.g. Reeh, 1987; Johannesson,
1992). In such cases the entire flow field can be resolved for
given ice rheology.

We let the ice flow down a wavy sloping ground under the
action of gravity with a surface that is free to move. Further-
more, we assume that no melting or refreezing occurs as the
ice moves over the bottom ridges, 1.e. we disregard the process
of regelation (Weertman, 1957). The resulting fluid dynamical
problem will be studied using a Lagrangian description of
motion (Lamb, 1932). This approach has the advantage that
it directly yields the particle motion (the mass-transport
velocity). It also simplifies the kinematics at the wavy bound-
aries (Weber and Debernard, 2000). The mean glacial par-
ticle velocity will result from the non-linear interaction
between the basic shear flow and the bottom corrugations.
To achieve this analytically, we shall have to be content with
a simplified Newtonian model for the resistance in the ice.
Accordingly, we assume that the stress and the strain rate
are linearly related, instead of applying a more realistic,
non-linear model (Weertman, 1973). The mean particle
motion is discussed for various values of the corrugation
amplitude and wavelength. We also consider some possible
thermal consequences of the relatively strong velocity shear
produced at the no-slip base of the ice.

MATHEMATICAL MODEL

Let the ice be a Newtonian viscous fluid of constant density
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wards (see Fig. 1). The bottom topography is given by

z*zhcos?aj*. (1)
We scale our length by H, time by H?/v, velocity by v/H
and the pressure per unit density by v/ H? where v is the
kinematic viscosity coefficient. We will apply a Lagrangian
description of motion, and write the non-dimensional dis-
placement field (X, Z) = (x4, 2.)/H and the pressure II
per unit density as (Pierson, 1962)

X:a+x(a7c7t)7

Z =c+ 2(a,c,t),

I=1y+ G(1 —c)+n(a,c,t), (2)
where (a,c¢) can be considered as initial, non-dimensional
particle coordinates, constituting the Lagrangian variables,

and where ¢ denotes non-dimensional time. Furthermore, I
is a constant and G = gH? cos a/v?, where g is the acceler-

Iig. 1. Sketch of the investigated glacier-flow geometry.
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ation due to gravity. We consider here slow motion of a very
viscous fluid, and we write for the conservation of momentum
and volume in this case (Weber, 1983)

oy + (7 +G2), — Vi’z; — R = —J(7,2) + N(z),
2+ (14 G2), — Vi’ = —J (2, 71) — GJ(x,2) + N(z),
Zo+ 2. = —J(x,2), (3)
where V1.2 = 9%/0a*> + 8?/0c? is the linear part of the
Laplacian operator. Furthermore, J is the Jacobian defined
by

J(A,B) = A,B. — A.B,, (4)
and N is the non-linear part of the Laplacian operator given
by
NA) = 2[A0azc + Ateeta— Avac(Za+x0)] — Ata(@ee— Zae)
— AieCaa—Tac) +J [(Ataze—Atcza) 2] +J[@,(Ateta — Arae)]-

()

In Equation (3) we have defined

H3sin«

R:g ) (6)

which is the relevant Reynolds number for the present
problem. In our Lagrangian formulation the bottom ice
boundary is always situated at ¢ =0, while the surface is

2

located at ¢ = 1. The bottom topography given by Equation
(I) can now be written as

z=ccosk(a+x), forc=0, (7)
where € = h/H and k = 27rH /X are the non-dimensional

corrugation amplitude and wavenumber, respectively.
At the bottom we assume a no-slip condition, 1.e.

xp=2=0, forc=0. (8)

The surface of the glacier is free to move. Here we assume
that the stresses in the along-slope and cross-slope directions
are zero, 1.e. we neglect the dynamic effect of air above the ice.
With the large differences in viscosity between ice and air in
mind, this seems to be a reasonable assumption. The Lagran-
gian form of the stress-free conditions at the surface will be
stated when necessary. We finally remark that the Reynolds
number (Equation (6)), arising from scaling arguments,
equivalently may be written as R =VH/v, where
V = gH?sin o/ v is twice the surface velocity for flat-bottom,
viscous-slope flow with a stress-free top.

