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The statistical relation between ocean wave geometry and water particle movements can
be formulated in the stochastic Gauss–Lagrange model. In this paper we use Slepian
models to obtain detailed information of the sea surface elevation in the neighbourhood
of local maxima in a Gaussian wave model and of the movements of the top particle
of the waves. We present full conditional distributions of the Gaussian vertical and
horizontal movements in the Gauss–Lagrange model, and represent them as one regression
component depending on the height and curvature at the wave maxima and one residual
component. These conditional distributions define the explicit vertical and horizontal
Slepian models. The Slepian models are used to simulate individual min–max–min waves
in space, in particular their front–back asymmetry, and the velocity vector of the particle
at the wave maximum. We find that there is a strong relation between the degree of
front–back wave asymmetry and the direction of the particle movement. We discuss the
role of second-order corrections to the Gaussian components and find only minor effects
for the sea states studied. The Slepian model is shown to be an efficient tool to obtain
detailed information about Gaussian and related models in the neighbourhood of critical
points, without the need for time and space consuming simulations. In particular, they
permit easy simulation of shape and kinematics of rare extreme waves.

Key words: computational methods, coastal engineering

1. Introduction

In an irregular sea there is a complex relation between the random geometry of the
individual waves, measured by their front–back asymmetry, and the water particle orbits.
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There are very few detailed observations of the relation between orbit shape and wave
shape in the open ocean, and most studies are combinations of theoretical models, wave
tank experiments and field data. For example, Chen, Hsu & Chen (2010) and Chen et al.
(2012) analyse theoretical models for monochromatic waves over uniform and sloping
bottoms and compare particle orbits with experimental results. Grue & Jensen (2012) and
Grue & Kolaas (2017) report particle velocities for both laboratory waves and directional
ocean waves based on data from Romero & Melville (2010) and reconstruct the orbits
with respect to different phases and vertical positions. Nouguier, Guérin & Chapron
(2009), Nouguier, Chapron & Guérin (2015) and Guérin et al. (2019) elaborate on the
Gauss–Lagrange model to study semi-regular and irregular waves with consequences for
particle orbit studies. van den Bremer et al. (2019) and Calvert et al. (2019) make detailed
models for depth dependent particle drifts in very regular wave packets and compare
numerical results with laboratory studies on set-down, particle orbits and Lagrangian
displacement.

The relations between the front–back asymmetry of individual waves in space and time
and the geometry of particle orbits were recently studied by Monte Carlo simulations of the
Gaussian components in the Gauss–Lagrange wave model (Lindgren & Prevosto 2020). In
this paper, we will use an alternative technique, where one can simulate individual waves
centred at local maxima with random or predetermined height without having to generate
long time or space series. The method, named Slepian models after David Slepian (Slepian
1963), is statistically based on the conditional distributions of the wave components given
the occurrence of a local wave maximum.

The Gauss–Lagrange wave model for irregular ocean waves was proposed by Pierson
(1961) as an explicit means to include particle kinematics in a stochastic wave model. It
describes the vertical and horizontal movements of each particle on the sea surface as two
correlated Gaussian random processes, one for the particle vertical movement and one
for its horizontal displacement from an assumed original location. A Slepian model for
wave shape and orbit around a local wave maximum gives the conditional distributions
of the Gaussian components of the Lagrange model, conditional on the presence of
a zero crossing in the vertical process derivative with negative second derivative. The
model gives an explicit representation of the involved variables and it is easy to simulate
and much less time consuming than time series generation, and its explicit form gives
additional information of the wave properties.

The Slepian model is a versatile statistical tool with many applications, including
simulation of extreme events, asymptotic analysis and approximation of complex
stochastic structures. The original model in Slepian (1963) was extended in Lindgren
(1970, 1972) to models for the wave shape near a local maximum in a Gaussian wave in
time and two-dimensional space, respectively. Using the term ‘model field’ Adler (1981,
Chapter 6) expands the theory to an N-dimensional homogeneous Gaussian field and
analyses in detail the behaviour near high maxima. The term Slepian model was introduced
in Lindgren (1977) and is now widely accepted (Blanco-Pillado, Sousa & Urkiola 2020).

The Slepian model has found extensive use in ocean science and engineering. The
basic Slepian models were applied to Gaussian ocean waves in Lindgren & Rychlik
(1982), Rychlik (1987) and Lindgren & Rychlik (1991) to find the joint distribution of
the period and amplitude of Gaussian waves. Tromans, Anaturk & Hagemeijer (1991)
refer to the Slepian model and introduce the term New Wave theory for the extreme
case of a high crest applied to design waves. Winterstein, Torhaug & Kumar (1998) used
the Slepian model to find design sea states for extreme response of jackup structures,
while an application to buoy response for wave data acquisition is found in Niedzwecki &
Sandt (1999).
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Orbit orientation in asymmetric waves

Boccotti (1982, 1983) made numerical experiments with a simplified Slepian model
and illustrated graphically the variability of the conditional distribution. Boccotti (1984)
later developed a theory of ‘quasi-determinism’ for Slepian models for very high waves,
(Boccotti 2000, 2015). Phillips, Gu & Donelan (1993a) and Phillips, Gu & Walsh (1993b)
made more detailed studies of the conditional model for high waves and compared with
many different datasets. Whittaker et al. (2016) also compared the theoretical residual
variance from Lindgren (1970) with observed high waves and found excellent agreement.
Dimentberg, Iourtchenko & Naess (2006) used the Slepian model as a ship design tool to
study instability.

A more recent ocean application of the Slepian model is to Gauss–Lagrange waves,
where both vertical and horizontal movements are modelled as Gaussian processes
(Lindgren 2006) with a correction in Åberg (2007, Appendix B) and Lindgren (2015).
DiBenedetto (2020) use a ‘wave-phase variability’ that has some resemblance to the
Slepian model to investigate the spread and distribution of buoyant particles in the
ocean, emphasising pollution effects. Hlophe et al. (2021) make extensive use of crossing
conditioning for wave-to-wave prediction of wave fields. The purpose of the present paper
is to describe and further illustrate the use of Slepian models in the Gauss–Lagrange
setting and draw conclusions pertaining to the relation between wave geometry and orbit
geometry.

Examples of Slepian models in statistical theory are Gadrich & Adler (1993) on
non-stationary processes, Baxevani & Wilson (2018) on prediction of extreme events in
space over time, Baxevani, Podgórski & Rychlik (2003) on velocities of random surfaces,
Azaïs & Chassan (2020) on statistical extreme value theory and Podgórski, Rychlik &
Wallin (2015) on the Laplace moving average.

Advanced applications of the Slepian model are found in signal processing (Szajnowski
1996) for bandwidth estimation, in seismic design to describe plastic deformation (Lazarov
& Ditlevsen 2005; Feau 2008), optics to describe an optical vortex, also called a ‘black
hole’, (Lindgren 2012), cosmology to describe high minima and low maxima in energy
fields (Blanco-Pillado et al. 2020) and frequently over many years in safety studies in
mechanical and structural engineering by Ditlevsen (1985) and subsequently Sobczyk
(1993, §§ 4.4–4.5), Randrup-Thomsen & Ditlevsen (1997), Ditlevsen & Tarp-Johansen
(1999), van de Lindt & Niedzwecki (2005) and Grigoriu (2020).

