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RATIONAL POINTS ON LINEAR SLICES OF
DIAGONAL HYPERSURFACES

JÖRG BRÜDERN and OLIVIER ROBERT

Abstract. An asymptotic formula is obtained for the number of rational points
of bounded height on the class of varieties described in the title line. The
formula is proved via the Hardy–Littlewood method, and along the way we
establish two new results on Weyl sums that are of some independent interest.
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§1. Introduction

The varieties alluded to in the title line are defined by pairs of equations

(1.1)

s∑
j=1

ajx
k
j =

s∑
j=1

bjxj = 0

in which the natural numbers k, s and the integers aj , bj are fixed once and

for all. We shall be concerned with deriving an asymptotic formula for the

number N(P ) =Na,b(P ) of solutions to (1.1) in integers xj satisfying

(1.2) |xj | ≤ P (1≤ j ≤ s).
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52 J. BRÜDERN AND O. ROBERT

The cases k = 1 and k = 2 are part of the classical theory. When k = 1, the

equations (1.1) describe a lattice and the asymptotic evaluation of N(P ) is

elementary. When k = 2, one inserts the linear equation into the quadratic

one to eliminate a variable, thus reducing the problem to that of counting

those integer points where an integral quadratic form vanishes. For the latter

problem, there is a vast literature to which we have nothing to add. Thus,

we concentrate on the cases where k ≥ 3.

Theorem 1. Let k ≥ 3, let s≥ 2k+2, and suppose that aj �= 0 (1≤ j ≤ s).

Suppose that the pair of equations (1.1) has nonsingular solutions in R and

in Qp, for all primes p. Then there is a positive number C(a,b) such that

(1.3) Na,b(P ) = C(a,b)P s−k−1 +O
(
P s−k−1(logP )−2

)
.

In algebraic geometry, it is more customary to count rational points on

the projective variety defined by (1.1). A rational point on (1.1) corresponds

to an integral solution with (x1;x2; . . . ;xs) = 1. The latter is unique up to

sign, and its natural height is defined by max |xj |. By Möbius’s inversion

formula, the number of rational points on (1.1) with height not exceeding

P equals
1

2

∑
d≤P

μ(d)
(
N(P/d)− 1

)
.

Subject to the conditions in Theorem 1, this expression is asymptotic to

1

2
ζ(s− k− 1)−1C(a,b)P s−k−1,

as expected.

Theorem 1 should be considered as part of a program to establish simi-

lar asymptotic formulas for intersections of diagonal hypersurfaces, at least

when the dimension is suitably large (see [6], [9], [10], [23], [32], [33], and

the references therein). Recent groundbreaking work of Wooley [35]–[37] on

Vinogradov’s mean value theorem has a revolutionary impact in this area.

At the time of writing, publicly available descriptions of Wooley’s “efficient

congruencing” provide conclusions similar to Theorem 1 but subject to a

condition slightly milder than s≥ 2(k−1)2 when k ≥ 6. However, progress is

still ongoing, and Wooley has now announced results that have the potential

to supersede Theorem 1 for all k ≥ 5. In the light of this, the main interest

is in the cases k = 3 and k = 4, but our proof for k = 4 works equally well

for k ≥ 4.
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LINEAR SLICES OF DIAGONAL HYPERSURFACES 53

When k = 3, the condition on s in Theorem 1 is s≥ 10. As in the qua-

dratic case, one may substitute the linear equation into the cubic one to

obtain a cubic form in nine or more variables. For cubic forms in nine vari-

ables, important work of Hooley ([18]–[20]) provides an asymptotic formula

for the number of its integral zeros within a suitable expanding region, pro-

vided that the form is nonsingular, a condition that may in some cases be

relaxed to allow the singular locus of the form to consist of isolated linearly

independent ordinary double points. However, as one readily checks, the

projective cubic defined by

10∑
j=1

x3j =
10∑
j=1

xj = 0

has 126 singular points and hence provides an example covered by Theo-

rem 1 but not by Hooley’s work. When k = 4, one may again insert the linear

equation into the quartic one. This leads to a quartic form that one may

analyze by the methods of Birch [1] and Browning and Heath-Brown [4],

but this strategy apparently requires s to be as large as 40 or thereabouts

and is therefore is not competitive at present.

We prove Theorem 1 by a 2-dimensional version of the Hardy–Littlewood

method. Our argument rests on a new mean value theorem for the generating

function

(1.4) f(α,β) =
∑
x≤P

e(αxk + βx)

that we now describe. Fix a number θ with 21−kk < θ ≤ 4/5, and then

take Q= P θ. Let m denote the set of real numbers α ∈ [0,1] for which the

inequality |qα− a| ≤QP−k with q ∈N, a ∈ Z is possible only when q >Q.

Theorem 2. Let k ≥ 3. Then∫ 1

0

∫
m

∣∣f(α,β)∣∣2k+2
dαdβ � P 2k−k+1(logP )−2.

Theorem 2 should be compared with the celebrated estimate

(1.5)

∫
m

∣∣f(α,0)∣∣2k dα� P 2k−k(logP )−2

due to Vaughan (see [26, Theorem B] for k = 3 and [27, Theorem A] for

k ≥ 4, with a slightly different power of logP ; for refinements see [2], [14]).
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54 J. BRÜDERN AND O. ROBERT

Vaughan’s approach involves a considerable refinement of the conventional

proof of Hua’s lemma (see [29, Lemma 2.5]). Certain divisor sums require

treatment by mean value estimates for Hooley’s Δr-functions to propagate

an initial saving through an induction. The initial saving itself comes in

through a sieving of the variable of summation in (1.4) and an appeal to a

paucity estimate for the Diophantine equation

xk1 + xk2 = xk3 + xk4

originally obtained by Hooley in [15], [17], [21] (see also [24], [34]). We are

able to keep the architecture of Vaughan’s treatment largely intact, now

building on a paucity estimate for the pair

xk1 + xk2 + xk3 = yk1 + yk2 + yk3 , x1 + x2 + x3 = y1 + y2 + y3

(see [31] for k = 3, [11] for k ≥ 4; see also [3]). Once Theorem 2 is established,

it is fairly routine to derive Theorem 1. We postpone a more comprehensive

discussion of several complications to the appropriate stage of the argument.

No direct attack on the problem considered here, via the circle method,

seems to have been launched in the past, but there is related work of

Parsell [23]. Parsell considers more generally a pair of diagonal equations

a1x
k
1 + · · ·+ asx

k
s = b1x

n
1 + · · ·+ bsx

n
s = 0

and applies smooth number technology within a circle method approach to

verify the Hasse principle for this pair of equations when s is suitably large.

Such a strategy typically supplies a lower bound for the number of solutions

within a box which is of the expected order of magnitude. In the special case

n = 1 which is the theme of this paper, Parsell proves the Hasse principle

for k = 3, s≥ 10 and for k = 4, s≥ 17, among other results. It is interesting

to note that in the case k = 3 his method fails to give a lower bound for

N(P ) of the expected size, a defect that is now cured by Theorem 1.

Before we move on to proofs of Theorems 1 and 2, we briefly comment on

the condition in Theorem 1 that all aj be nonzero. It suffices to require only

that at least 2k of the aj are nonzero. In fact, the presence of isolated linear

variables in (1.1) facilitates the exercise. However, it seems difficult to relax

this condition further without improving (1.5), and some lower bound on

the number of nonzero aj is definitely necessary. To see this, consider the

system

(1.6) 5x31 + 9x32 + 10x33 + 12x34 = x1 + x2 + · · ·+ x10 = 0.
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Here, the cubic equation (when considered in the variables x1, . . . , x4 only)

violates the Hasse principle (see [7]). Thus, there are real and p-adic non-

singular solutions of (1.6), but a solution x ∈ Z10 satisfies x1 = x2 = x3 =

x4 = 0, and it follows easily that there is a positive constant C such that

N(P ) = CP 5 + O(P 4), in contrast to the leading term of size P s−k−1 in

Theorem 1.

Notation. Throughout this paper, small italics a, b, . . . denote integers,

and q is a natural number. The letter p is reserved for primes, and k is a

natural number with k ≥ 3. Real numbers are denoted by small Greek letters

α,β, . . .. These conventions apply whenever these symbols do not obviously

denote functions. Whenever ε occurs in a statement, it is asserted that the

statement is valid for any fixed positive value of ε. Note that if A� P ε and

B � P ε, then we may conclude that AB � P ε. The leading parameter is

P , and all statements are true whenever P exceeds a certain real number

P0 that depends only on k.

Vectors are in boldface; x= (x1, . . . , xs), and the dimension s will depend

on the context. To avoid ambiguity, the greatest common factor of a and b

is (a; b).

The number of u ∈ Nj with u1u2 · · ·uj = n is denoted by dj(n), and we

write d(n) = d2(n) for the number of divisors of n. Similarly, Hooley’s func-

tions are defined by

Δj(n) = max
ξ1,...,ξj−1

#
{
u ∈Nj : u1u2 · · ·uj = n, ξi < logui ≤ ξi + 1 (1≤ i < j)

}
,

and again we put Δ(n) =Δ2(n). Further, Ω(n) denotes the total number of

prime factors of n, counted with multiplicity. Less standard, but common

in related literature, are the abbreviations

(1.7) L= logP, K = 2k−1, J = 2j−1.

§2. The generating function

Central to the major arc analysis is a good approximation to f(α,β)

when α,β are near rational numbers a/q, b/q. The approximating function

is built from the expressions

(2.1) S(q, a, b) =

q∑
x=1

e
(
(axk + bx)/q

)
, v(ξ, ζ) =

∫ P

0
e(ξtk + ζt)dt.
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For frequent use later on, recall the estimates

(2.2) S(q, a, b)� q(k−1)/k+ε, v(ξ, ζ)� P
(
1 + P k|ξ|+ P |ζ|

)−1/k

of Hua that are valid for any real numbers ξ, ζ and natural numbers a, b, q

subject to (q;a; b) = 1 (see [29, Theorems 7.1 and 7.3]).

Theorem 3. Let q ∈N, and let a, b ∈ Z, with (a; q) = 1. Let α,β ∈R, and

let α= (a/q) + ξ, β = (b/q) + ζ, with |ζ| ≤ 1/(2q). Then

(2.3) f(α,β) = q−1S(q, a, b)v(ξ, ζ) +O
(
q(k−1)/k+ε

(
1 + P k|ξ|

)1/2)
.

If further |ξ| ≤ 1/(4kqP k−1), then

(2.4) f(α,β) = q−1S(q, a, b)v(ξ, ζ) +O(q(k−1)/k+ε).

While we still work under the condition that k ≥ 3, it may be worth point-

ing out that the conclusions in Theorem 3 and their proofs below remain

valid when k = 2. However, when k = 2, a stronger version of Theorem 3

(with ε= 0) was obtained recently by Vaughan in [30]. Apparently, Theo-

rem 3 is new for all k ≥ 3, and the best estimate available hitherto is the

special case of [29, Theorem 7.2], which gives (2.3) with the error term

inflated to 1+P k|ξ|+P |ζ|. It is vital for our later work that both q and |ξ|
occur in (2.3) with exponents below 1.