SOLUTIONS FOR THE FLOW FIELD

Glacial flows are characterized by very small Reynolds num-
bers. In addition, we take the non-dimensional bottom corru-
gation amplitude € = h/H to be much less than one, which is
often assumed in analyses of this kind (e.g. Morland, 1976a, b).
Accordingly, if we write the solutions as series expansions
after R and e (Weber and Debernard, 2000), we can expect
the series to converge quite rapidly. Hence

= Rz + ez 4 Rex™ 4 220Y 4 R4 | (9a)
z= R 4 €20 4 RV 4 22009 4 R22(1Y 4 (9b)
7= Rl 4 ex®) 4 RenM) 4 2702 1 R2712 4 (9¢)

In applying this procedure to glacial flow, where R typically
is in the range 10 " t0 10 7 (Nye, 1969), it is obvious that we do
not have to consider terms involving higher orders than R'.
This is equivalent to making the creeping-flow assumption,
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Le. neglecting the convective acceleration in the Eulerian
description.

At the bottom, the no-slip condition (Equation (8)) pre-
vents the along-slope displacements from increasing in
time. Therefore, the displacement = at ¢ =0 can be assumed
to be small. We can then write the cross-slope displacement
(Equation (7)) at the wavy bottom as

z = e(coska — kxsinka), for ¢ =0. (10)

Inserting = from Equation (9a) into Equation (10), we
obtain, by comparison with Equation (9b), that the geo-
metrical constraints for the cross-slope displacement to the
various orders at the bottom ¢ = 0 become

210 = 0, 20 = cos ka, A = 0,
29 = _kzOV sin ka, 2P = —kaWsinka, (11)

etc. Here we have utilized 219 (¢ = 0) = 0 (no-slip bottom).
These results presuppose that R < 1and € < 1. Furthermore,
the corrugation wave steepness ek must be less than unity.

To O(R'€’) we have 2(19) = 0 at the lower boundary, so
there 1s no along-slope variation to this order. Introducing
for brevity uy = xt(lo)
steady flow

, we obtain from Equation (3) for

D?up = —1, (12)

where we have defined D = d/dc¢. The no-slip and free-slip
conditions at the bottom and top, respectively, are stated as

ug =0, forc=0,

Duy=0, forc=1. (13)
The solution to this order is the free-surface plane Poiseuille
flow given by
1
uozc—502. (14)

Furthermore, 210 = 7(10)

To O(R"¢') the momentum equation yields that the dis-
placement field has no vorticity. For a steady state, the balance
in the vertical is purely hydrostatic, i.e. ) = —G2(V. The

=0 everywhere.

solution to this order is quite simply the adjustment of volume
caused by introduction of the corrugated bottom. It is gov-
erned by Equation (3) for the conservation of volume. Utiliz-
ing that the vorticity is zero, we can introduce a displacement
potential PO such that Y = 1), and 20V = ¢, OV,
Volume conservation to this order then implies

V2O =, (15)
The geometrical constraint (Equation (11)) at the bottom to
this order is given by 2(°!) = cos ka at ¢ = 0. Vanishing ver-

tical stress at the upper boundary requires that 7% =0 at
¢ = 1. In terms of the displacement potential this becomes

w£01) =coska, forc=0,
PO =0, forc=1. (16)
Accordingly, from Equations (15) and (16)
1
PO = — e h]{:cosh k(1 — ¢) coska, (17)
in
and hence
1
0 = e kcosh k(1 — ¢)sinka,
1
(01) — inh k(1 —
z anEsn k(1 — ¢) coska,
0 = —G20, (18)

For the steady solutions to O(R"€?) we must again have
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hydrostatic balance in the vertical, while conservation of
volume to this order requires

2,02 4 2,02 = g (O1), (01) 4 o (0, (01)

2

= m [COSh 2]{1(1 — C) + cos 2]{:(1] . (19)

At the bottom we have from Equation (11) for this case that
202 = —kzsinka at ¢ = 0, while vanishing vertical
stress at the upper boundary, utilizing the hydrostatic equa-
tion, can be written as 2
become

) =0 at ¢ = 1. The solutions now

-k
2(cosh 2k — 1)

02) _
2(cosh2k — 1)

70 = _G0 (20)

x [cosh 2k(1 — ¢) + 1] sin 2ka,

2 (cos 2ka — 1) sinh 2k(1 — ¢),

We note here the interesting fact that the average over one
wavelength in the Lagrangian space (see the definition in
Equation (34)) yields a non-zero, negative value for the
mean cross-slope displacement in the ice. This means that
for an originally horizontal row of N equally spaced
elements ay, ag, as,..., ay within one wavelength, more ele-
ments are displaced downwards than upwards in order to
comply with the imposed cosine bottom. However, initially
square elements which are displaced upwards will tend to
become flat and long, while downward displaced elements
will become high and thin. In this way the centre of mass
for the system will become unaltered to this order (see
Debernard and Weber (2000) for a related problem in the
limit of large wavenumbers).