In this paper we use the power of the Slepian model to give precise analytical as well
as experimental details on selected events in a time/space series or random field, even
when these events are very rare. In § 2 we describe the Gauss–Lagrange wave model
to motivate the need for separate Slepian models for water particle movements in space
and time. In § 3 we motivate the Slepian model and describe its interpretation as a
long-run distribution. Section 4 gives a detailed description of the Slepian models in the
one-dimensional Gaussian case. Section 5 presents the four-dimensional Slepian model in
space and time for the vertical and horizontal components in the Gauss–Lagrange wave
model, with numerical illustrations in § 6 for the Gaussian components and in § 7 for
the resulting Lagrange waves. In § 8 we discuss further aspects of our approach, with a
summary in § 9.

Before we proceed, we clarify and motivate the terminology used in this paper. The
Gauss–Lagrange model, (Pierson 1961), describes explicitly the vertical and horizontal
movements of individual water particles as two dependent Gaussian fields, asymptotically,
when N → ∞, as (2.2) and (2.1), respectively. The dependence is determined by the
depth and frequency dependent hydrodynamic Miche/Gerstner (Gerstner 1809; Miche
1944) relations with no interaction between frequencies. It is intrinsically a linear
model.
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Gauss–Lagrange waves or, for short, Lagrange waves are the combined results of
the Gaussian components in the Gauss–Lagrange model, as defined by (2.3) and (2.4).
Interaction between frequencies causes implicit effects similar to what are found in second-
and higher-order Stokes models (Tayfun 1980). Explicit Stokes effects can be added to
the Gaussian components in the Gauss–Lagrange model, resulting in a Stokes–Lagrange
model; see Lindgren & Prevosto (2020). Regardless of how interaction is introduced, the
effect on local wave characteristic is small, at least on deep water.

2. The Gauss–Lagrange wave model

The two-dimensional Gauss–Lagrange wave model consists of two correlated stationary
and homogeneous Gaussian random fields, W(u, t) and X(u, t), where u is a
one-dimensional space parameter and t is the time parameter. The pair (W(u, t), u +
X(u, t)) represents the vertical and horizontal position at time t of a water particle at the
surface, originally located at position u, with W(u, t) the vertical distance from the still
water level, and X(u, t) the horizontal displacement from the particle origin. Together, the
fields define the orbital movements of the water particles as functions of time. We consider
here only particles at the free surface but the model extends to general depth.

Following Pierson (1961), the energy spectrum S(ω) of the vertical field is called the
orbital spectrum. It is not identical to the Euler spectrum, obtained from observations of
the ocean surface, but the difference is of no relevance in the present work. Representing
the continuous energy spectrum by a discrete spectrum over frequencies ωj = j�ω and
wavenumbers κj, we write the models for particles on the free surface as

Vertical position : W(u, t) =
∑

j

Aj cos(κju − ωjt − φj), (2.1)

Horizontal displacement : X(u, t) =
∑

j

Ajhj cos(κju − ωjt − φj + π/2). (2.2)

Here, hj = 1/ tanh(κjh) = cosh(κjh)/ sinh(κjh) is the depth dependent amplitude gain
factor, with dispersion relation ωj = √

gκj tanh κjh, where g is the constant of gravitation.
We assume κj > 0 and ωj > 0 so waves are unidirectional, moving from left to right.

The amplitudes Aj are random, Aj =
√

a2
j + b2

j , with independent normal variables

aj, bj, with mean zero and equal variance such that A2
j has expected value 2S(ωj)�ω. The

relative phases φj are independent and uniformly distributed in [0, 2π]. The phase shift
between vertical and horizontal movements is π/2 as in (2.2), independent of frequency.

From the pair W(u, t), X(u, t) one can implicitly define a Lagrange wave L(x, t) by

L(u + X(u, t), t) = W(u, t), (2.3)

that is, the sea surface at time t at location x = u + X(u, t) is W(u, t). Keeping time fixed
t = t0, we get a space wave,

L(x, t0) = L(u + X(u, t0), t0) = W(u, t0), (2.4)

as a continuous parametric curve in space. The curve may be multiple valued unless u �→
u + X(u, t0) is strictly increasing. Since X(u, t0) is continuous there is a unique relation
between local maxima of the Gaussian process W(u, t0) and the Lagrange space wave
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L(x, t0). Keeping the space coordinate fixed x = x0, we get a time wave, satisfying

L(x0, t) = W(ut, t), ut + X(ut, t) = x0. (2.5a,b)

Again, if u �→ u + X(u, t0) is strictly increasing for each t the Lagrange time wave is
uniquely defined by (2.5a,b). (Since the derivative ∂X(u, t)/∂u is Gaussian and stationary
there is a positive probability that the function is not strictly increasing. For normal ocean
spectra over moderate sized regions the probability of this happening is very small.)

3. Interpretation and integral form of Slepian models at wave maxima

3.1. Counting maxima and marked maxima
A Slepian model is a stochastic model of any dimension or complexity that represents
the distribution of a group of variables or processes conditioned on a crossing event;
(Leadbetter, Lindgren & Rootzén 1983, chapter 10.3). These variables are called marks,
attached to the crossings. In our case, the crossings will be the local maxima of the space
wave W(u, t0) or L(x, t0). Examples of simple marks are the height of the maximum and
the horizontal and vertical velocities of the water particle at the maximum at the time of
observation. More complex marks are the wave shape in the vicinity of the maximum and
the time orbit of the water particle that was located at the maximum. In the main text we
use the local min–max–min definition of a wave. The trough–crest–trough definition is
discussed in § 7.3.

We start with the Slepian models for the individual Gaussian components. We suppress
the constant t0 in the rest of this section and write W and Wu, Wuu, the first and second
partial derivatives, without u-argument, when it is clear from the context if they represent
general values or conditional values at maxima. For the velocities we write Wt for the
vertical and Xt for the horizontal velocity of the maximum particle.

To make a frequentist’s definition of the Slepian model and its distribution we count the
total number of local maxima of W(u) in a space interval 0 � u � U (even if u + X(u) is
not strictly increasing the local derivative has a zero crossing at the maximum),

NU = #{uk ∈ [0, U]; W(uk) is a local maximum}, (3.1)

and identify those marked maxima where W(uk + ·, ·) and X(uk + ·, ·) jointly satisfy some
well-defined condition A,

NU(A) = #{uk ∈ [0, U]; W(uk) is a local maximum where condition A is satisfied},
(3.2)

with NU(A)/NU giving the relative frequency of maxima where condition A is satisfied.
As examples of one-dimensional conditions A we can take

{W(uk) � w}, {Wt(uk) � v}, {W(uk + s′, t′) � y′}, {X(uk + s′′, t′′) � y′′}, (3.3)

while {Wt(uk) � vv & Xt(uk) � vh} is a simple example of a bi-variate condition, that we
will investigate later. Taking higher-dimensional conditions we can get the full distribution
of the W- and X-components near a wave maximum in space and we will do so in § 5.