Proof. Our proof of Theorem 3 is an adaptation of a standard argument

for the classical Weyl sum f(α,0). We follow Vaughan [29, pp. 43–44] quite

closely, but differences in detail justify a moderately detailed exposition.

By (1.4), (2.1), and orthogonality of additive characters, one confirms the

initial identity

(2.5) f(α,β) =
1

q

∑
−q/2<r≤q/2

S(q, a, b− r)f
(
ξ, ζ +

r

q

)
.

We apply a truncated Poisson summation formula to f(ξ, ζ+(r/q)). The

phase F (t) = ξtk + (ζ + (r/q))t has derivative F ′(t) = kξtk−1 + ζ + (r/q),

which is monotonic for t ≥ 0, and for 0 ≤ t ≤ P and |r| ≤ q/2, one has

|F ′(t)| ≤ k|ξ|P k−1 + 1/(2q) + (1/2). With H = [k|ξ|P k−1] + 2, we have now

verified the hypotheses of [29, Lemma 4.2], which gives

f
(
ξ, ζ +

r

q

)
=

∑
|h|≤H

v
(
ξ, ζ +

r

q
− h

)
+O(logH).
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One uses this within (2.5). On writing r − qh=m and M = q(H + (1/2)),

this produces

f(α,β) =
1

q

∑
−M<r≤M

S(q, a, b−m)v
(
ξ, ζ +

m

q

)
+E,

in which

E � logH

q

∑
|r|≤q/2

∣∣S(q, a, b− r)
∣∣.

Here, one isolates the term m= 0 and then applies (2.2) to all other terms

to conclude that

f(α,β)− q−1S(q, a, b)v(ξ, ζ)
(2.6)

� qε−1/k
∑

1≤|m|≤M

∣∣∣v(ξ, ζ + m

q

)∣∣∣+ q(k−1)/k+ε logH.

We proceed to deduce (2.4). In the admissible range for ξ, one hasH = 2. We

take F (t) = ξtk+(ζ+(m/q))t in [25, Lemma 4.2]. One has F ′(t) = (m/q)+R

with |R| ≤ 3/(4q) for 0≤ t≤ P , so that F ′ does not change sign and satisfies

|F ′(t)| ≥ |m|/(4q). The estimate provided by [25, Lemma 4.2] then shows

that v(ξ, ζ + (r/q))� q/|m|, and (2.4) is immediate from (2.6).

It remains to prove (2.3) for |ξ| ≥ 1/(4kqP k−1), as we now assume. Let F

be as before. Its derivative F ′(t) = kξtk−1+ ζ +(m/q) is still monotonic for

t≥ 0 but may have a zero in [0, P ]. We therefore apply a stationary phase

argument. For 1 ≤ |m| ≤ M , let T (m) be the set of all t ∈ [0, P ] where

|F ′(t)| ≥ |m|/(4q). This is an interval or the union of two intervals, so that

[25, Lemma 4.2] still shows that

(2.7)

∫
T (m)

e
(
F (t)

)
dt� q/|m|.

It remains to estimate the contribution from [0, P ] \ T (m). If this is

nonempty, then t ∈ [0, P ] \T (m) satisfies∣∣∣kξtk−1 + ζ +
m

q

∣∣∣≤ |m|
4q

·

This implies that

(2.8)
3|m|
4q

≤ |kξtk−1 + ζ| ≤ 5|m|
4q

.
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For 1≤ |m| ≤M , let

δ = δ(m) = |ξ|1/(2k−2)
( |m|

q

)(k−2)/(2k−2)
.

We claim that

(2.9)

∫
[0,P ]\T (m)

e
(
F (t)

)
dt� δ−1.

To see this, first note that an argument similar to the above shows that

the set of all 0≤ t≤ P with δ ≤ |F ′(t)| ≤ (|m|/4q) contributes O(δ−1). For

the remaining t, one has |kξtk−1 + ζ + (m/q)| ≤ δ, and if t1, t2 satisfy this

inequality, one finds that k|ξ||tk−1
1 − tk−1

2 | ≤ 2δ. But (2.8) together with

|ζ| ≤ 1/(2q) implies that tk−1
j ≥ (|m|/4k|ξ|q), so the binomial expansion

yields

|t1 − t2| ≤
2δ

k|ξ|
(4k|ξ|q

|m|
)(k−2)/(k−1)

� 1

δ
·

Hence, the set of t ∈ [0, P ] with |F ′(t)| ≤ δ has measure O(1/δ), and (2.9)

follows. On combining (2.7) and (2.9) to an estimate for v(ξ, ζ+(m/q)), we

find that ∑
1≤|m|≤M

∣∣v(ξ, ζ + (m/q)
)∣∣� q

∑
m≤M

1

m
+

∑
m≤1+2kq|ξ|Pk−1

1

δ(m)

� q1+ε
(
1 + P k|ξ|

)1/2
.

In view of (2.6), the desired bound (2.3) is immediate.

We now apply Theorem 3 to establish a strong form of Weyl’s inequality

for f(α,β). Recall (1.4), (1.7), and the definition of m in Theorem 2.

Lemma 1. Uniformly in β ∈R, α ∈m, one has∣∣f(α,β)∣∣K � PK−1L1+ε.

Proof. The proof is essentially that of [26, Lemma 1], suitably general-

ized to k ≥ 3. However, our analysis relies on Theorem 3 rather than [29,

Theorem 4.1], and some care is required to accommodate the weaker error

estimates. In particular, it turns out that mimicry of the argument outlined

in [26, p. 131] leads to a satisfactory bound only in the case when k ≥ 4,

which we temporarily suppose from now on.
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Let δ = 1/(100k), and let α ∈m. By Dirichlet’s theorem, there are coprime

a, q with 1≤ q ≤ P k−1−δ and |qα− a| ≤ P 1+δ−k. First suppose that q ≤ P μ

where μ = (k + 4)/(k + 3). One checks that ((k− 1)/k)μ < 1− 1/K holds

for all k ≥ 4. Hence, by Theorem 3 and (2.2),

(2.10) f(α,β)� qε−1/kP
(
1 + P k

∣∣∣α− a

q

∣∣∣)−1/k
+ P 1−1/K .

Since α ∈ m, we have q > Q or |α− a/q| ≥ Q/(qP k), and in both cases it

follows that

(2.11) f(α,β)�Qε−1/kP + P 1−1/K � P 1−1/K ,

as required.

This leaves the case where q > P μ. Then |α− a/q| ≤ P 1+δ−μ−k, and one

checks that 1 + δ − μ=−1/(k+ 3) + δ ≤−1/K. Consequently,

f(α,β)− f
(a
q
,β

)
=

∑
x≤P

e(βx)
(
e(αxk)− e

(a
q
xk

))
� P 1−1/K .

Thus, we are reduced to estimating f(a/q,β). We begin by observing that

the substitution y = x+ h produces∣∣f(α,β)∣∣2 = ∑
x,y≤P

e
(
α(yk − xk) + β(y− x)

)

=
∑
|h|<P

e(βh)
∑

1≤x≤P
1≤x+h≤P

e
(
α
(
(x+ h)k − xk

))
(2.12)

≤ P +
∑

0<|h|<P

∣∣∣ ∑
1≤x≤P

1≤x+h≤P

e
(
α
(
(x+ h)k − xk

))∣∣∣.

Note that β is absent in this inequality. We now take α = a/q and repeat

Weyl differencing in the usual way. Then, as in [26, p. 131], one arrives at

∣∣f(a/q,β)∣∣K � PK−1 + PK−k
∑

1≤hj≤P

1≤j≤k−1

min
(
P,

∥∥∥k!ah1 · · ·hk−1

q

∥∥∥−1)
,

and one may then complete the estimation in the same way as in the

final part of the proof of [26, Lemma 1], but using Hall and Tenenbaum
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[13, Theorem 70] for Δk−1(n) instead of referencing Hooley [16, Theo-

rem 1.B]. This completes the proof of Lemma 1 when k ≥ 4.

Now suppose that k = 3. More care is required in the part that relies on

Weyl differencing. On applying Cauchy’s inequality to

f(α,β) =
2∑

u=1

∑
x≤P

x≡u mod 2

e(αx3 + βx),

one finds that∣∣f(α,β)∣∣2 ≤ 2
∑

x,y≤P

x≡y mod 2

e
(
α(x3 − y3) + β(x− y)

)
,

and the substitution 2z = x+ y, 2h= x− y transforms this to

∣∣f(α,β)∣∣2 ≤ 2
∑

|h|≤P/2

∑
z∈I(h)

e(2βh)e
(
2αh(3z2 + h2)

)
,

where I(h) is the subinterval of [1, P ] described by the inequalities 1 ≤
z + h≤ P , 1≤ z − h≤ P . It follows that

∣∣f(α,β)∣∣2 ≤ 2
∑

|h|≤P/2

∣∣∣ ∑
z∈I(h)

e(6αhz2)
∣∣∣

≤ 2P + 4
∑

1≤h≤P/2

∣∣∣ ∑
z∈I(h)

e(6αhz2)
∣∣∣.

By Cauchy’s inequality,

∣∣f(α,β)∣∣4 � P 2 + P
∑

0<|h|≤P/2

∣∣∣ ∑
z∈I(h)

e(6αhz2)
∣∣∣2.

The double sum over h, z here is the same as the one estimated in [26,

Lemma 4] with H = P/2, except that, in that lemma, 6α is 3α and the range

for z is 1≤ z ≤ P . An inspection of the proof shows that these changes are

irrelevant and that the conclusion is still valid in our context. Moreover,

similar to an earlier comment, the use of [13, Theorem 70] within the proof

of [26, Lemma 4] reduces the factor L4/π+ε in that lemma to L1+ε. Hence,

on choosing 1≤ q ≤ P 2−δ and a ∈ Z with |qα− a| ≤ P δ−2, the augmented
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LINEAR SLICES OF DIAGONAL HYPERSURFACES 61

form of [26, Lemma 4] now shows that |f(α,β)|4 � P 3L1+ε holds in all cases

where q > P 1+δ. When q ≤ P 1+δ, then Theorem 3 and (2.2) yield (2.10) for

k = 3, and one then also confirms (2.11) for k = 3. The proof of Lemma 1

is complete.

We close this section with a technical observation concerning the expo-

nential sum defined in (2.1).

Lemma 2. Let p be a prime, and suppose that a, b are integers with p | a
and p � b. Then, for all l ∈N, one has S(pl, a, b) = 0.

Proof. On substituting x= pl−1y+ z in (2.1), one finds that

S(pl, a, b) =

pl∑
x=1

e
(axk

pl
+

bx

pl

)
=

p∑
y=1

e
(by
p

) pl−1∑
z=1

e
(azk + bz

pl

)
= 0.

§3. Preparatory mean value estimates

We begin with certain divisor sums that are routinely estimated by van

der Corput’s method. Let t ∈N, put x= (x1, . . . , xt), and define the sums

(3.1) Λ(x,y) =
t∑

j=1

(xj − yj), M(x,y) =
t∑

j=1

(xkj − ykj ).