The steady solutions for the velocity field to O(R'e!) are
obtained from

Vixffll) — (7 4 Gz(“))a = _2x§§2>xf§” ,
T (00 4 G0
xgzlzl) + Z<11> — inO)Z(OD (21)

tc a ’

where we have only stated the non-zero contributions to the
righthand sides. Defining

xin) = u(u)(c) coska,
zgm = w(ll)(c) sin ka ,

7 4 G2 = p (¢ sin ka, (22)
we finally obtain from Equation (21) that
(D* - 2k°D? + k") = 0. (23)
The solution becomes
wM) = (K| + Kye)e™ + (K3 4 Kyc)e ™ (24)

where K1, K9, K3, K, are integration constants. The no-slip
condition for the velocity at the bottom yields to this order

w =0, Dw'W =—k, fore=0. (25)

Assuming a steady surface shape (') = 0) and a vanishing
along-slope surface stress, we find at the upper boundary

w =0, D=0, forc=1. (26)

The four conditions in Equations (25) and (26) determine
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the constants in Equation (24), and the solutions to this
order can be written

2k
) = m [Sinh kc — ccosh k(l — C) sinh k] y
2
aw__ = _ N
Lok Ok [k cosh ke — cosh k(1 — ¢) sinh k
1
+ kesinh k(1 — ¢) sinh k] + " [(1 = ¢)sinh k(1 — ¢)],
sin
4ksinh k
<11) = - ‘h 1-— . 2
P s 2k — 2R Otk o) 27)

The steady surface shape to this order is obtained from
the requirement that the cross-slope stress vanishes at the
(10 =0 at ¢ = 1 (see Equation (13)), this
requirement can be written as

7 = DwWsinka, forec=1. (28)

From Equation (28), utilizing Equations (22) and (27), we
then obtain for the steady surface elevation

surface. Since ;.

1
A(e=1) = _5T(k) sin ka, (29)
where
4k? cosh k
T(k) = i 2k (50)

We note that the surface amplitude function 7' is always
positive. In the present problem the bottom corrugations
(Equation (1)) are given in non-dimensional form by

Z(c=0)=ccoskX. (31)

According to the results above, the steady surface elevation
to O(R'€') can be written as

Z(c=1)=1-€eT(k)tanasin kX, (32)

where we have utilized the fact that R/G = tan «, which is
the mean bottom slope. The function T'(k) tan « is called
the transfer function. From Equation (30) we realize that
the transfer function tends to infinity when k£ — 0. This is
related to our adopted boundary condition w') = 0 at the
free surface, which was introduced to simplify the solutions
to O(R'€'). To have a physically acceptable solution, we
must require T'(k) < cot « . This poses a lower limit for k
when « is given. Assuming that this limit is attained for
small %k, we find from Equation (30) that k> 3tanc.
Accordingly, for naturally occurring slopes, it appears that
the present theory is valid at least for wavelengths up to ten
times the glacier depth.

From Equations (31) and (32) we realize that the surface
undulation is 90? out of phase with the bottom corrugations.
However, this is not a general result. It is valid when w() =0
at the free surface, as we have assumed here. Computations of
the shape of the free surface when ice flows over topography
go back to Yosida (1964) and Budd (1970). Their analyses have

been improved (see Hutter, 1983). However, for a linear ice

=xx XX
o onon
“NW A O

Fig. 2. Induced mean drift uy from Equation (40) vs Lagrangian
height c for various values of k.
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rheology with a no-slip bottom and non-vanishing normal
velocity at the surface, Reeh (1987) appears to be the first to
have analyzed this problem correctly, using linear pertur-
bation theory. The general case, allowing for slip at the bed,
yields rather complicated transfer functions (e.g. Balise and
Raymond, 1985; Johannesson, 1992; Gudmundsson and
others, 1998).

In the present paper we focus on the non-linear effect of
the bottom corrugations, and in particular how they alter
the mean particle velocity. To keep the computational efforts
to a minimum, we have neglected the normal velocity to
O(R'€') at the free surface. This means that our analysis is
not valid for very long wavelengths, as discussed above.