When the W, X-system is ergodic, which is the case when the orbital spectrum is
continuous, the empirical distribution converges as U → ∞,

lim
U→∞

NU(A)

NU
= E(N1(A))

E(N1)
= Q(A), say. (3.4)

The interpretation of Q(A) is as the long-run distribution of the W- and X-fields in the
neighbourhood of local space maxima.
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3.2. The expectations in Q(A)

To get an explicit representation of the distribution we give integral expressions for the
expectations in (3.4). The denominator E(N1) is the mean number of maxima per space
unit, by Rice’s formula equal to

E(Wuu(0)− | Wu(0) = 0)fWu(0) = fWu(0)

∫ 0

z=−∞
(−z)fWuu|Wu=0(z) dz, (3.5)

where fWu is the probability density function of Wu(0) and fWuu|Wu=0(z) a conditional
density.

To get compact notation we define W0,u,uu = (a, b, c) as W(0) = a, Wu(0) =
b, Wuu(0) = c and Wu,uu = (b, c) as Wu(0) = b, Wuu(0) = c, etc. Then the nominator in
(3.4) is expressed by a generalised Rice’s formula as

E(N1(A)) = E(W−
uuIA | Wu = 0)fWu(0)

= fWu(0)

∫ 0

−∞
E(IA | Wu,uu(0, z))(−z)fWuu|Wu=0(z) dz. (3.6)

The indicator function IA = IA(W, X) is equal to one if the W- and X-functions satisfy the
condition A.

3.2.1. Extended conditioning at maxima
To get maximal use of the Slepian model one can engage also the height of the maximum,
W(uk), in the model, when we express E(N1(A)) in integral form. Then

E(N1(A)) = fWu(0)

×
∫

a

∫ 0

z=−∞
E
(
IA | W0,u,uu = (a, 0, z)

)
(−z)fW,Wuu|Wu=0(a, z) dz da. (3.7)

From (3.7) we get the joint density of the height W and second derivative Wuu at local
space maxima,

q(z, a) = (−z)fW,Wuu|Wu=0(a, z)∫
a

∫ 0

z=−∞
(−z)fW,Wuu|Wu=0(a, z) dz da

, z < 0, −∞ < a < ∞, (3.8)

and we can express the expectation in (3.4) as

E(N1(A)) =
∫

a

∫ 0

z=−∞
E
(
IA(W, X) | W0,u,uu = (a, 0, z)

)
q(z, a) dz da. (3.9)

4. Local structure in the Gaussian case

The Gauss and the Gauss–Lagrange wave models are completely defined by the one-sided
spectral density S(ω) for the stationary time process W(u0, t), in the Gauss–Lagrange
model called the orbital spectrum. From S(ω) one can compute time and space covariance
functions as well as cross-covariance functions for the W- and X-processes.
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Variable E(· | Wu,uu(0, z)) V(· | Wu,uu(0, z)) Cov(·, · | Wu,uu(0, z))

Xt −m̂12z/m04 Δxt = m̂20 − m̂2
12/m04 —

Xt, W — — Δw,xt = m̂10 − m02m̂12/m04
W −m02z/m04 Δw = m0 − m2

02/m04 —
Wt 0 Δwt = m20 − m2

11/m02 —

Table 1. Conditional moments at local maximum.

We use the following standard notation for covariance functions and covariances. For
the covariance functions we write

rwx(u, t) = Cov(W(0, 0), X(u, t)),

rwux(u, t) = Cov(Wu(0, 0), X(u, t)),

rxtwuu(u, t) = Cov(Xt(0, 0), Wuu(u, t)),

⎫⎪⎬
⎪⎭ (4.1)

etc. We reserve the notation r(t) = ∫
cos(ωt) S(ω) dω for the time covariance function of

W(u0, t) and let m0 = V(W(u, t)) be the variance. For the covariances we use the standard
spectral moments mij = ∫

ωiκ j S(ω) dω when only the W-field is involved. For the X-field
and for mixed W, X moments we use a ‘hat’-notation when needed,

m̂0 =
∫

ρ2S(ω) dω, m̂10 =
∫

ρω S(ω) dω,

m̂20 =
∫

ρ2ω2 S(ω) dω, m̂12 =
∫

ρωκ2 S(ω) dω,

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

with ρ = 1/ tanh(hκ); see Appendix A for a listing of notation.

4.1. Statistical properties at a local maximum
For the Gaussian case we start with explicit expressions for a few simple and important
variables coupled to local maxima, namely the maximum height and the vertical and
horizontal velocities of the particle located at the maximum at time of observation, i.e.
W = W(uk), Wt = Wt(uk), Xt = Xt(uk).

They can all be expressed via formula (3.6), translated to probability densities for the
three cases. The unconditional distribution of (Xt, W, Wuu, Wu, Wt) is normal with zero
mean and covariance matrix

Σ =

⎡
⎢⎢⎢⎣

m̂20 m̂10 −m̂12 0 0
m̂10 m0 −m02 0 0

−m̂12 −m02 m04 0 0
0 0 0 m02 −m11
0 0 0 −m11 m20

⎤
⎥⎥⎥⎦ . (4.3)

From the covariance matrix we draw the conclusion that, of the two characteristic
variables at a local maximum, Wu = 0 and Wuu = z, the former affects only Wt and the
latter affects only Xt, W. The conditional distribution of (Xt, W, Wt) given Wu,uu = (0, z)
as normal with mean, variances and covariance as in table 1. This leads to the following
simple representations of the involved variables.

Since the factor (−z)fWuu|Wu=0(z) in (3.6) is proportional to a negative Rayleigh density
with parameter

√
m04 the Rice formula (3.6) leads to the explicit representation (4.5) of

924 A12-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.607


G. Lindgren and M. Prevosto

the three variables at a local space maximum. Let Nwt be a standard normal variable
and let (Nw, Nxt) be an independent pair of standard normal variables with correlation
coefficient Δw,xt/

√
ΔwΔxt . Also let R be a standard Rayleigh variable, independent of

the normals. Then, at a local maximum, with =L denoting ‘equal in distribution’, the
curvature distribution is expressed as

Wuu =L Z = −√
m04R, (4.4)

while the remaining distributions can be expressed as

W =L √ΔwNw + m02R/
√

m04,

Wt =L √Δwt N
wt ,

Xt =L √Δxt N
xt + m̂12R/

√
m04.

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

Note that W and Xt are dependent both through the common R and through the normal
correlation, while Wt is independent of the two. In fact, the three expressions in (4.5)
together with the definition (4.4) is a rudimentary example of a Slepian model, with a
crossing-defined regression term and Gaussian residuals.

4.2. Particle velocities
We will use (4.4)–(4.5) to find the distribution of particle velocities at the wave maximum
and its dependence of the maximum height.

Obviously, the vertical velocity Wt is normal with mean zero and variance Δwt . The
marginal distribution of W and Xt is that of the sum of a normal and a Rayleigh variable
and it was derived by Rice (1945, § 3.6) as the distribution of the local maxima of a
Gaussian process, i.e. the representation of W. A general form of the probability density
function (p.d.f.) is given in Appendix B, (B1); see also Prevosto (2020).