Lemma 3. Let t ∈ N, l ∈ N. Then, there exist positive numbers δ and η

such that ∑
xj≤P,yj≤P

M(x,y) �=0

d
(
M(x,y)

)l � P 2tLη,

(3.2) ∑
xj≤P,yj≤P

M(x,y) �=0

d
(
M(x,y)

)l
eδΩ(M(x,y)) � P 2tLη,

∑
xj≤P,yj≤P

M(x,y) �=0

Λ(x,y)=0

d
(
M(x,y)

)l � P 2t−1Lη,

(3.3) ∑
xj≤P,yj≤P

M(x,y) �=0

Λ(x,y)=0

d
(
M(x,y)

)l
eδΩ(M(x,y)) � P 2t−1Lη.
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Proof. The first estimate in (3.2) is a special case of [22, Theorem 3], and

the second can be established by a development of the underlying method

(see also [27, Lemma 1]). To verify the first bound in (3.3), substitute yt =∑t−1
j=1(xj − yj) + xt into M(x,y). Then the sum on the left-hand side of

(3.3) does not exceed the sum

∑
x1,...,xt≤P

∑
y1,...,yt−1≤P

d
( t−1∑
j=1

(xkj − ykj ) + xkt −
( t−1∑
j=1

(xj − yj) + xt

)k)l
,

and the desired bound again follows from [22, Theorem 3]. Finally, once

again a development of the method also yields the second estimate in (3.3).

We now consider the pair of Diophantine equations

(3.4) xk1 + xk2 + xk3 = yk1 + yk2 + yk3 , x1 + x2 + x3 = y1 + y2 + y3.

Let Γ(P ) denote the number of solutions of (3.4) with 1≤ xj ≤ P , 1≤ yj ≤ P

such that x1, x2, x3 is not a permutation of y1, y2, y3. Then, by Vaughan and

Wooley [31] when k = 3, and by Greaves [11] when k ≥ 4, there exists γ > 0

such that Γ(P )� P 3−γ . With this value of γ, this immediately implies the

following estimate.

Lemma 4. For U ⊂ {1,2, . . . , [P ]}, let U(P ) denote the number of solu-

tions of (3.4) with xj ∈ U , yj ∈ U . Then

U(P )� (#U )3 + P 3−γ .

The next lemma should be compared with the classical lemma of Hua

(see [29, Lemma 2.5]) in the theory of Waring’s problem.

Lemma 5. There is a positive number η such that whenever 2 ≤ j ≤ k,

then ∫ 1

0

∫ 1

0

∣∣f(α,β)∣∣2j+2
dαdβ � P 2j−j+1Lη.

Proof. Let j = 2. By orthogonality, the integral equals U(P ) with U =

[1, P ]∩Z so that this case of Lemma 5 is a consequence of Lemma 4.
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We now suppose that the conclusion of Lemma 5 has been established

for a particular value of j with 2 ≤ j < k, and we proceed by induction.

Recall that J = 2j−1, and return to (2.12). Repeated Weyl differencing via

Cauchy’s inequality then gives

(3.5)
∣∣f(α,β)∣∣2J � P 2J−j−1

∑
|h1|<P

. . .
∑

|hj |<P

∑
x∈I(h)

e
(
αh1 · · ·hjQh(x)

)
,

where I(h) ⊂ [1, P ] is a suitable interval and Qh ∈ Z[X] has degree k − j.

Now let r(l) denote the number of solutions of

(3.6) h1 · · ·hjQh(x) = l

with all variables h1, . . . , hj , x subject to the summation conditions in the

preceding display. Then

∣∣f(α,β)∣∣2J � P 2J−j−1
∑
l∈Z

r(l)e(−αl).

By (1.4),

∣∣f(α,β)∣∣2J+2
=

∑
xi≤P,yi≤P
1≤i≤J+1

e
(
αM(x,y) + βΛ(x,y)

)
,

where Λ and M are the forms defined in (3.1) with t = J + 1. Hence, by

orthogonality,

(3.7)

∫ 1

0

∫ 1

0

∣∣f(α,β)∣∣4J+2
dαdβ � P 2J−j−1

∑
x,y

Λ(x,y)=0

r
(
M(x,y)

)
.

One has r(0)� P j , and r(l)� d(|l|)j+1 for l �= 0. Hence, the contribution

to (3.7) of all terms where M(x,y) �= 0 can be estimated by (3.3) and does

not exceed P 4J−jLη. This leaves the solutions of M(x,y) = Λ(x,y) = 0, and

by orthogonality again, these contribute to (3.7) at most

P 2J−1

∫ 1

0

∫ 1

0

∣∣f(α,β)∣∣2J+2
dαdβ � P 4J−jLη.

This completes the induction step and the proof of the lemma.
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Let κ denote a positive number sufficiently large in terms of k, and write

(3.8) D = Lκ, D′ = P 1/(6k).

Let E denote the set of all n≤ P with no prime factor in the interval [D,D′].
Then, uniformly for d≤ P and m ∈ N, the number Ed,m(P ) of n ∈ E with

n≡m mod d satisfies

(3.9) Ed,m(P )� P log logP

ϕ(d) log(2P/D)

(see [27, Lemma 2] or [12, Theorem 3.4]). We now define the exponential

sum

(3.10) h(α,β) =
∑
x∈E

e(αxk + βx).

The next lemma is a considerable refinement of the preceding lemma and

crucial for all later work.

Lemma 6. Let 2≤ j ≤ k. Then

∫ 1

0

∫ 1

0

∣∣h(α,β)∣∣2j+2
dαdβ � P 2j−j+1Lε−1−j(j−1)/2.

Proof. When j = 2, this follows from orthogonality, Lemma 4, and (3.9).

Now suppose that the estimate is known for a particular value of j with

2≤ j < k, and proceed by induction. The argument to follow is very similar

to that of [27, pp. 14–19], so we shall be brief whenever the modifications

to [27] are evident.

We begin by applying Weyl differencing to (3.10). The first differencing

is performed as in (2.12) and delivers the initial inequality

∣∣h(α,β)∣∣2 ≤#E +
∑

0<|h|<P

∣∣∣ ∑
x∈E

x+h∈E

e
(
α
(
(x+ h)k − xk

))∣∣∣.

Since j ≥ 2, we have to difference further to reach the inequality

∣∣h(α,β)∣∣2j � P 2j−j−1(#E )j + P 2j−j−1
∑

1≤|hi|<P

1≤i≤j

∑
x

e
(
αh1 · · ·hjQj(x,h)

)
,
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in which the sum over x is subject to the constraints x ∈ E and x+ hi ∈ E
(1 ≤ i ≤ j), and Qj is as in (3.5). Now multiply with |h(α,β)|2j+2 and

integrate. Then, recalling that J = 2j−1, one finds that∫ 1

0

∫ 1

0

∣∣h(α,β)∣∣4J+2
dαdβ

� P 2J−j−1(#E )j
∫ 1

0

∫ 1

0

∣∣h(α,β)∣∣2J+2
dαdβ(3.11)

+ P 2J−j−1
∑
x,y

Λ(x,y)=0

r
(
M(x,y)

)
,

where r(l) has the same meaning as in (3.6), M and Λ are defined by (3.1)

with t= J + 1, and x,y ∈ E t are subject to M(x,y) �= 0. By the induction

hypothesis, the first term on the right-hand side does not exceed

� P 2J−1Lε−jP 2J−j+1Lε−1−j(j−1)/2 � P 4J−jLε−1−j(j+1)/2,

as required. In view of (3.11), the induction will be complete once the

inequality

(3.12)
∑
x,y

Λ(x,y)=0

r
(∣∣M(x,y)

∣∣)� P 2J+1Lε−1−j(j+1)/2

is established; here and later the sum is subject to the same conditions as

in (3.11). Let D = Lκ be as in (3.8). The contribution to (3.12) arising from

summands with |M(x,y)| ≤ (P/D)k is small. To see this, we use Cauchy’s

inequality to infer that

(3.13)
∑

Λ(x,y)=0

1≤|M(x,y)|≤(P/D)k

r
(∣∣M(x,y)

∣∣)≤ (T1T2)
1/2,

where

T1 =
∑

Λ(x,y)=0

d
(∣∣M(x,y)

∣∣)2j
and T2 denotes the number of all 1≤ xi, yi ≤ P , 1≤ i≤ J + 1 with

(3.14) Λ(x,y) = 0, 1≤
∣∣M(x,y)

∣∣≤ (P/D)k.
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By (3.3), we have T1 � P 2J+1Lη. With any solution x,y counted by T2, we

associate the numbers

u=

J+1∑
i=2

(yi − xi), w =

J+1∑
i=2

(yki − xki ).

Let T ′
2 denote the number of solutions counted by T2 where 0≤ u≤ P/D,

and let T ′′
2 denote the number of those solutions counted by T2 where P/D <

u≤ JP . Then, by symmetry in x and y, it follows that

T2 ≤ 2(T ′
2 + T ′′

2 ).

To estimate T ′
2, we consider one particular choice of x2, . . . , xJ+1, y3, . . . ,

yJ+1; there are O(P 2J−1) possibilities for this. The conditions that 0≤ u≤
P/D leave O(P/D) choices for y2. Once these variables are fixed, u is also

fixed, and so x1− y1 = u leaves O(P ) choices for the pair x1, y1. This shows

that T ′
2 � P 2J+1/D.

The initial treatment of T ′′
2 is similar. Fix one of the O(P 2J) choices for

x2, . . . , xJ+1, y2, . . . , yJ+1 with u > P/D. This fixes u and w, and by (3.14)

it remains to count the x1, y1 with x1− y1 = u, |xk1 − yk1 −w| ≤ (P/D)k. We

eliminate x1 and consider the inequality

(3.15)
∣∣(y1 + u)k − yk1 −w

∣∣≤ (P/D)k.

Let z1 and z2 be two solutions (for y1) of (3.15) with 1≤ z1 ≤ z2 ≤ P . Then

(3.16)
∣∣(z2 + u)k − zk2 − (z1 + u)k + zk1

∣∣≤ 2(P/D)k.

A direct computation yields

(z2 + u)k − zk2 − (z1 + u)k + zk1

= k(k− 1)

∫ u

0

∫ z2−z1

0
(z1 + ζ + ξ)k−2 dζ dξ

≥ k(k− 1)

∫ u

0

∫ z2−z1

0
ζk−2 dζ dξ = ku(z2 − z1)

k−1.

Recalling that one has u > P/D in the current context, one infers from (3.16)

that z2−z1 ≤ P/D. This shows that (3.15) has at most 2(P/D)+1 solutions
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in y1. Collecting together, we see that T ′′
2 � P 2J+1/D, that T2 � P 2J+1/D,

and by (3.13) that

(3.17)
∑

Λ(x,y)=0

|M(x,y)|≤(P/D)k

r
(∣∣M(x,y)

∣∣)� P 2J+1L(η−κ)/2.

We are reduced to estimating

(3.18) Υ =
∑

Λ(x,y)=0

|M(x,y)|>(P/D)k

r
(∣∣M(x,y)

∣∣).