MEAN STEADY-STATE PARTICLE VELOCITY

To obtain a correction to the basic Poiseuille flow (Equation
(14)) with a mean that 1s different from zero, we have to pro-
ceed to O(R'e?). Introducing Lagrangian averages, the
equation for steady flow along the slope can be written from
Equation (3) to this order as

D2x§12> = (712 + G=(12) 4 (71D + Gz(ll))azgn)
— (7)) + Gz<11))cz§01)

_9 xl(nlz}l)’zgjﬂl) + xgi})x((;)l) _ Igllli)(zg()l) 4 x((fn))
+a2lp? () A — AV = 2D 4 2 l02)
— ng) (xgm)x[(l(n) + ng)ggm)) . (33)
The overbar is defined by
2 /k
A= %/k J Ada, (34)
0

representing the Lagrangian mean. In Equation (33) we have
written down only terms that yield non-zero contributions to
the righthand side. Mathematically, the solution to this
steady problem is not unique. For example, a solution with a
mean constant glacier depth is perfectly possible. However,
such a solution will yield a reduction of the total, mean
volume flux above the corrugations. If there is no change in
the accumulation rate far upstream, it is physically reason-
able to assume that the total ice-volume flux should be
unaltered by the introduction of the sinusoidal bottom corru-
gations. This requires an external mean pressure gradient to
O(R'€?) which induces a flow that balances, in a volume flux
sense, the flow induced by the corrugations. Weber (1997)
considers a similar case when ocean waves induce a mean
particle drift towards the shore, and where mass balance
requires a mean sloping ocean surface. Accordingly, we
assume in Equation (33) that the mean, external dynamic
pressure gradient can be written as

(707 + G2 = —, (35)

where 7 is a constant. At the free surface, we have 7(12) = (.
Hence we obtain for the mean surface slope to O(R'€?) :

A = —v/G, forc=1. (36)
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As explained above, the constant v must be determined
such that the perturbation volume flux is zero, i.e.
1
(12)
z; 7 de=0. (37)
0

By inserting the various orders in Equation (33), we finally
obtain

D2uy = -+ 4k [A1 cosh k(1 — 2¢) + Ag cosh 2k(1 — ¢)

+ Az sinh 2k(1 — ¢) + Aycsinh 2k(1 — ¢)], (38)
where we have defined us = xim) and
2
A=t ,
sinh k(sinh 2k — 2k)
A — 5k B 3
>~ 2(sinh 2k — 2k)  4(cosh2k—1)°
k
A= ——————
s 2(cosh2k — 1)’
K2 k

= T Ginh2k— 2k | 2(cosh2k—1) (39)

By substituting our solutions to the various orders into the
condition for zero along-slope stress at the upper boundary,
and taking the mean, we obtain to this order that the mean
Lagrangian shear must vanish there, i.e. Dug =0 at ¢ = 1.
Furthermore, utilizing the no-slip condition ug =0 at ¢ =0,
we obtain from Equation (38) for the mean particle drift to

O(R'€?) that
1
Uy = 7(0 - 502) + Ajcosh k(1 —2¢) + (Ay + Ay/k)
-cosh 2k(1 — ¢) + (A3 + cAy) sinh 2k(1 — ¢)
+2k(—A;sinhk + As + Ay)c — Ay coshk
—(Ag + Ay/k) cosh 2k — Az sinh 2k .
(40)

From Equations (37) and (40) we finally obtain

1
v = —3{ {(E_ k;> sinh k — coshk] A

sinh 2k
( o cosh 2k;> Ao
cosh2k 1 .
(2k 2k+ks1nh2k)A3

3sinh2k 1 cosh 2k
_— — Ay p. 41
+( ZTE I T ) 4} (41)

It 1s straightforward to find the asymptotic formulae for the
mean particle velocity (Equation (40)) when the non-dimen-
sional wavenumber k is small or large. For k£ < 1, we obtain
up — 0. We here recall the requirement that k£ > 3 tan o for
the O(R'€!) solution to be valid (see the discussion related to
Equation (32)). When k£ > 1, Equation (40) reduces to

uy = 3k(c - %CQ) — k[1— (1 — ke)e 2] (42)

We find here a positive value for the flow in the upper part of
the layer, and a negative boundary-layer jet of thickness
1/(2k) close to the wavy ground. The asymptotic formula
(Equation (42)) reveals the basic feature of the general
solution for arbitrary k The first term on the righthand side
corresponds to the Poiseuille flow driven by the mean surface
tilt, and is always directed downslope. The second term is the
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mean mass transport velocity that is generated by the non-
linear interaction between the basic shear flow and the
bottom corrugations. This part of the flow is always directed
upslope. We notice the same features from Figure 2, where we
have plotted us as function of height for various values of k.