The joint distribution of W, Xt is a bivariate normal distribution shifted by a Rayleigh
distributed vector. A derivation of the p.d.f. is given in Appendix B, Fact B.2.

To illustrate the results, we consider the joint distribution of vertical and horizontal
velocities and how it varies with the maximum height. Let fWt(v) be the normal density of
vertical velocity and let fW,Xt(w, h) be the joint density of height and horizontal velocity.
The combined density is

fW,Xt,Wt(w, h, v) = fW,Xt(w, h) × fWt(v), (4.6)

and the conditional density, with c as a normalising constant,

fXt,Wt|W=w0(h, v) = cfW,Xt(w0, h) × fWt(v). (4.7)

Figure 1 shows how the joint distribution depends on the height of the maximum for
a JONSWAP wave spectrum J20 described in § 6. In panel (a), calculated by (4.7), the
wave height is exactly w0. In panel (b), the density (4.6) is integrated over w > w0 to
get all waves greater than w0. In figure 2 the constraint of the maximum is absent. The
figure shows the joint p.d.f. from (B1) together with an empirical p.d.f. based on 100 000
independent Slepian realisations.
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h/v velocity pdf depending on wave height
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Figure 1. Joint horizontal/vertical velocity depending on wave height for a J20 spectrum. (a) At wave max
equal to w0. (b) At wave max exceeding w0. (A/a)–(E/e): w0 = [0.25 0.5 1 1.5 2] × Hs. The level curves
enclose 10 : 20 : 90, 95, 99, 99.9 % of the distribution.
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Figure 2. Joint density of vh, vv , horizontal and vertical particle velocities at local maxima from (B1) (smooth,
red curves) together with empirical p.d.f. from 100 000 simulated Slepian realisations (wiggly black curves).
Level curves as in figure 1. The wave spectrum is J20 at infinite depth. The level curves enclose 10 : 20 : 90, 95,
99 % of the distribution.

4.3. Interpretation of the q-distribution (3.8) in the Gaussian case
In the following sections we will write A = W and Z = Wuu for the random height and
curvature of the maximum and express their joint density function (3.8) in explicit form,

q(z, a) = −z
k

exp

{
−m0z2 + 2m02az + m4a2

2(m0m04 − m2
02)

}
, z < 0, (4.8)

where k is a generic normalising constant. The following forms of the q-density are useful
for simulation purposes:

q(z, a) = −z
k

exp
{
− z2

2m04

}
× exp

{
− (a + zm02/m04)

2

2(m0 − m2
02/m04)

}
, z < 0, (4.9)
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q(z | a) = −z
ka

exp

{
− (z + m02a/m0)

2

2(m04 − m2
02/m0)

}
, z < 0, (4.10)

where k, ka are normalising constants.
The first form is equivalent to the representation of W in (4.5) as the sum of a normal

and a Rayleigh variable. The form (4.10) was used in Lindgren (1970) and it can be used
to generate Slepian waves with fixed height A = a. We used simple rejection sampling by
the MATLAB routine sampleDist to simulate from this non-standard distribution.

4.4. Slepian models around wave crests
The Slepian model around a local maximum is defined from local characteristics, and
the conditional distributions are defined explicitly in the Gaussian context. A more
‘regional’ wave definition is the one centred around the wave crests, i.e. the maxima
between two successive mean level crossings. Any corresponding wave definition, like
the trough–crest–trough wave or the zero–crest–zero half-wave, is complex involving
non-local conditions. However, since any wave crest is also a local maximum, simulation
of crest waves is easily performed by means of local maxima Slepian waves. One simply
rejects those samples which do not satisfy the crest wave definition. In § 7.3 we will briefly
investigate some of the complications and peculiarities that accompany this technique.

5. Functional structure of the Slepian processes

5.1. The regression functions and the residual functions
A Slepian model in a Gaussian model consists of one regression part with parameters
determined by the random crossing event and one residual part for the variation around
the regression. We base the models on representation (3.9), conditioning on the height
A = W and the curvature Z = Wuu at a local maximum, where Wu = 0.

The Slepian processes for the W- and X-components in the Gauss–Lagrange model have
the structures

W(u, t) = Aαw(u, t) + Zβw(u, t) + Δw(u, t), (5.1)

X (u, t) = Aαx(u, t) + Zβx(u, t) + Δx(u.t), (5.2)

where the α- and β-functions are deterministic functions determined by the variances and
covariances (A2) and (A3) and the Δ-functions are non-stationary, mean zero, correlated
Gaussian fields, independent of A and Z, whose density is (4.8). The joint distribution of
the processes W,X in (5.1)–(5.2) is equal to the conditional distribution of W, X around
a local W-maximum in space. If we fix A = a and generate Z from (4.10) we get Slepian
models near a wave with that height.

The next step is to describe the functions α and β and the covariances for the Δ-fields.
The conditional distributions of W(u, t), X(u, t) given the presence of a maximum at
0 = (0, 0) are not normal. If we take the conditioning one step further and specify also
the height and curvature at the maximum, the conditional distributions are again normal
(Lindgren 1972) and determined by conditional expectations and covariances. Thus we
need only consider these functions for a pair of space–time points, pj = (uj, tj), j = 1, 2,
separated by p = p2 − p1.
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In short, set W 0 = (W(0), Wu(0), Wuu(0)). The 7 × 7 partitioned covariance matrix of
(W(p1) W(p2) | X(p1) X(p2) | W 0) = (W , X , W 0), is

Σ =

⎡
⎢⎣

ΣW W ΣW X ΣW W 0

ΣXW ΣXX ΣXW 0

ΣW 0W ΣW 0X ΣW 0W 0

⎤
⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0 rww(p) rwx(0) rwx(p) rww(p1) rwuw(p1) rwuuw(p1)
rww(p) m0 rwx(−p) rwx(0) rww(p2) rwuw(p2) rwuuw(p2)

rwx(0) rwx(−p) m̂0 rxx(p) rwx(p1) rwux(p1) rwuux(p1)
rwx(p) rwx(0) rxx(p) m̂0 rwx(p2) rwux(p2) rwuux(p2)

rww(p1) rww(p2) rwx(p1) rwx(p2) m0 0 −m02
rwuw(p1) rwuw(p2) rwux(p1) rwux(p2) 0 m02 0
rwuuw(p1) rwuuw(p2) rwuux(p1) rwuux(p2) −m02 0 m04

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.3)

The conditional joint distribution of the processes W(u, t) and X(u, t), given W 0 =
(a, 0, z), is normal with mean and covariance

[
mw(u, t)

mx(u, t)

]
=
[

rww(u, t) rwuw(u, t) rwuuw(u, t)

rwx(u, t) rwux(u, t) rwuux(u, t)

]
Σ−1

W 0W 0

⎡
⎢⎣

a

0

z

⎤
⎥⎦ , (5.4)

Cov(W(p1), W(p2), X(p1), X(p2) | W 0)

= Cov(Δw(p1), Δ
w(p2), Δ

x(p1), Δ
x(p2))

=
[

CWW CWX
CXW CXX

]
=
[
ΣW W ΣW X

ΣXW ΣXX

]
−
[
ΣW W 0

ΣXW 0

]
Σ−1

W 0W 0
(ΣW 0W ΣW 0X ).