Let 
(n) denote the number of solutions of the system |M(x,y)| = n,

Λ(x,y) = 0 with xi, yi ∈ E (1≤ i≤ J +1). Then 
(n) = 0 for n> (J +1)P k,

and the definition of r(n) shows that for (P/D)k < n ≤ 2JP k one has

r(n)� (log logP )jΔj+1(n). It follows that

(3.19) Υ� Lε
∑
n

Δj+1(n)
(n).

Let ν be a (small) positive number, and let δ be as in Lemma 3. Let

Y = exp
( δνL

(η+ k2) logL

)
.

Let

M = {n ∈N : p | n⇒ p≤ Y }, N = {n ∈N : p | n⇒ p > Y }.

Then, any n ∈N has a unique factorization n= n∗n† with n∗ ∈ M , n† ∈ N .

Note that n∗ > P ν implies that Ω(n) logY ≥ logn∗ > νL, so that δΩ(n)>

(η+ k2) logL. By (3.3),

(3.20)
∑

n∗>P ν

Δj+1(n)
(n)�
∑
n

d(n)2j+2eδΩ(n)
(n)L−η−k2 � P 2J+1L−k2 ,

which is acceptable. For the complementary portion of (3.19), we have∑
n∗≤P ν

Δj+1(n)
(n)≤
∑
m∈M
m≤P ν

∑
n∈N

Δj+1(mn)
(mn)

≤
∑
m∈M
m≤P ν

Δj+1(m)
∑
n∈N

dj+1(n)
(mn).

We now require the following simple observation.
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Lemma 7. Let k ≥ 3, and let ν > 0. There exists a number L0 depending

only on k and ν with the property that for any 2≤ j ≤ k − 1 and any n <

2JP k there is a divisor n1 of n with n1 ≤ P ν and dj+1(n)� jL0Ω(n1).

(Although not highlighted as a lemma, the conclusion of Lemma 7 is

established in, inter alia, [27, starting on p. 16 after (3.15)]).

We apply Lemma 7 to the inner sum in the previous display and obtain∑
n∗≤P ν

Δj+1(n)
(n)

(3.21)
�

∑
m∈M
m≤P ν

Δj+1(m)
∑

n1∈N
n1≤P ν

jL0Ω(n1)
∑

n≡0 mod mn1


(n).

It will be convenient to write d=mn1. Then, the conditions active in (3.21)

imply that d≤ P 2ν ≤
√
P . Further, the sum

∑
n≡0 mod d 
(n) does not exceed

the number of solutions of

(3.22)
J+1∑
i=1

(xi − yi) = 0,
J+1∑
i=1

(xki − yki )≡ 0 mod d

with xi, yi ∈ E (1≤ i≤ J + 1). Let a,b be a solution of the pair of congru-

ences

(3.23)
J+1∑
i=1

(ai − bi)≡
J+1∑
i=1

(aki − bki )≡ 0 mod d,

and choose xi, yi ∈ E with xi ≡ ai mod d for 1≤ i≤ J +1 and yi ≡ bi mod d

for 1 ≤ i ≤ J . Then determine yJ+1 through the linear equation in (3.22).

By (3.23) it follows that yJ+1 ≡ bJ+1 mod d, and by (3.9) we infer that

the number of solutions to (3.22) with xi, yi ∈ E and xi ≡ ai mod d, yi ≡
bi mod d (1≤ i≤ J+1) does not exceed O((P/d)2J+1Lε−1−2J). We conclude

that ∑
n : d|n


(n)� P 2J+1Lε−1−2Jd−1−2JS(d),

where S(d) is the number of incongruent solutions to the pair of congruences

(3.23). Since S(d) is multiplicative, we deduce from (3.21) that

(3.24)
∑

n∗≤P ν

Δj+1(n)
(n)� P 2J+1Lε−1−2JΞ1Ξ2,
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in which

Ξ1 =
∑
m∈M
m≤P ν

Δj+1(m)S(m)

m1+2J
, Ξ2 =

∑
n∈N
n≤P ν

jL0Ω(n)S(n)

n1+2J
.

Further progress depends on upper bounds for S(d) that we now derive. By

(2.1) and orthogonality,

(3.25) S(d) = d−2
d∑

a=1

d∑
b=1

∣∣S(q, a, b)∣∣2J+2
.

But j ≥ 2, so that 2J + 2≥ 6, and then

S(d)≤ d2J−6
d∑

a=1

d∑
b=1

∣∣S(q, a, b)∣∣6 = d2J−4S0(d),

where S0(d) is the number of solutions of the congruences

3∑
i=1

(ui − vi)≡
3∑

i=1

(uki − vki )≡ 0 mod d.

In particular, S0(d) is a multiplicative function. We now have

Ξ1 ≤
∑
m∈M
m≤P ν

Δj+1(m)S0(m)

m5
, Ξ2 ≤

∑
n∈N
n≤P ν

jL0Ω(n)S0(n)

n5
.

By (2.1), whenever d= (q;a; b), one has S(q, a, b) = dS(q/d, a/d, b/d). Hence,

on noting that S0(d) equals the right-hand side of (3.25) with J = 2, and

then collecting terms according to (q;a; b), one readily confirms that

(3.26)
S0(m)

m4
=
∑
q|m

A(q),

where

(3.27) A(q) = q−6
q∑

a,b=1

(a;b;q)=1

∣∣S(q, a, b)∣∣6.
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By (3.26) and Möbius inversion, A(q) is multiplicative. We shall prove

momentarily that the series

(3.28)

∞∑
q=1

A(q)dj+1(q)

q
,

∑
q∈N

jL0Ω(q)A(q)

q

converge and that the second series (which depends on P ) is bounded above

by a constant depending only on k. Once this is established, the proof of

Lemma 6 is swiftly completed. Indeed, the familiar inequality Δj+1(uw)≤
Δj+1(u)dj+1(w) now implies that

Ξ1 ≤
∑
m∈M
m≤P ν

Δj+1(m)

m

∑
q|m

A(q)≤
∑
u≤P ν

Δj+1(u)

u

∑
q≤P ν

A(q)dj+1(q)

q
,

and by (3.28) the sum over q is bounded. Also, by Hall and Tenenbaum [13,

Theorem 70], the sum over u is O(L1+ε), whence Ξ1 � L1+ε. Similarly,

Ξ2 ≤
∑
n∈N
n≤P ν

jL0Ω(n)

n

∑
q|n

A(q)≤
∑
u∈N
u≤P ν

jL0Ω(u)

u

∑
q∈N
q≤P ν

jL0Ω(q)A(q)

q
.

Here again, the sum over q is bounded, and

∑
u∈N
u≤P ν

jL0Ω(u)

u
=

∏
Y <p≤P ν

(
1 +

∞∑
l=1

jL0l

pl

)
� (log logP )j

L0
,

so that Ξ2 � Lε. On collecting together, it follows that the expression on

the left-hand side of (3.24) is O(P 2J+1Lε−2J). But 2J ≥ 1 + j(j + 1)/2 for

j ≥ 2, and therefore, by (3.24), (3.19), and (3.20), the sums (3.18) and (3.17)

(with κ= η+k2) are both sufficiently small to imply (3.12). This completes

the proof of Lemma 6.

In preparation for the discussion of the series in (3.28), we require an

upper bound for A(q). By multiplicativity, it will suffice to consider the

case where q = pl is a prime power. In this case, one infers from (3.27) and

Lemma 2 that

(3.29) A(pl) = p−6l
pl∑

a=1
p�a

pl∑
b=1

∣∣S(pl, a, b)∣∣6.
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For a crude bound, note that whenever p � a one has p−lS(pl, a, b)� p−l/k.

This is slightly stronger than (2.1) but follows from the proof of [29, Theo-

rem 7.1] or from [8], for example. By (3.29), it follows that

A(pl)� p−2l−4l/k
pl∑

a=1

pl∑
b=1

∣∣S(pl, a, b)∣∣2,
and by orthogonality, one derives the estimate

(3.30) p−lA(pl)� p−4l/k.

We proceed to establish the alternative estimate

(3.31) p−lA(pl)� p−2

that is valid for all primes p with p � k. Indeed, by [29, Lemma 4.3], one

has S(p, a,0)� p1/2 whenever p � a, and when p � b [29, Lemma 4.1] gives

S(p, a, b)� p1/2. By (3.29) it follows that A(p)� p−1. This already confirms

(3.31) when l= 1, and by (3.26) one also finds that

(3.32) S0(p)� p4.

Now let l≥ 2, and consider a solution of the system of congruences

(3.33)

3∑
i=1

(ui − vi)≡
3∑

i=1

(uki − vki )≡ 0 mod pl

with 1 ≤ ui, vi ≤ pl. Such a solution is said to be nonsingular modulo p if

the array (
kuk−1

1 kuk−1
2 kuk−1

3 −kvk−1
1 −kvk−1

2 −kvk−1
3

1 1 1 −1 −1 −1

)

has rank 2, modulo p, and otherwise singular modulo p. Note that for p � k,

a solution is singular modulo p if and only if

(3.34) uk−1
1 ≡ uk−1

2 ≡ uk−1
3 ≡ vk−1

1 ≡ vk−1
2 ≡ vk−1

3 mod p.

It follows that there are at most (k − 1)4p5l−4 singular solutions of (3.33),

because for each of the pl choices for u1, the remaining variables will satisfy
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(3.34), leaving at most (k − 1)4p4l−4 possibilities for u2, u3, v1, v2 by the

theory of power residues. The value of v3 mod pl is then fixed through (3.33).

When p � k, we count the nonsingular solutions to (3.33) with uk−1
1 �≡

vk−1
1 mod p with the aid of Hensel’s lemma. Indeed, each such solution,

when reduced modulo p, corresponds to one of the O(p4) solutions counted

by S0(p), and at most O(p4l−4) of them will reduce to the same solution

modulo p, because for a solution u, v of the system

uk − vk ≡ a mod p, u− v ≡ b mod p

with p � uk−1− vk−1, there is exactly one pair u1, v1 with 1≤ u1, v1 ≤ pl and

uk1 − vk1 ≡ a mod pl, u1 − v1 ≡ b mod pl.

A similar argument applies for counting nonsingular solutions with uk−1
1 �≡

uk−1
2 mod p, so that, by symmetry, there are at most O(p4l) nonsingular

solutions of (3.33). It follows that S0(p
l)� p4l + p5l−4. We now ignore the

condition p � a in (3.29) and use orthogonality to deduce that

A(pl)� p−4lS0(p
l)� 1 + pl−4.

For l≥ 2, this contains (3.31), as required.

We are ready to discuss the first of the two series in (3.28). The easy

bound dj+1(p
l)≤ (l+ 1)j coupled with (3.30) suffices to recognize the sum

(3.35)

∞∑
l=0

dj+1(p
l)
A(pl)

pl

as a convergent one, and if one uses (3.31) for p > k ≥ l ≥ 1 and (3.30) for

l > k, then this sum is seen to be of the form 1+O(p−2). The sums (3.35)

are the factors in the Euler product for the sum (3.28), so that the latter

indeed converges.