It 1s tempting to speculate that the total mean particle
velocity in some cases even may be directed upslope near
the bottom since the basic Poiseuille flow here is small. For
example, the total along-slope mean particle velocity
u/R = ug + €*uy from Equations (14) and (40) is upslope
near the ground when £ =9 and € = 0.1. In fact, for k > 1,
we find from Equations (14) and (42) that Du(c = 0) < 0,
i.e. upslope flow near the ground, when ek > 1/v/3. How-
ever, restrictions on the non-dimensional corrugation
amplitude € and the wave steepness ek, which both must be
less than unity, force us to treat such cases with care. Future
numerical solutions of the governing equations and/or
laboratory experiments can eventually verify the validity
of the results in this parameter regime.

BOTTOM DRAG

When sinusoidal corrugations are introduced into a constant
shear flow (Couette flow), the mean bottom drag increases
(Wang, 1978). In the present problem, the motion is basically
driven by the action of gravity. With vanishing stresses at the
free surface and no external along-slope pressure gradients,
re. ¥ = 0 in Equation (40), the introduction of sinusoidal
bottom corrugations does not alter the mean bottom drag
(Morland, 1976a), because the mean position of the centre of
mass is not changed by the introduction of periodic bottom
undulations. The drag can simply be obtained from the shear
of the Poiseuille profile (Equation (14)) at ¢ = 0. When we
introduce a constant, external dynamic pressure gradient vy
(<0) into this problem to ensure that the perturbation ice-
volume flux is zero (see Equation (36)), the mean bottom
drag is increased by the factor Re?|y|.

A DIGRESSION ON SHEAR HEATING

In this analysis of glacier flow we have taken the density and
the viscosity to be independent of temperature and pressure.
This appears to be a fair assumption for a non-temperate
glacier as far as the fluid mechanical part is concerned.
However, we would like to discuss briefly some conse-
quences our results may have for the heat flow in the glacier.
In glaciers that are frozen to the ground, the velocity shear
becomes much stronger than when sliding occurs. We there-
fore expect the effect of shear heating (e.g. Yuen and Schubert,
1979), to be more important for non-temperate glaciers than
for temperate, sliding glaciers. In the present paper we look at
the existence of the bottom corrugations as perturbations on
a basic state which is uniform in the along-slope direction.
The basic flow field is given by Equation (14), and the basic
vertical temperature distribution is governed by the geother-
mal heat flux at the base, the shear heating within the ice and
the temperature, say, at the top of the ice. For the simplified
case of a Newtonian viscous fluid with constant viscosity and
heat diffusivity, the basic temperature distribution in the ice is
readily obtained from the results of Yuen and Schubert (1979).
The response times for the velocity perturbations and the
temperature perturbations are very different for a glacier. A
velocity perturbation will be felt through the entire ice layer
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in a characteristic diffusion time proportional to H? /v, which
1s extremely small due to the very large value of the kinematic
viscosity. More accurately, a velocity change will diffuse
through a semi-infinite medium in the mathematical form of
the complementary error function of argument r/(2vt)?
where 7 is the dimensional length coordinate (e.g. Carslaw
and Jaeger, 1959). For v = 35x 10’ m?s ! (Nye, 1969), a velocity
change will manifest itself at a distance of 200 m from the base
in <Is. Similarly, a temperature perturbation has a character-
istic diffusion time proportional to H?/k, where k is the
thermal diffusivity. The value of  for ice is close to 10 ®m*s .
Accordingly, it will take a temperature change hundreds of
years to diffuse through the glacier. Therefore, the velocity
shear and the associated dissipation induced by the undulating
ground will appear almost instantaneously as a heat source in
the equation for the perturbation temperature. In general we
have for the dissipation @ in the two-dimensional, non-
divergent, viscous Newtonian approximation that
3

Q =7 4w’ + (s + ) (43)
where © and w are the dimensionless Eulerian velocity
components in the z, and z, directions, respectively. By
transforming to Lagrangian variables (e.g. Lamb, 1932),
the perturbation dissipation g induced by the bottom
corrugations can be written to lowest order as