(5.5)

Evaluating (5.4) we get the conditional expectations of W(u, t) and X(u, t) given a space
maximum at 0 with height and curvature A = a, Z = z,

mw(u, t | a, z) = a (m04rww(u, t) + m02rwuuw(u, t)) + z (m02rww(u, t) + m0rwuuw(u, t))
m0m04 − m2

02
,

mx(u, t | a, z) = a (m04rwx(u, t) + m02rwuux(u, t)) + z (m02rwx(u, t) + m0rwuux(u, t))
m0m04 − m2

02
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.6)
In (5.5) the off-diagonal elements in CWW , CWX , CXX contain the conditional

auto-covariance and cross-covariance functions for the normal residual processes. In the
following, explicit expressions the time arguments s, t can be changed to space arguments.
For covariance functions in space–time one can use the notation pj = (uj, tj), j = 1, 2,
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separated by p = p2 − p1 as in (5.3). The expressions in time only are

Cw(s, t) = Cov(Δw(s), Δw(t)) = rw(t − s)

− m0rwuuw(s)rwuuw(t) + m02rw(s)rwuuw(t)

m0m04 − m2
02

− m02rwuuw(s)rw(t) + m04rw(s)rw(t)

m0m04 − m2
02

− rwuw(s)rwuw(t)
m02

, (5.7)

Cx(s, t) = Cov(Δx(s), Δx(t)) = rx(t − s)

− m0rwuux(s)rwuux(t) + m02rwx(s)rwuux(t)

m0m04 − m2
02

− m02rwuux(s)rwx(t) + m04rwx(s)rwx(t)

m0m04 − m2
02

− rwux(s)rwux(t)
m02

, (5.8)

Cwx(s, t) = Cov(Δw(s), Δx(t)) = rwx(t − s)

− m0rwuuw(s)rwuux(t) + m02rw(s)rwuux(t)

m0m4 − m2
2

− m02rwuw(s)rwx(t) + m04rw(s)rwx(t)

m0m4 − m2
2

− rwuw(s)rwux(t))
m02

. (5.9)

One should be aware that there are four residual processes involved in the model: Δw(u)

and Δx(u) as space functions, and Δw(t) and Δx(t) as processes in time, and they are all
dependent on each other.

5.1.1. Explicit Slepian models for the Gaussian components
We now formulate Slepian models for the Gaussian components conditioned on a local
space maximum in W(u, 0) at u = 0, and from these we describe the Lagrangian wave
shape and the corresponding particle orbit. Note that all Δ-processes are correlated
through (5.9). The Slepian models for the components are, with the distribution of A, Z
given by (4.9) or, when A is fixed, by (4.10)

Wave models : W(u, 0) = mw(u, 0 | A, Z) + Δw(u, 0)

= Aαw(u, 0) + Zβw(u, 0) + Δw(u, 0),

X (u, 0) = mx(u, 0 | A, Z) + Δx(u, 0)

= Aαx(u, 0) + Zβx(u, 0) + Δx(u, 0),

Orbit models : W(0, t) = mw(0, t | A, Z) + Δw(0, t)

= Aαw(0, t) + Zβw(0, t) + Δw(0, t),

X (0, t) = mx(0, t | A, Z) + Δx(0, t)

= Aαx(0, t) + Zβx(0, t) + Δx(0, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)
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We note that with ρ = 1/ tanh(κh),

mw(0, 0 | a, z) = a,

mx(0, 0 | a, z) = E(X(0, 0)) = 0,

Cw(0, 0) = V(Δw(0, 0)) = 0,

Cwx(0, 0) = Cov(Δw(0, 0), Δx(0, 0)) = 0,

Cx(0, 0) = V(Δx(0, 0)) =
∫

ρ2S(ω) dω −
{∫

ρκS(ω) dω

}2
/

m02.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.11)

This means that, at the maximum, the Slepian model for the wave is exactly equal to the
height of the maximum, as it should be. The average displacement there is also zero, but
randomly normal with non-zero variance, (5.11).

For easy reference we state the functional forms of the Slepian models, leaving out the
redundant t = 0 and u = 0, respectively,

W(u) = A
m04rww(u) + m02rwuuw(u)

m0m04 − m2
02

+ Z
m02rww(u) + m0rwuuw(u))

m0m04 − m2
02

+ Δw(u),

X (u) = A
m04rwx(u) + m02rwuux(u)

m0m04 − m2
02

+ Z
m02rwx(u) + m0rwuux(u))

m0m04 − m2
02

+ Δx(u),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.12)

W(t) = A
m04rww(t) + m02rwuuw(t)

m0m04 − m2
02

+ Z
m02rww(t) + m0rwuuw(t))

m0m04 − m2
02

+ Δw(t),

X (t) = A
m04rwx(t) + m02rwuux(t)

m0m04 − m2
02

+ Z
m02rwx(t) + m0rwuux(t))

m0m04 − m2
02

+ Δx(t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.13)

The formulas are valid both when A, Z are jointly random with density (4.9) and when
A = a is fixed and Z is random with conditional density (4.10).

6. Results: Gaussian Slepian models – wave shape and orbits

We illustrate the theory on the same orbital spectra as are used in (Lindgren & Prevosto
2020). The spectrum J20 is a narrow JONSWAP spectrum with significant wave height
Hs = 4.5 m, peak period Tp = 10 s and γ = 20. The mean max–max wavelength is
40.4 m and the mean zero crossing wavelength is 112 m. The spectrum PM is a
Pierson–Moskowitz wind–sea spectrum with Hs = 4.5 m, Tp = 10 s. Its max–max and
mean zero crossing wavelengths are 16.1 m and 71 m, respectively. In the simulations the
spectra are frequency truncated, the J20 spectrum at 2 rad s−1 and the PM spectrum at
3 rad s−1.

6.1. Slepian models in space – wave shape
Figure 3 shows 20 samples of the Slepian processes (5.12) for the J20 model on infinite
depth conditioned on a local maximum in W(u, 0) with height 4 m. Panel (a) shows
realisations of the Gaussian wave form as a function of u in an interval extending 50 m
around the maximum. The red curves are the regression parts, i.e. the expected Slepian
curves (5.6) while the blue curves include the normal residuals around the regression, as
in (5.12). Panel (b) shows the horizontal displacement as a function of its original location
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Figure 3. Slepian model realisations of Gaussian wave shape W(u) (a) and horizontal displacement X (u)

(b) according to (5.12) conditioned on a local maximum with height a = 4 m. The narrow band of red curves
shows the regression curves depending on the curvature at maximum, the more variable blue curves are full
Slepian models including correlated residuals, independent of maximum height and curvature. The thick brown
curves in the two panels come from the same realisation. The black dashed curve in the left plot represents
a simplified regression, also called the ‘New Wave model’, i.e. arww(u, 0)/rww(0, 0). The spectrum is the
JONSWAP spectrum J20.
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Figure 4. Slepian wave and displacement components for models in figure 3 plotted separately.

relative to the maximum. In the simulations the maximum height was fixed to a = 4 m
and the curvature distribution defined by conditioning in (4.10).