A similar argument applies to the second sum in (3.28). Rewritten as an

Euler product, this sum becomes

(3.36)
∏
p>Y

∞∑
l=0

jL0lA(pl)

pl
.

When P is sufficiently large, one has jL0p−4/k < 1/2 for all p > Y , so that

(3.30) yields ∑
l>k

jL0lA(pl)

pl
�

∑
l>k

( jL0

p4/k

)l
� p−4.
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On using (3.31) for 1≤ l ≤ k as in the previous discussion, one again finds

that the Euler factors in (3.36) are of the type 1+O(p−2), thus confirming

the claims concerning the second sum in (3.28).

§4. The principal proposition

Our next result is a version of Hua’s lemma with a logarithmic saving,

similar to Vaughan [27, Theorem B].

Lemma 8. Let k ≥ 3, let K = 2k−1, and let t= (3K/2) + 2. Then

∫ 1

0

∫ 1

0

∣∣f(α,β)∣∣t dαdβ � P t−k−1/2Lε−3.

Note that Theorem 2 follows on combining the conclusions of Lemmas 1

and 8.

The proof of Lemma 8 will occupy this and the next two sections. Only

the initial steps of the proof work for all values of k. Let I denote the integral

that is estimated in Lemma 8. On noting that t is the arithmetic mean of

K + 2 and 2K + 2, one deduces from Lemma 5 and Schwarz’s inequality

that

(4.1) I � P t−k−1/2Lη.

A similar argument may be applied to the exponential sum h(α,β). An

application of Schwarz’s inequality combined with Lemma 6 yields

(4.2)

∫ 1

0

∫ 1

0

∣∣h(α,β)∣∣t dαdβ � P t−k−1/2Lε−1−(k−1)2/2.

We now apply a differencing argument that reduces the estimation of I to

that of the integral considered in (4.2). The main ideas are adopted from

Vaughan [27].

By orthogonality, I is the number of solutions of the pair of equations

(4.3) xk − yk =

3K/2∑
i=1

(xki − yki ), x− y =

3K/2∑
i=1

(xi − yi)

with x, y,xi, yi all constrained to the interval [1, P ]. Also, when U is a subset

of {(x, y) ∈ N2 : 1 ≤ x, y ≤ P}, let I(U ) denote the number of solutions

counted by I that have (x, y) ∈ U .
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Recall the parameters D = Lκ and D′ = P 1/6k. For 1≤ x≤ P , let m(x)

be the smallest prime factor of x that exceeds D if such a factor exists, and

otherwise put m(x) =∞. Consider the sets

A =
{
(x, y) ∈N2 : x≤ P,y ≤ P, (x;y)>D

}
,

B =
{
(x, y) ∈N2 : x≤ P,y ≤ P, (x;y)≤D,m(x)≤D′},

C =
{
(x, y) ∈N2 : x≤ P,y ≤ P, (x;y)≤D,m(y)≤D′}.

If a solution to (4.3) is counted by I , but the pair (x, y) is not in the union

of A ,B, and C , then we have x ≤ P , y ≤ P , (x;y) ≤ D,m(x) > D′, and
m(y)>D′. In particular, x ∈ E and y ∈ E . Consequently,

I ≤ I(A ) + I(B) + I(C ) + I(E × E ).

Moreover, by symmetry, I(B) = I(C ), and so

(4.4) I ≤ 4max I(X ),

where X runs through the sets A , B, and E × E .

First, suppose that I ≤ 4I(E × E ). Then recalling (3.10), orthogonality

shows that

I ≤ 4

∫ 1

0

∫ 1

0

∣∣h(α,β)∣∣2∣∣f(α,β)∣∣t−2
dαdβ

≤ 4
(∫ 1

0

∫ 1

0

∣∣h(α,β)∣∣t dαdβ
)2/t(∫ 1

0

∫ 1

0

∣∣f(α,β)∣∣t dαdβ
)1−2/t

.

Here Hölder’s inequality was used to infer the second inequality. The second

integral on the right is I , and therefore,

I ≤ 2t
∫ 1

0

∫ 1

0

∣∣h(α,β)∣∣t dαdβ.

Hence, in this case the desired estimate for I is a consequence of (4.2).

Next, suppose that I ≤ 4I(A ). We define

(4.5) f(α,β;W ) =
∑
w≤W

e(αwk + βw)
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and sort the pairs (x, y) ∈ A according to the value of d = (x;y). Then,

by orthogonality, a consideration of the underlying Diophantine equations

reveals that

I(A )≤
∑
d>D

∫ 1

0

∫ 1

0

∣∣f(αdk, βd;P/d)∣∣2∣∣f(α,β)∣∣t−2
dαdβ.

The initial assumption and Hölder’s inequality yield

I ≤ 4
∑
d>D

(∫ 1

0

∫ 1

0

∣∣f(αdk, βd;P/d)∣∣t dαdβ
)2/t

I1−2/t.

We use the bound for I provided by (4.1), and for the remaining integral

on the right-hand side here a consideration of the underlying Diophantine

equations shows that (4.1) again supplies a bound, this time with P/d in

place of P . One then finds that

I � P t−k−1/2Lη
∑
d>D

d−(2t−2k−1)/t � P t−k−1/2LηD−1/8.

Hence, for κ≥ 8(η+k2) this shows that I � P t−k−1/2L−k2 , which is accept-

able.

It remains to consider the case where I ≤ 4I(B). The initial steps are

along familiar lines. Recall the definition of B, and sort the solutions of

(4.3) counted by I(B) according to the value of p=m(x). Then D< p≤D′,
and the condition that (x;y)≤D implies that p � y. Hence, I(B) does not

exceed the number of solutions to the equation

(4.6) (pw)k − yk =

3K/2∑
i=1

(xki − yki ), pw− y =

3K/2∑
i=1

(xi − yi)

in primes p with D < p ≤ D′ and natural numbers w,y,xi, yi satisfying

w ≤ P/p and

(4.7) y ≤ P, xi ≤ P, yi ≤ P, p � y.

Let IM denote the number of solutions of (4.6) constrained to (4.7), and

M < p ≤ 2M , w ≤ P/M . Then, on splitting the range for p into dyadic

intervals, one finds that there is some M with D ≤M ≤D′ and

(4.8) I ≤ 4I(B)� LIM .
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We now recall (4.5) and write

fp(α,β) =
∑
y≤P

p�y

e(αyk + βy), g(α,β) = f(α,β,P/M).

Then, by orthogonality,

(4.9) IM =
∑

M<p≤2M

∫ 1

0

∫ 1

0
g(pkα,pβ)fp(−α,−β)

∣∣f(α,β)∣∣t−2
dαdβ.

One may reduce the estimation of I to bounding the integral

(4.10) Θp =

∫ 1

0

∫ 1

0

∣∣fp(α,β)∣∣K/2∣∣g(pkα,pβ)∣∣K+2
dαdβ,

which can be brought into play via Hölder’s inequality. Indeed, on noting

that |fp(−α,−β)|= |fp(α,β)|, one readily finds that

∫ 1

0

∫ 1

0
g(pkα,pβ)fp(−α,−β)

∣∣f(α,β)∣∣t−2
dαdβ

≤Θ1/(K+2)
p I1−(2/t)

(∫ 1

0

∫ 1

0

∣∣fp(α,β)∣∣t dαdβ
)(K+4)/(t(2K+4))

.

On considering the underlying Diophantine equations, it is immediate that

the integral on the far right is bounded by I . Hence,

∫ 1

0

∫ 1

0
g(pkα,pβ)fp(−α,−β)

∣∣f(α,β)∣∣t−2
dαdβ �Θ1/(K+2)

p I(K+1)/(K+2).

By orthogonality, the integral on the left is nonnegative. We may sum over

p to infer first, from (4.9), that

IM � (IM)(K+1)/(K+2)
( ∑
M<p≤2M

Θp

)1/(K+2)
,

and then, by (4.8), that

(4.11) I � LK+2MK+1
∑

M<p≤2M

Θp.
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The next step is to show that whenever D ≤M ≤D′, then

(4.12)
∑

M<p≤2M

Θp � P t−k−1/2M−K−3/2Lη.

Once this is established, it suffices to recall that D = Lκ and to combine

(4.11) and (4.12) to finally conclude that I � P t−k−1/2L−k2 holds in this

last case as well, provided only that κ is large enough.

We shall estimate the sum in (4.12) by a differencing argument. When

k ≥ 4, the problem at hand can be approached by combining ideas con-

tained in Vaughan [27] and Wooley [32]. The rather technical details are

provided in the next section. For k = 3 this argument collapses, and we

present an alternative approach via the Hardy–Littlewood method in the

following section.

§5. Efficient differencing

Throughout this section we suppose that k ≥ 4. ThenK/4≥ 2, andK/4 is

even. We will use this frequently. We prepare for the differencing operation

with a technical estimate concerning certain congruences. For p > k, let

Zp(a, b) be the set of solutions z = (z1, z2, . . . , zK/4) to the simultaneous

congruences

(5.1) zk1 +zk2 + · · ·+zkK/4 ≡ a mod pk, z1+z2+ · · ·+zK/4 ≡ b mod p,

with 1≤ zi ≤ pk and p � zi for all 1≤ i≤K/4. Also, let

Zp =max
a,b

#Zp(a, b).

Lemma 9. Let p > k ≥ 4. Then

Zp � p(Kk/4)−k−1.

Proof. First, suppose that k = 4. Then K/4 = 2. Consider the solutions

w1,w2 of

(5.2) w4
1 +w4

2 ≡ a mod p, w1 +w2 ≡ b mod p,

with 1≤wi ≤ p−1 (i= 1,2). Here, one may eliminate w2. Then w1 satisfies

a polynomial congruence of degree 4, which has at most four solutions. For

any solution z of

z41 + z42 ≡ a mod p4, z1 + z2 ≡ b mod p
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that is counted by Zp, there is a solution w of (5.2) with zi ≡ wi mod p.

However, for a fixed solution w of (5.2), there are p3 choices for z2 with

1≤ z2 ≤ p4 and z2 ≡w2 mod p, and for any such z2, there are at most four

solutions of z41 + z42 ≡ a mod p4 with p � z1 and 1≤ z1 ≤ p4. This shows that

Zp ≤ 16p3, as required.

Next, suppose that k ≥ 5. Let Z ′
p(a

′, b′) denote the set of solutions z1, z2,
z3 of the congruences

(5.3) zk1 + zk2 + zk3 ≡ a′ mod pk, z1 + z2 + z3 ≡ b′ mod p,

with p � z1z2z3 and 1≤ zi ≤ pk for i= 1,2,3. The bound

(5.4) #Z ′
p(a

′, b′)� p2k−1

holds uniformly for a, b ∈ Z, p > k. This can be seen as follows. In the system

of congruences

(5.5) wk
1 +wk

2 +wk
3 ≡ a′ mod p, w1 +w2 +w3 ≡ b′ mod p

one may eliminate w3. But w
k
1 +wk

2 +(b′−w1−w2)
k is a polynomial in w1,

and when 2 | k, the degree is k and the leading coefficient is 2. Hence, we find

at most kp incongruent solutions of (5.5). When k is odd, and w2 �≡ b′ mod p,

then the degree is k−1 and the leading coefficient is k(b′−w2), so that (5.5)

can have at most (k − 1)(p− 1) solutions with w2 �≡ b′ mod p, and further

p solutions with w2 ≡ b′ mod p. Hence, in all cases there are at most kp

solutions. Any solution of (5.3) reduces to one of (5.5). There are p2k−2

choices of z2, z3 mod pk with zi ≡wi mod p. Now solve for z1 from the first

congruence in (5.3). Since p � z1, there are at most k solutions for z1. This

confirms (5.4). To complete the proof of the lemma, it now suffices to take

a′ = a− zk4 − · · · − zkK/4, b′ = b− z4 − · · · − zK/4

in (5.4) and to sum over z4, . . . , zK/4 trivially.