_
T gt

Here we have defined

q [2R?*eF(k, ) cos ka + O(R*¢?)] . (44)

% cosh k(1 — ¢)
sinh k ’
(45)

where ©(') and w™) are given by Equation (27). For large
values of k the dissipation amplitude F has a typical bound-
ary-layer structure with large values near the base (see Fig.
3, where we have plotted F' vs height for k£ = 10). We there-
fore concentrate on the heat production at the base (¢ = 0)
of the glacier. For small times we may neglect the effect of
heat diffusion. The rate of change for the perturbation tem-
perature 6 at the ground, where the velocity is zero, can
then be written in dimensional form

0t = i )
PC
Here ¢ 1s the specific heat capacity for ice. By inserting g
from Equation (44), we obtain for the perturbation tem-
perature at the base of the glacier
o (292H2 sin® a
|4

F=(1-c)(D*u™ + k) + k(1= c)

fore=0. (46)

eFy cos kX) t, (47)

P VIR S T T S ST T S T VAN W NN T T |

\_02_—04 0.6 0.8 1
c
Fig. 3. The dissipation amplitude F from Equation (45) vs
height for k = 10.
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valid for small times. Here we have inserted the Reynolds

number R (Equation (6)), and defined

2k cosh 2k — sinh 2k
sinh 2k — 2k

We find that Fj increases monotonically with k, such that

Fy =2 when k= 0, and Fy — 2k when k> 1. Since the

bottom topography (Equation (31)) and the perturbation

Fy= F(kc=0) =

(48)

temperature (Equation (47)) both have a cosine variation
along the slope, the shear heating produces a temperature
increase at the wave crests and a temperature decrease at the
troughs along the ground. Choosing ¢; = 2 x10°J kg 'K,
a = 335° (Yuen and Schubert, 1979), v =35 x10” m*s '
(Nye, 1969) and H = 200 m, we find for large wavenumbers
and ek = 0.5 that the perturbation temperature (Equation
(47)) at a crest (X = 0) becomes

O~ 4x10"tKs ™. (49)

Accordingly, within 12days the temperature may have
increased by about 0.4°C at a wave crest. At that time, heat
diffusion will typically have influenced length scales of
order 1-2 m, so the shear heating at small times will be con-
fined to the region close to the crest at the base. Hence, in
cases where the base temperature is close to but below the
melting temperature, we may expect that corrugation-
induced shear heating might cause melting at the wave
crests along the sloping bottom (changes of the melting
point caused by the pressure perturbations are negligible in
this context). Then a lubricating water layer may form here,
which means that the no-slip condition will be violated and
sliding may occur. Because of the very fast response time for
momentum changes in the ice, the increased velocity due to
slipping will quickly be felt through the entire ice column,
and along-slope convergencies and divergencies in the flow
field may develop. For glaciers the associated large strain
rates could in turn lead to the formation of crevasses in the
divergent zones between the frozen troughs and the lubri-
cated crests. A similar crevassing has been reported in cases
where the upper part of the glacier is frozen to the ground
and the lower part can slide (Lliboutry and others, 1976).

Our calculated value for the local temperature rise has
been obtained for a rather steep sloping ground. It should
be noted from Equation (47) that for more moderate slopes,
similar increases may occur near wave crests under thicker
glaciers or ice sheets.

SUMMARY AND CONCLUDING REMARKS

We have studied the flow of a glacier over wavy sloping
ground as a non-linear interaction problem between a basic
flow and the bottom corrugations. This is achieved by utiliz-
ing a Lagrangian description of motion. A Newtonian vis-
cous approximation is used for the ice. The resulting
interaction current, averaged over one wavelength, is always
directed upslope. To ensure ice-volume flux balance, a sur-
face-tilt driven flow must be added that is always directed
downslope. In this way the mean particle perturbation
velocity becomes directed upslope near the wavy ground
and downslope in the upper part of the glacier.

The use of a direct Lagrangian approach for studying
glacier flow seems not to have been reported in the literature
before. This approach is often preferable to the more tradi-
tional Eulerian description in studies of non-linear mass

transport associated with periodic disturbances (e.g. Weber,
1997). In particular, the Eulerian analysis usually fails to yield
the Stokes-drift part of the flow. The use of a Lagrangian de-
scription is not restricted to Newtonian viscous fluids. It could
also be a valuable tool for analyzing glacier flow over topog-
raphy with a more complex ice rheology.
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