The black dashed curve in figure 3 is the ‘New Wave model’, defined by Tromans
et al. (1991, equation (3)) as arww(u, 0)/rww(0, 0), which is the expected (most probable)
value conditioned on a stationary point at u = 0, i.e. W(0) = a, W ′(0) = 0, regardless
of its curvature. As soon as the curvature is involved, the functional form will be more
complicated, (Lindgren 1970, Theorem 3), and (5.6) in the present paper. However, it is
easy to see from the conditional density (4.10) that Z/a tends in probability to −m02/m0 as
a → ∞. Inserting this limit into the expectation in (5.6) we see that mw(u, 0 | a, z)/a →
rww(u, 0)/rww(0, 0), i.e. our model is asymptotically equivalent to the Tromans model.
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Figure 5. Orbits for the top particles in figure 3 according to models (5.13). (a) Infinite depth; (b) depth 30
m. Red curves are the symmetric regression orbits, blue dashed asymmetric curves include the residuals. The
Airy orbital eccentricity of surface particles at water depth h = 30 m is cosh(kph)/ sinh(kph) = 1.14 for this
narrow spectrum with peak frequency ωp = 0.046 rad s−1. The observed average eccentricity of the simulated
regression orbits is 1.12.

The residuals in figure 3 were simulated from the models (5.7)–(5.9) with dependence
between Δw(u′) and Δx(u′′). The residuals were generated by the WAFO-routine
rndnormnd from their joint high-dimensional covariance matrix (WAFO-group 2017).

6.2. Slepian models in time – particle orbits and depth dependence
For the orbit model we need the Slepian models X o(t),Wo(t) from (5.13). Figure 5(a)
shows orbits from the same model as in figures 3 and 4. Figure 5(b) shows the variation
in eccentricity at moderate depth h = 30 m. Here, we have an opportunity to compare
the outcomes with classical wave theory that predicts the eccentric elliptic shape of water
particles as a function of water depth. The Airy orbital eccentricity of surface particles is
cosh(kph)/ sinh(kph) where kp is the peak wavenumber and h is the water depth (Kinsman
2002, p. 137). For the J20 spectrum at depth h = 30 m this measure takes the value 1.14,
very close to the average eccentricity 1.12 of the regression orbits.

7. Results: Slepian models in the Lagrange model

From (5.12) and (2.4) we can define a Slepian model for the Lagrange space wave at t0 = 0,

Lw(x) = Lw(Xw(u)) = Ww(u), (7.1)

valid in an interval x− < x < x+ around 0 where u + XW(u) is strictly increasing. The
model for the top particle orbit is defined directly from (5.13),

(X o(t),Wo(t)), −∞ < t < ∞. (7.2a,b)

We are now ready to focus on the original goal for this paper: the statistical relation
between local wave asymmetry and orbit orientation for the top particle in Lagrange waves.
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7.1. Slepian model around local maxima
We use the same wave definition as in Lindgren & Prevosto (2020, § 3.1), namely the
min–max–min definition and apply the Slepian model.

Consider a realisation of the Slepian model Ww(u) with a maximum of height a at
u = 0. Denote by u− < 0 < u+ the locations of the local minima closest to 0 and write
m− = Ww(u−) and m+ = Ww(u+) for their heights. After the Lagrange space shift by
Xw the three extrema are located at Xw(u−) < Xw(0) < Xw(u+), with order preserved if
u + Xw(u) is strictly increasing in u. The wave front and back steepness are then defined
by

s+ = (a − m+)/(Xw(0) − Xw(u+)) < 0,

s− = (a − m−)/(Xw(0) − Xw(u−)) > 0.

}
(7.3)

The front–back asymmetry is measured in logarithmic scale as Λ = log(−s+/s−); waves
with positive Λ have steep front and less steep back.

We define the orbit of the top particle as a function of τ ,

O(τ ) = (X o(τ ),Wo(τ )
)
, −d− � τ � d+, (7.4a,b)

where the interval is chosen so that Ww(τ ) has local minima at −d− and d+, these minima
being the closest to 0.

7.2. Particle velocities, wave asymmetry and orbital orientation at local maxima
As a proxy for the orbital orientation one can fit an ellipse to the trajectory in the interval
around the centre and use its orientation as a measure of orbit tilt. This was the approach
in Lindgren & Prevosto (2020, § 3.3), where the MATLAB routine fit_ellipse was used
to find the tilt θe of the approximating ellipse as a measure of the orbit orientation. It
was suggested in that paper that the velocity vector for the top particle would give a
more objective measure of the connection between wave asymmetry and orbit orientation.
Intuitively, an upward direction would indicate an upward tendency of the orbit and vice
versa, and as a local variable it would not be subject to the wild randomness of the orbit.

For the top particle orbits we observe that the maximum in space, Ww(0), is not a
maximum in time. We use the velocities vv = Wo

t (0) and vh = X o
t (0) to calculate the

velocity direction θv = atan2(vv, vh). According to (4.5) vv is normal and independent of
vh, which in turn is the sum of one normal and one Rayleigh variable; its p.d.f. is given in
Fact B.1 in Appendix B.

Figure 2 shows the theoretical joint p.d.f. of vh, vv for all local maxima and it agrees
with simulations from 100 000 simulated Slepian realisations. As seen, they are centred at
a positive average horizontal velocity while the vertical one is symmetric around zero. We
now investigate the relation to the wave geometry.

We simulate Slepian processes from JONSWAP (J20) and Pierson–Moskowitz (PM)
spectra at different depths and observe the Lagrange wave skewness from (7.3). For the
orbit orientation we observe both the velocity direction θv of the top particle and the
orientation θe of the fitted ellipse as measures of orbit tilt. We compare with the results
in Lindgren & Prevosto (2020, figure 7a–c) where waves and orbits were observed in
simulated space series. Figure 6 shows the J20 results from simulated Slepian realisations
at infinite depth and depths of h = 40, 20 m. As in the cited work we restricted the data
to ‘major’, waves with maximum height exceeding Hs/8 and front and back amplitudes
greater than Hs/4. Figure 7 can be compared to figures 2 and 5 in Lindgren & Prevosto
(2020), showing the corresponding results for the PM spectrum.
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Figure 6. Relation between wave asymmetry and orbit orientation for J20 waves. (a,c,e) Orbit orientation
measured by fitted ellipse. (b,d, f ) Orbit orientation measured by velocity vector of top particle. Depth from
top: infinite, h = 40 m, h = 20 m. Simulation data with 8000, 9000, 14 000 wave/orbit pairs.
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Figure 7. Relation between wave asymmetry and orbit orientation for PM waves. (a,c,e) Orbit orientation
measured by fitted ellipse. (b,d, f ) Orbit orientation measured by velocity vector of top particle. Depth from
top: infinite, h = 40 m, h = 20 m. Simulation data with approximately 8000, 8000, 9000 wave/orbit pairs.
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One can draw the immediate conclusion that both orientation measures have a strong
but different statistical relation to the wave asymmetry. Panels (a,c,e) in figures 6 and 7
relate the wave asymmetry to the tilt of the ellipse fitted to the orbit. Panels (b,d,f ) show
the well-behaved correlation between asymmetry and top velocity orientation. The depth
dependence in the tilt measure is much less present in the velocity measure, indicating that
the former is partly due to the irregularity of the full orbits, which become more ellipse
like with decreasing depth.