We now return to the main theme. Let p be a prime with M < p≤ 2M .

The goal is to estimate Θp, as defined in (4.10). By orthogonality, Θp is the

number of solutions to the pair of equations

(5.6)

K/4∑
i=1

(xki −yki ) = pk
1+K/2∑
i=1

(uki −vki ),

K/4∑
i=1

(xi−yi) = p

1+K/2∑
i=1

(ui−vi)
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in natural numbers xi, yi, ui, vi constrained to

xi ≤ P, yi ≤ P, ui ≤ P/M,
(5.7)

vi ≤ P/M, p � xiyi (1≤ i≤K/4).

Note that solutions to (5.6) satisfy

xk1 + xk2 + · · ·+ xkK/4 ≡ yk1 + yk2 + · · ·+ ykK/4 mod pk,
(5.8)

x1 + x2 + · · ·+ xK/4 ≡ y1 + y2 + · · ·+ yK/2 mod p.

The following argument is an elementary variant of a very similar expo-

nential sum technique underpinning [32, proof of Lemma 2.2]. For given

data n,m,z1, . . . , zK/4, let Φp(z, n,m) denote the number of solutions to

K/4∑
i=1

xki + pk
1+K/2∑
i=1

uki = n,

K/4∑
i=1

xi + p

1+K/2∑
i=1

ui =m

satisfying the relevant conditions in (5.7) and xi ≡ zi mod pk, for 1 ≤ i ≤
K/4. Then, by (5.8) and the discussion preceding this observation,

Θp =
∞∑

n,m=−∞

pk∑
a=1

p∑
b=1

∣∣∣ ∑
z∈Zp(a,b)

Φp(z, n,m)
∣∣∣2.

By Cauchy’s inequality and Lemma 9,

Θp ≤
∞∑

n,m=−∞

pk∑
a=1

p∑
b=1

Zp

∑
z∈Zp(a,b)

∣∣Φp(z, n,m)
∣∣2

� p(Kk/4)−k−1
∞∑

n,m=−∞

∑
z mod pk

∣∣Φp(z, n,m)
∣∣2(5.9)

� p(Kk/4)−k−1Ψp,

where Ψp is the number of solutions to (5.6) and (5.7) with the additional

constraints that

(5.10) xi ≡ yi mod pk (1≤ i≤K/4).
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Now let

(5.11) G(α,β) =
∑

x≤P,y≤P

x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)
.

By orthogonality,

(5.12) Ψp ≤
∫ 1

0

∫ 1

0
G(α,β)K/4

∣∣g(αpk, βp)∣∣K+2
dαdβ.

By (5.11),

G(α,β) = [P ] + 2Re
∑

y<x≤P

x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)
,

which implies that

(5.13)
∣∣G(α,β)

∣∣K/4 � PK/4 +
∣∣∣ ∑

y<x≤P

x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)∣∣∣K/4
.

We use this in (5.12) and apply Lemma 5 to deduce that

(5.14) Ψp �Ψ′
p + PK/4(P/M)K+2−kLη,

where

Ψ′
p =

∫ 1

0

∫ 1

0

∣∣∣ ∑
y<x≤P

x≡y mod pk

e
(
α(xk − yk) + β(x− y)

)∣∣∣K/4∣∣g(pkα,pβ)∣∣K+2
dαdβ.

By orthogonality, Ψ′
p is the number of solutions of the pair of equations

K/4∑
i=1

(−1)i(xki − yki ) = pk
1+K/2∑
i=1

(uki − vki ),

K/4∑
i=1

(−1)i(xi − yi) = p

1+K/2∑
i=1

(ui − vi)

subject to (5.7), (5.10), and xi > yi. We write

zi = xi + yi, hi = p−k(xi − yi).
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Then, since 2xi = zi + pkhi and 2yi = zi − pkhi, one finds that

2k(xki − yki ) = pkϕp(zi, hi),

where ϕp is the integral polynomial

ϕp(z,h) = p−k
(
(z + hpk)k − (z − hpk)k

)
,

and we may then conclude that Ψ′
p does not exceed the number of solutions

of the system

K/4∑
i=1

(−1)iϕp(zi, hi) = 2k
1+K/2∑
i=1

(uki − vki ),

pk−1

K/4∑
i=1

(−1)ihi =

1+K/2∑
i=1

(ui − vi)

in which the variables are subject to

1≤ hi ≤ PM−k, zi ≤ 2P, ui ≤ P/M, vi ≤ P/M.

Now write H = PM−k and introduce the exponential sum

Fp(α,β) =
∑
h≤H

∑
z≤2P

e
(
αϕp(z,h) + βhpk−1

)
.

Then, once again by orthogonality,

(5.15) Ψ′
p ≤

∫ 1

0

∫ 1

0

∣∣Fp(α,β)
∣∣K/4∣∣g(2kα,β)∣∣K+2

dαdβ.

We have now completed the first differencing step. The differencing was

efficient because the congruences (5.8) reduce the potential reservoir for the

variables xi, yi by a factor p−k−1, and one recovers this through Lemma 9.

We proceed by taking further differences. By Cauchy’s inequality,

∣∣Fp(α,β)
∣∣2 ≤H

∑
h≤H

∣∣∣ ∑
z≤2P

e
(
αϕp(z,h)

)∣∣∣2.
Note that β is absent from the right-hand side. Thus, we may proceed as

with the usual proof of Weyl’s inequality (see [29, Lemma 2.4]) to confirm
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that there are certain natural numbers c(l) (depending also on p which we

suppress) with

c(0)� P k−1M−k, c(l)� dk(l) (l �= 0),

and such that

(5.16)
∣∣Fp(α,β)

∣∣K/2 ≤ PK−kM (1−(K/2))k
∑
l

c(l)e(αl).

At this point it might be worth recalling that in the current context one

has k ≥ 4 and that therefore β is indeed absent from this bound, for all k

under consideration. To bound the integral

V =

∫ 1

0

∫ 1

0

∣∣Fp(α,β)
∣∣K/2∣∣g(2kα,β)∣∣K+2

dαdβ,

one inserts the inequality (5.16) and then separates off the contribution

arising from l= 0. This term will contribute to V at most

� PK−kM (1−(K/2))kc(0)

∫ 1

0

∫ 1

0

∣∣g(2kα,β)∣∣K+2
dαdβ.

We may apply Lemma 5 to the integral on the right and then conclude that

this contribution to V does not exceed

� (PK−kM (1−(K/2))k)(P k−1M−k)(P/M)K+2−kLη

� P 2K−k+1M (1−(K/2))k−K−2Lη.

By orthogonality, the terms that correspond to l �= 0 produce a term not

exceeding

� PK−kM (1−(K/2))k
∑
ui,vi

dk(u
k
1 − vk1 + · · ·+ uk(K/2)+1 − vk(K/2)+1)

in which the variables are restricted by ui ≤ P/M , vi ≤ P/M , and

u1 − v1 + · · ·+ u(K/2)+1 − v(K/2)+1 = 0.

By Lemma 3, this does not exceed

� (PK−kM (1−(K/2))k)(P/M)K+1Lη � P 2K−k+1M (1−(K/2))k−1−KLη.
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Collecting together yields

V � P 2K−k+1M (1−(K/2))k−1−KLη.

By (5.15) and Hölder’s inequality,

Ψ′
p ≤ V 1/2

(∫ 1

0

∫ 1

0

∣∣g(2kα,β)∣∣K+2
dαdβ

)1/2
,

and another use of Lemma 5 produces

(5.17) Ψ′
p � P 3K/2−k+3/2M (1−(K/2))k/2−K−3/2+k/2Lη.

By (5.9) and (5.14), we may now conclude that∑
M<p≤2M

Θp �M (Kk/4)−k
(
max

p
Ψ′

p + PK/4(P/M)K+2−kLη
)
.

As is readily checked, this establishes (4.12), as was required to complete

the proof of Lemma 8.

§6. Inefficient differencing

In this section we establish the case k = 3 of Lemma 8. Our approach

needs substantial revision because Lemma 4 provides optimal control on

the sixth moment of Weyl sums, and if one differences two blocks of two

variables beyond this as would be needed for efficient differencing, then one

works with ten variables. But when k = 3 one has t= 8. One could, at least

in principle, study a tenth moment, but savings can then be expected only

if differencing is performed over minor arcs only. This would entail con-

siderable complication in detail, and we prefer an eighth moment for con-

sistency with our work in the previous section. Fortunately, the inevitable

loss of a factor M in an inefficient differencing can be restored in part by

averaging over the auxiliary prime p. The technique elaborates on ideas of

Vaughan [26].

We now return to (4.10), temporarily fix a prime p with M < p ≤ 2M ,

and observe by orthogonality that Θp equals the number of solutions of the

Diophantine system

x31 + p3(y31 + y32 + y33) = x32 + p3(y34 + y35 + y36),
(6.1)

x1 + p(y1 + y2 + y3) = x2 + p(y4 + y5 + y6)
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with variables constrained to

xi ≤ P, yi ≤ P/M, p � x1x2.

Any solution of (6.1) satisfies x31 ≡ x32 mod p3 and x1 ≡ x2 mod p. Since

p � x1x2, this implies that x1 ≡ x2 mod p3. By Lemma 4, the number of

solutions with x1 = x2 amounts to at most O(P (P/M)3). By symmetry, it

now suffices to count solutions where x1 > x2. According to the preceding

comment, we put x1 = x2 + hp3 with h > 0, and z = x1 + x2. Then (6.1)

transforms to

h(3z2 + h2p6) = 4(y31 + y32 + y33 − y34 − y35 − y36),
(6.2)

hp2 = y1 + y2 + y3 − y4 − y5 − y6.

Let Ξ denote the number of solutions of (6.2) subject to

z ≤ 2P, yi ≤ P/M, h≤H, M < p≤ 2M,

where H = PM−3. Then, on summing over p, the above argument yields

(6.3)
∑

M<p≤2M

Θp ≤ 2Ξ+O(P 4M−2).

Let

F (α) =
∑
z≤2P

e(3αz2), E(α,β) =
∑

M<p≤2M

e(αp6 + βp2),

and recall that g(α,β) = f(α,β,P/M). Then, by orthogonality,

(6.4) Ξ =

∫ 1

0

∫ 1

0

∑
h≤H

F (αh)E(αh3, βh)
∣∣g(4α,β)∣∣6 dαdβ.