7.3. Slepian models for half waves
By ‘half-crest wave’ (‘crest wave’ for short) we mean a section of the space or time wave
that lies between a mean level upcrossing and the following downcrossing. The crest is the
largest local maximum of the half-wave. Since the crest also is a local maximum one can
use the Slepian model for local maxima to propose a Slepian crest wave, a proposal that is
rejected if it is not the maximum between the nearest mean level crossings.

For the Lagrange space waves, the skewness and max particle orbits for half-crest waves
are defined as follows, with notations similar to those in § 7.1. A pair of Slepian realisations
W(u, t),X (u, t) is accepted as part of a Lagrange crest wave if W(u, 0) is the maximum
W between the nearest upcrossing and downcrossing zeros u− < 0 < u+ on either side at
time of observation

A = W(0, 0) > W(u, 0) > 0, u− < u < u+,

0 = W(u−, 0) = W(u+, 0).

}
(7.5)

The Lagrange wave steepness is defined by analogy to (7.3),

s+ = A/(Xw(0, 0) − Xw(u+, 0)) < 0,

s− = A/(Xw(0, 0) − Xw(u−, 0)) > 0,

}
(7.6)

which simplifies the skewness measure to Λ = log(−(Xw(0, 0) − Xw(u−, 0))/

(Xw(0, 0) − Xw(u+, 0))).
As suggested in Lindgren & Prevosto (2020, § 3) the crest wave definition will lead to

more chaotic orbits with extra twists and to less characteristic wave skewness measures.
We verify this claim and present some of the reasons.

One disturbing random factor is the presence and location of local maxima in the crest
wave, besides the crest maximum. The number and allocation of these extra maxima
represent a discrete source of disturbing randomness in the skewness measure as can
be understood from figure 8. The skewness distribution will be a discrete mixture of
continuous distributions. For example, configuration 1–1 will tend to be centred at 0 while
1–0 and 0–2 will be centred near a distinct negative and positive value, respectively.

The probability of extra maxima increases with the length of the crest interval. For the
J20 JONSWAP spectrum, used in this example, the distribution of the interval length is
strongly bimodal, with one peak near 10 m and one near 40 m, enhancing the mixture
effect; figure 9. For the PM spectrum, the crest interval distribution has a sharp peak for
short intervals and a flat part between 30 and 50 m, enough to cause a discrete skewness
measure.

The probability of extra maxima in a crest wave is also related to the height of
the crest. Small crests have approximately a parabolic shape, (Slepian 1963, § 3), with
asymptotically equal front and back periods, leading to an asymmetry measure near zero.
This introduces an extra disturbance in the relation between wave asymmetry and top
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Figure 8. Illustration of the discrete dependence of crest location (marked with ×) and the number of local
maxima in a crest period. The code x–y indicates the number of local maxima to the left and right of the crest,
respectively.
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Figure 9. Probability densities of crest wavelength for PM (solid, blue) and J20 (dashed, red) spectra,
computed by the WAFO routine spec2tpdf, (WAFO-group 2017).

particle direction as is seen in figure 10. The figure shows simulated pairs of top particle
directions and wave asymmetry for crest waves with only one local maximum. Blue dots
illustrate the distribution with all maxima included, black dots show pairs with maximum
above 3 m, and red dots come from small waves with height less than 0.1 m. Simulations
from the PM spectrum give the same type of crest height dependence.

REMARK 7.1. Slepian simulation of crest waves can be made by the original simple
Slepian model after mean level upcrossings and crest height and location as well as front
and back periods observed in the realisations. This method is very fast and it gives the
same results for the wave geometry as the method we use here, but it does not give any
information on the top particle velocities.
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Figure 10. Illustration of the dependence of crest height on the relation between top particle direction and
crest wave skewness, J20 spectrum.

8. Discussion

Our analysis gives rise to several questions that need to be discussed, and here we address
two: the effect of second-order Stokes corrections and the importance of crest height.

Wave crest–trough asymmetry: the Gauss–Lagrange waves exhibit crest–trough
asymmetry very similar to that in second- and higher-order Stokes models (Tayfun 1980)
but the mechanisms are fundamentally different. In the Stokes model, wave crests become
more peaked and troughs are flattened by the addition of frequency interaction terms. In
the Gauss–Lagrange model crests and troughs present in the vertical Gaussian component
remain crests and troughs after the horizontal displacement and their heights are unaltered.
Crests are narrowed and troughs flattened by the displacement.

Wave front–back asymmetry: the focus in this paper is on the relation between the
stochastic variation of wave front–back asymmetry and the direction of the crest top
particle. A relevant question regards how the derived relation changes when Stokes terms
are added to the wave profiles. For the spectra we have used, the standard deviation of
the vertical and horizontal effects of the second-order Stokes correction is 5 %–10 %
of those of the Gaussian terms and the effect on wave asymmetry is small. For the
crest particle velocity the effects are similarly small. For the J20 spectrum the Stokes
term causes large but slow horizontal oscillating drifts, the standard deviation of the
added horizontal velocity is approximately 10 % of the Gaussian velocity. The vertical
velocity is not affected. For the PM spectrum the effects of the Stokes correction are
even smaller. The effect on the asymmetry–velocity relations in figures 6 and 7 is
small.

Stokes drift: as observed in Lindgren & Prevosto (2020, § 3.4) the Stokes drift has a
very small effect on the wave asymmetry but it has a systematic effect on the horizontal
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Figure 11. Height dependence illustrating the balance between the variability of regression (red smooth
curves) and residual (blue irregular curves) for different crest heights a. Sea state is the J20 model.

particle velocity. The effect depends on the crest height and is of smaller order than the
model velocity illustrated in figure 1.

Dependence on crest height: it is worth noting that the residual process in the Slepian
models does not depend on the crest height. Close to the maximum its variability is very
small but it increases abruptly with distance from the crest and overshadows the regression
term, which is proportional to the maximum height. This is illustrated in figure 11.

9. Summary and conclusions

We have shown how a Slepian model can be used for detailed studies of the front–back
asymmetry of irregular ocean waves and how wave asymmetry is related to the kinematics
of the particle near wave maxima in space. Based on Gaussian field models for the
Lagrangian vertical and horizontal particle movements we present explicit expressions
for the complete distribution of the local wave process and for the random top particle
orbit, as well as for their joint statistical distribution. Examples from two very different
wave spectra, one narrow JONSWAP spectrum and one Pierson–Moskowitz wind–wave
spectrum, show that there is a stable systematic covariation between the orientation of
the top particle movement and the degree of front–back asymmetry. The relation is not
sensitive to deviations from the Gaussian assumptions and could be empirically adapted
to field observations of particle kinematics.