Note the similarity with (5.15).

We apply the Hardy–Littlewood method to estimate Ξ. Let δ > 0 be a

small parameter to be determined later. Let N be the set of all α ∈ [0,1]

where there are coprimes a, q with 0≤ a≤ q, 1≤ q ≤ P 1+δ and |qα− a| ≤
P δ−1H−1. Let n be the complement of N in [0,1]. Then, by [26, Lemma 4],

one has

(6.5) sup
α∈n

∑
h≤H

∣∣F (αh)
∣∣2 �HPL3/2.
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Unlike in [26], the actual exponent of L is of no importance for us. Next

recall (4.5) to observe that∑
h≤H

∣∣E(αh3, βh)
∣∣2 = ∑

M<p1,p2≤2M

f
(
α(p61 − p62), β(p1 − p2),H

)
.

The contribution of summands with p1 = p2 here is O(HM). We claim

that whenever α ∈ n and p1 �= p2, then f(α(p61 − p62), β(p1 − p2),H) �
H3/4(logH)2. Once this is established, it follows that

(6.6)
∑
h≤H

∣∣E(αh3, βh)
∣∣2 �HM +M2H3/4(logH)2 �HM

holds for M ≤ P 1/15. To confirm these claims, let M < p1, p2 ≤ 2M with

p1 �= p2 and |f(α(p61−p62), β(p1−p2),H)|>H3/4(logH)2. Then, by Lemma 1

(with θ = 7/9), there are coprime numbers b, r with r ≤H7/9 and |αr(p61 −
p62)− b| ≤H−20/9, and consequently, there is a q with q | r(p61 − p62) and an

a ∈ Z with |αq − a| ≤H−20/9. Hence, q ≤H7/9(2M)6 = 26P 7/9M11/3, and

therefore α ∈ N, as one readily confirms, and as was desired. This estab-

lishes (6.6).

By (6.5), (6.6), and Cauchy’s inequality,

sup
α∈n

∣∣∣∑
h≤H

F (αh)E(αh3, βh)
∣∣∣�H(PM)1/2L.

We use this in conjunction with Lemma 4 to infer that

(6.7)

∫
n

∫ 1

0

∑
h≤H

F (αh)E(αh3, βh)
∣∣g(4α,β)∣∣6 dβ dα�H(PM)1/2(P/M)3L.

We now consider the major arcs N. When a, q are coprimes with |qα− a| ≤
1/q, then [28, Lemma 3.1] asserts that

∑
h≤H

∣∣F (αh)
∣∣2 � P ε

( P 2H

q+ P 2H|qα− a| + PH + q+ P 2H|qα− a|
)
.

For α ∈N, there are such a, q with q ≤ P 1+δ and |qα− a| ≤H−1P δ−1, and

a short calculation then confirms that

(6.8)
∑
h≤H

∣∣F (αh)
∣∣2 � P 2+3δH

q+ P 2H|qα− a| ·
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Moreover, by orthogonality,

(6.9)

∫ 1

0

∣∣g(4α,β)∣∣4 dβ =
∑
l

ψle(αl),

in which ψl equals the number of solutions of the pair of Diophantine equa-

tions

4(y31 + y32 − y33 − y34) = l, y1 + y2 − y3 − y4 = 0

with yi ≤ P/M (1 ≤ i ≤ 4). The integral representation shows that the

Fourier series in (6.9) takes nonnegative values only. Hence, we may apply

[5, Lemma 2] to conclude that

∫
N

∑
h≤H

∣∣F (αh)
∣∣2 ∫ 1

0

∣∣g(4α,β)∣∣4 dβ dα� P 3δ+ε
(
P 1+δψ0 +

∑
l

ψl

)
,

and the bounds ψ0 � (P/M)2 and
∑

lψl � (P/M)3 are immediate. This

gives

(6.10)

∫
N

∑
h≤H

∣∣F (αh)
∣∣2 ∫ 1

0

∣∣g(4α,β)∣∣4 dβ dα� P 3+5δM−2.

Also, on using a trivial bound for E(α,β) and Lemma 5 only, we have

∫
N

∫ 1

0

∑
h≤H

∣∣E(αh3, βh)
∣∣2∣∣g(4α,β)∣∣8 dβ dα

�HM2
(∫ 1

0

∫ 1

0

∣∣g(4α,β)∣∣10 dαdβ
)1/2(∫ 1

0

∫ 1

0

∣∣g(4α,β)∣∣6 dαdβ
)1/2

(6.11)

�HM2(P/M)9/2Lη.

By (6.10), (6.11), and Schwarz’s inequality,

∫
N

∫ 1

0

∑
h≤H

F (αh)E(αh3, βh)
∣∣g(4α,β)∣∣6 dβ dα� P 17/4+3δM−15/4.

When M ≤ P 1/15, this bound is superior to the one in (6.7). Hence, by (6.7)

and (6.4) we conclude that Ξ� P 9/2M−11/2L. The case k = 3 of Lemma 8

now follows via (6.3).
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§7. Pruning

In order to facilitate the major arc analysis within the proof of Theorem 1,

the minor arc estimate provided by Theorem 2 is to be augmented by a

device that restricts the integration for the linear equation to suitable major

arcs as well. Some notation is required to make this precise.

Let 1≤ q ≤ P , and let Mq denote the union of the intervals

{
α ∈ [0,1] : |qα− a| ≤ (4k)−1P 1−k

}
with 0≤ a≤ q and (a; q) = 1. Note that these intervals are disjoint, as are

the various Mq. Let Kq =Mq × [0,1], and let K be the disjoint union of the

Kq with 1≤ q ≤ P . Further, when 1≤ q ≤ P 1/9, let Lq be the union of the

rectangles

{
(α,β) ∈ [0,1]2 :

∣∣∣α− a

q

∣∣∣≤ P 1/9−k,
∣∣∣β − b

q

∣∣∣≤ P−8/9
}

with 0 ≤ a ≤ q, 0 ≤ b ≤ q and (a; q) = 1. Then, for 1 ≤ q ≤ P 1/9, one has

Lq ⊂ Kq. Let L be the union of Lq with 1≤ q ≤ P 1/9 so that L⊂ K.

Lemma 10. Let s > 3k. Then∫∫
K\L

∣∣f(α,β)∣∣s dαdβ � P s−k−1−1/(9k)+ε.

Proof. Let (α,β) ∈ K. Then there are a unique q ∈ [1, P ] with (α,β) ∈ Kq

and unique a, b with 0≤ a≤ q, 0≤ b≤ q with (a; q) = 1 and

|qα− a| ≤ (4k)−1P 1−k, −1

2
< qβ − b≤ 1

2
.

Define f∗ : K→C by

f∗(α,β) = q−1S(q, a, b)v
(
α− a

q
,β − b

q

)
.

Whenever (α,β) ∈ K, one infers from Theorem 3 that

f(α,β) = f∗(α,β) +O(P (k−1)/k+ε).

Consequently, ∣∣f(α,β)∣∣s � ∣∣f∗(α,β)
∣∣s + P s−s/k+ε.
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The linear measure of Mq is O(P 1−k), whence the planar measure of K is

O(P 2−k). Since s≥ 3k+ 1, it follows that

(7.1)

∫ ∫
K\L

∣∣f(α,β)∣∣s dαdβ �
∫ ∫

K\L

∣∣f∗(α,β)
∣∣s dαdβ + P s−k−1−1/k+ε.

Now consider the integral on the right-hand side. First, we estimate the

contribution from Kq with P 1/9 < q ≤ P , which amounts to

(7.2)
∑

P 1/9<q≤P

q∑
a=1

(a;q)=1

q∑
b=1

q−s
∣∣S(q, a, b)∣∣s ∫ ∞

−∞

∫ ∞

−∞

∣∣v(ξ, ζ)∣∣s dξ dζ.

By (2.2), we have the alternative estimates

(7.3) v(ξ, ζ)� P
(
1 + P k|ξ|

)−1/k
, v(ξ, ζ)� P

(
1 + P |ζ|

)−1/k
,

and consequently, ∫ ∞

−∞

∫ ∞

−∞

∣∣v(ξ, ζ)∣∣s dξ dζ � P s−k−1.

By (2.2) again, the expression in (7.2) is bounded by

�
( ∑
P 1/9<q≤P

q2−s/k+ε
)
P s−k−1 � P s−k−1−1/(9k)+ε

which is acceptable.

It remains to consider the contribution from the sets Kq \Lq with q ≤ P 1/9

to the integral on the right-hand side of (7.1), which in fact does not exceed

(7.4)
∑

q≤P 1/9

q∑
a=1

(a;q)=1

q∑
b=1

q−s
∣∣S(q, a, b)∣∣s(B1 +B2),

where

B1 =

∫ ∞

−∞

∫
|ξ|>P 1/9−k

∣∣v(ξ, ζ)∣∣s dξ dζ,
B2 =

∫ ∞

−∞

∫
|ζ|>P−8/9

∣∣v(ξ, ζ)∣∣s dζ dξ.
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By (7.3), and since s≥ 3k+ 1, one has

B1 � P s

∫ ∞

−∞

(
1 + P |ζ|

)−1−1/k
dζ

∫
|ξ|>P 1/9−k

(
2 + P k|ξ|

)−2
dξ

(7.5)
� P s−k−10/9.

A similar reasoning yields the same bound for B2. By (2.2), it is now readily

seen that the expression in (7.4) does not exceed O(P s−k−10/9), and the

lemma follows from (7.1).

§8. The proof of Theorem 1

This final section is devoted to the proof of Theorem 1, which we launch

by disposing of some simple cases. Throughout this section, let s≥ 2k + 2,

let ai �= 0 for 1 ≤ i ≤ s, and suppose that exactly r of the s numbers bi
are nonzero. Since the equations (1.1) have a nonsingular real solution, one

concludes that r ≥ 1. On renumbering the variables, we may arrange that

bi �= 0 for 1≤ i≤ r. The system (1.1) now takes the shape

a1x
k
1 + · · ·+ arx

k
r + · · ·+ asx

k
s = 0,

(8.1)
b1x1 + · · ·+ brxr = 0.

Here, we may clear common factors in the second equation, so that we may

further suppose that b is a primitive vector.

If r = 1, then x1 = 0, and we are left with a single equation in 2k + 1

variables that may be treated by the methods of [29, Chapter 2].