The Slepian model is a very versatile tool for detailed analysis of crossing related events
in a stochastic process or field. It is explicit and very easy and fast to simulate and it
lends itself to analysis also of very rare events. In our analysis we derived a Slepian
model for individual space waves defined as the part of the surface between two local
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minima with the wave centred at the intermediate local maximum. A companion model
is given for the particle orbits, i.e. the horizontal movements in time for the particle
located at the wave maximum. Both models include the height and the curvature at the
wave maximum as random parameters in a deterministic regression part surrounded by
non-stationary Gaussian residual processes. The variability of the residual compared with
that of the regression gives a hint of how far away from the wave maximum one can expect
to draw reliable conclusions. As it is locally defined, the top particle orientation is a stable
measure of orbit orientation and its covariation with wave asymmetry is not affected by
the non-local residual variability.

As an alternative to the min–max–min wave definition we also used the Slepian
technique to the crest half-wave definition, used in our previous study of the
asymmetry–orbit relation, (Lindgren & Prevosto 2020). We conclude here that the top
particle method can give more stable relations to the wave asymmetry than the ellipse tilt
method used in the previous paper, but that the presence of extra local maxima disturbs
the clear relation. We identified the bi-modality of the crest wavelength distribution as an
important factor, complicating the relation between wave asymmetry measure and orbit
orientation.

Slepian models have great potential in ocean wave modelling, and we finish with two
recent examples where a Slepian formulation might be fruitful.

The first example concerns wave breaking, a highly nonlinear phenomenon. Waves
obtained from Gaussian modelling are far from the extreme nonlinear waves that are
encountered close to breaking conditions. On the other hand, Gaussian modelling permits
one to obtain statistical distributions for extreme combinations of random quantities
characteristic for ‘real world’ nonlinearities derived from deterministic nonlinear wave
equations. For example, in this way, Stringari et al. (2021) derive wave breaking
probabilities based on a crest particle velocity–speed of local maxima ratio criterion.
Applied to classical wave breaking criteria, the new formula compares well with
historical methods on recorded data. The second example (Hlophe et al. 2021) concerns
wave-to-wave prediction in weakly nonlinear wave fields, where crossing conditioning
could be useful.
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Appendix A. Some moments and covariance functions

We need the following moments and covariance functions for the W- and X-fields and their
derivatives, for example

Wu(0, 0) = ∂W(u, t)
∂u

(0, 0), Wuu(0, 0) = ∂2W(u, t)
∂u2 (0, 0). (A1a,b)
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We use a one-sided orbital spectrum S(ω), ω > 0 with notations γ = κu − ωt and ρ =
1/ tanh(κh),

m0 = V(W(0, 0)) =
∫

S(ω) dω,

m02 = V(Wu(0, 0)) =
∫

κ2S(ω) dω,

m04 = V(Wuu(0, 0)) =
∫

κ4S(ω) dω,

m20 = V(Wt(0, 0)) =
∫

ω2S(ω) dω,

m11 = −Cov(Wu(0, 0), Wt(0, 0)) =
∫

ωκ S(ω) dω,

m̂0 = V(X(0, 0)) =
∫

ρ2S(ω) dω,

m̂10 = Cov(W(0, 0), Xt(0, 0)) =
∫

ρωS(ω) dω,

m̂20 = V(Xt(0, 0)) =
∫

ρ2ω2S(ω) dω,

m̂12 = −Cov(Wuu(0, 0), Xt(0, 0)) =
∫

ρωκ2S(ω) dω,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

rww(u, t) = Cov(W(0, 0), W(u, t)) =
∫

cos(γ )S(ω) dω,

rxx(u, t) = Cov(X(0, 0), X(u, t)) =
∫

ρ2 cos(γ )S(ω) dω,

rwx(u, t) = Cov(W(0, 0), X(u, t)) = −
∫

ρ sin(γ )S(ω) dω,

rwuw(u, t) = Cov(Wu(0, 0), W(u.t)) =
∫

κ sin(γ )S(ω) dω,

rwux(u, t) = Cov(Wu(0, 0), X(u, t)) =
∫

ρκ cos(γ )S(ω) dω,

rwuuw(u, t) = Cov(Wuu(0, 0), W(u, t)) = −
∫

κ2 cos(γ )S(ω) dω,

rwuux(u, t) = Cov(Wuu(0, 0), X(u, t)) =
∫

ρκ2 sin(γ )S(ω) dω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)

Appendix B. Rayleigh shifted normal distributions

A Slepian process in Gaussian models normally consists of the sum of a Rayleigh variable
and an independent normal variable or process. We present here the general expression
for the p.d.f. of such a sum of variables. The formula for a single normal variable was
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originally given by Rice (1945, § 3.6), and it reads in general form (Lindgren 2013,
equation (8.37)) as in the following fact B.1.

FACT .1. The probability density for the sum of a mean zero normal variable and an
independent Rayleigh variable, Z = σ1N + σ2R, with standard N ∼ N(0, 1), R ∼ Ray(1),
is, with Φ the standard normal distribution function,

fZ(z) = σ2z

(σ 2
1 + σ 2

2 )3/2
exp

(
− z2

2(σ 2
1 + σ 2

2 )

)
Φ

⎛
⎝ σ2z

σ1

√
σ 2

1 + σ 2
2

⎞
⎠

+ σ1√
2π(σ 2

1 + σ 2
2 )

exp

(
− z2

2σ 2
1

)
. (B1)

FACT .2. Let X =
[

X1
X2

]
have a bivariate normal distribution with mean zero and

covariance matrix Σ and let R be a standard Rayleigh variable, independent of X . Define
the Rayleigh translated normal variable

Y = X + R
[

1
1

]
, (B2)

with density as the convolution

fY (y) =
∫ ∞

0
re−r2/2 × 1

2π
√

det Σ
exp

{
−1

2
(y − r)′A(y − r)

}
dr, (B3)

where A = Σ−1 = [ a11 a12
a12 a22

]
. Expanding the quadratic form

(y − r)′A(y − r) = a11y2
1 + 2a12y1y2 + a22y2

2

− 2r (a11y1 + a12( y1 + y2) + a22y2) + r2 (a11 + 2a12 + a22)

= α( y1, y2) − 2β( y1, y2)r + γ r2 = α − β2/γ + γ (r − β/γ )2, (B4)

we get

fY (y) =
∫ ∞

0
r exp{−r2/2} ×

√
γ√

2π
exp

{
−γ

2
(β/γ − r)2

}
dr

× 1√
2πγ det Σ

exp
{
−1

2
(α − β2/γ )

}
. (B5)

The first factor is the convolution of a Rayleigh density and a normal density with mean 0
and variance 1/γ , i.e. it is equal to the p.d.f. (B1) with σ2 = 1 of R + N/

√
γ evaluated at

β/γ , while the second factor is explicit. To apply the formula to the distribution in (4.5)
we just normalise the relevant equations.
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