If r = 2 and (b1; b2) = 1, then any solutions to (8.1) has b1 | x2, b2 | x1.
We substitute x1 = b2y, x2 =−b1y to infer that N(P ) equals the number of

solutions to the equation

(a1b
k
2 − a2b

k
1)y

k + a3x
k
3 + · · ·+ asx

k
s = 0,

with |xi| ≤ P and |y| ≤ P/max(|b1|, |b2|). If a1b
k
2 �= a2b

k
1 , then this single

equation in s− 1≥ 2k + 1 variables may again be treated by the methods

of [29, Chapter 2], the unconventional size constraint on y being readily

absorbed by the classical method that need not be commented on any fur-

ther here. If a1b
k
2 = a2b

k
1 , one has

N(P ) =
(
2P/max

(
|b1|, |b2|

)
+O(1)

)
N0,
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where N0 is the number of solutions to the equation a3x
k
3 + · · ·+ asx

k
s = 0

with |xi| ≤B. Now s−2≥ 2k. If s−2> 2k, then we may proceed as before to

establish an asymptotic formula for N0 by the methods of [29, Chapter 2],

and this will complete the proof of Theorem 1 in this case. This leaves

the case where s− 2 = 2k. In this case, the methods of Vaughan [27] (and

in particular (1.5)) may be combined with the singular series work in [29,

Chapters 2 and 4] to establish that

N0 = χ∞
(∏

p

χp

)
P s−k−2

(
1 +O

(
(logP )−1

))
,

where the Euler product is absolutely convergent. Also, χp is nonzero if

and only if a3x
k
3 + · · ·+ asx

k
s = 0 has a nontrivial solution in Qp, and χ∞ is

nonzero if and only if a3, a4, . . . , as are not all of the same sign. On collecting

together, this establishes Theorem 1 in the case r = 2.

This leaves the case r ≥ 3. Here we define

(8.2) F (α,β) =
s∏

i=1

f(aiα, biβ),

and we observe that the integral

(8.3) N+
a,b(P ) =

∫ 1

0

∫ 1

0
F (α,β)dαdβ

counts the solutions of (1.1) with 1≤ xi ≤ P (i= 1, . . . , s).

In preparation for an application of the Hardy–Littlewood method to the

integral (8.3), we define the major arcs W as the union of the boxes

(8.4)
{
(α,β) ∈ [0,1]2 :

∣∣∣α− a

q

∣∣∣≤ P 1/8−k,
∣∣∣β − b

q

∣∣∣≤ P−7/8
}

with 0≤ a≤ q, 0≤ b≤ q, (a; b; q) = 1 and q ≤ P 1/8. This union is disjoint.

When (α,β) ∈W is in the box (8.4), we put

f∗
i (α,β) = q−1S(q, aai, bbi)v

(
ai

(
α− a

q

)
, bi

(
β − b

q

))
.

Note that Theorem 3 is not a suitable tool to compare f(aiα, biβ) with

f∗
i (α,β) because the condition (a; q) = 1 is not met on some boxes. However,

[29, Theorem 7.2] readily yields

f(aiα, biβ) = f∗
i (α,β) +O(P 1/4+ε)
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uniformly for (α,β) ∈ W. When inserted into (8.2), the “trivial” bounds

f(α,β)� P (see (1.4)) and f∗
i (α,β)� P (see (2.2)) suffice to infer that

(8.5) F (α,β) =
s∏

i=1

f∗
i (α,β) +O(P s−3/4+ε).

We put

(8.6) T (q) =

q∑
a,b=1

(a;b;q)=1

q−s
s∏

i=1

S(q, aai, bbi)

and integrate (8.5) over W. Since the measure of W is O(P−k−3/8), this

yields

∫ ∫
W

F (α,β)dαdβ =
∑

q≤P 1/8

T (q)

∫ P 1/8−k

−P 1/8−k

∫ P−7/8

−P−7/8

s∏
i=1

v(aiξ, biζ)dζ dξ

(8.7)
+O(P s−k−9/8+ε).

Note that the main term on the right-hand side of (8.7) is a product. The

next natural step is to complete the sum over q to a series, and likewise,

to complete the integral to one extended over R2. This requires some care

in cases where many of the bi are zero. In fact, when r = 3, the bounds in

(2.2) are not of strength sufficient to conclude that the integrand in (8.7) is

integrable over R2. In preparation for a debugging argument, let

v0(ξ, ζ) =

∫ 1

0
e(ξtk + ζt)dt.

By (2.1), one has v(ξ, ζ) = Pv0(P
kξ,Pζ), so that an obvious substitution

gives

(8.8)

∫ P 1/8−k

−P 1/8−k

∫ P−7/8

−P−7/8

s∏
i=1

v(aiξ, biζ)dζ dξ = P s−k−1J (P 1/8),

where

(8.9) J (W ) =

∫ W

−W

∫ W

−W

s∏
i=1

v0(aiξ, biζ)dζ dξ.
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If ζ ≥ 1 and ζ ≥ 8k|ξ|, then d
dt(ξt

k + ζt) ≥ 3ζ/4 holds for all 0 ≤ t ≤ 1.

Observing symmetry, [25, Lemma 4.2] now shows that

(8.10) v0(ξ, ζ)�
(
1 + |ζ|

)−1

holds throughout the domain described by |ζ| ≥ 8k|ξ|. It follows that

(8.11)
s∏

i=1

v0(aiξ, biζ)�
{
(1 + |ζ|)−2(1 + |ξ|)−2 if |ζ| ≥ 8k|ξ|,
(1 + |ξ|)−3 if |ζ|< 8k|ξ|.

To see this, first note that (7.3) (with P = 1) yields v0(aiξ, biζ) � (1 +

|ξ|)−1/k because |ai| ≥ 1. Since s > 3k, this already shows the left-hand side

of (8.11) bounded by (1+ |ξ|)−3 irrespective of the value for ζ. If |ζ| ≥ 8k|ξ|,
we estimate v0(aiξ, biζ) as before for 3 ≤ i ≤ s, and this yields a factor

(1 + |ξ|)−2 for the upper bound. Now recall that b1b2 �= 0, so that (8.10)

gives v0(a1ξ, b1ζ)v0(a2ξ, b2ζ)� (1 + |ζ|)−2, as required.

The right-hand side of (8.11) is an integrable function on R2, and it is

immediate that its integral over max(|ξ|, |ζ|)≥W is O(W−1). It follows that

(8.12) J = J +
a,b =

∫ ∞

−∞

∫ ∞

−∞

s∏
i=1

v0(aiξ, biζ)dζ dξ

exists and that

(8.13) J (W ) =J +O(W−1).

The treatment of the singular series also involves an unconventional ele-

ment. We shall prove that

(8.14) T (q)� q2−s/k+ε.

The difficulty is implied by zero values of bi because then a factor S(q, aai,0)

is present in (8.6), and when (b; q) = 1 but a= q, this factor is q and will not

contribute to the savings needed to prove (8.14). As we shall see momen-

tarily, some other factor in (8.6) will vanish whenever S(q, aai,0) is unduly

large. To make this precise, we first apply the method leading from (3.26)

to (3.27) to confirm that T (q) is multiplicative. Now let p be a prime, let
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l ≥ 1, and suppose that p | a but p � b. Since b is primitive, there is some

bi with p � bi, whence Lemma 2 gives S(pl, aai, bbi) = 0. By (8.6), it follows

that

T (pl) =

pl∑
a=1
p�a

pl∑
b=1

p−ls
s∏

i=1

S(pl, aai, bbi)

because the remaining pairs a, b with (a; b;p) = 1 have p | a, and hence

p � b, and then the summand vanishes. For p � a, one may apply (2.2) to see

that S(pl, aai, bbi)� pl(1−1/k)+ε (even when bi = 0). This confirms (8.14) for

prime powers, and by multiplicativity, (8.14) holds for all q. This estimate

shows that the singular series

(8.15) S=S
+
a,b =

∞∑
q=1

T (q)

converges absolutely and that∑
q≤W

T (q) =S+O(W ε−1/k).

Wemay now combine this with (8.7), (8.8), and (8.13) to conclude as follows.

Lemma 11. Let s ≥ 3k + 1, and let r ≥ 3. Suppose that b is primitive.

Then ∫ ∫
W

F (α,β)dαdβ = J +
a,bS

+
a,bP

s−k−1 +O(P s−k−1−1/(9k)).

It remains to consider the complementary set of the major arcs W. Let N

be the union of the intervals {α ∈ [0,1] : |qα− a| ≤ P 4/5−k} with 0≤ a≤ q,

(a; q) = 1 and 1≤ q ≤ P 4/5, and let n= [0,1] \N. Now define V=N× [0,1],

v= n× [0,1]. Note that [0,1]2 is the disjoint union of W, V \W, and v. For

w ∈ {v,V \W}, and 1≤ j ≤ 2, 3≤ i≤ s, let

Yij(w) =

∫ ∫
w

∣∣f(ajα, bjβ)∣∣2∣∣f(aiα, biβ)∣∣s−2
dαdβ.

Then, applying the simple inequality

∣∣f(a1α, b1β)f(a2α, b2β)∣∣≤ ∣∣f(a1α, b1β)∣∣2 + ∣∣f(a2α, b2β)∣∣2
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together with Hölder’s inequality, one infers that

(8.16)

∫∫
w

∣∣F (α,β)
∣∣dαdβ ≤

2∑
j=1

s∏
i=3

Yij(w)1/(s−2).

We proceed by estimating Yij(w). First consider the case where w = v,

and 3≤ i≤ s is an index with bi = 0. Then, by orthogonality, and recalling

that b1b2 �= 0, one finds that

Yij(v) =

∫
n

∣∣f(aiα,0)∣∣s−2
∫ 1

0

∣∣f(ajα, bjβ)∣∣2 dβ dα

(8.17)

= [P ]

∫
n

∣∣f(aiα,0)∣∣s−2
dα.

We now substitute α′ = α|ai|. The definition of m in the preamble to Theo-

rem 2 shows that {α : α/|ai| ∈ n} ∩ [0,1]⊂m. Since |f(α,0)| is of period 1,

it follows that∫
n

∣∣f(aiα,0)∣∣s−2
dα=

1

|ai|

∫
{α′ : α′/|ai|∈n}

∣∣f(α′,0)
∣∣s−2

dα′

≤
∫
m

∣∣f(α,0)∣∣s−2
dα� P s−2−kL−2.

In the last step, we have used s≥ 2k + 2 and (1.5). By (8.17), this yields

(8.18) Yij(v)� P s−1−kL−2.

Next consider the case where w= v and bi �= 0. Then bibj �= 0, and Hölder’s

inequality gives

Yij(v)≤
(∫∫

v

∣∣f(ajα, bjβ)∣∣s dαdβ
)2/s

(8.19)

×
(∫∫

v

∣∣f(aiα, biβ)∣∣s dαdβ
)1−(2/s)

.

Here, both integrals are of the same type. A substitution argument similar

to the one in the preceding case yields∫∫
v

∣∣f(ajα, bjβ)∣∣s dαdβ =
1

|ajbj |

∫
{α : α/|ai|∈n}

∫ |bj |

0

∣∣f(α,β)∣∣s dβ dα

≤
∫
m

∫ 1

0

∣∣f(α,β)∣∣s dβ dα� P s−1−kL−2.
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Here, we used Theorem 2 for the last inequality. Because the same argument

applies with i in place of j, we conclude that (8.18) holds in this case as

well. Consequently, by (8.16),

(8.20)

∫ ∫
v

∣∣F (α,β)
∣∣dαdβ � P s−1−kL−2.

This leaves the set V \W= U, say. A successful estimation is possible with

the aid of Lemma 10. An inspection of the definitions of the sets V,W,K

and L shows that whenever ajbj �= 0,{
(α,β) :

(
α/|aj |, β/|bj |

)
∈ U

}
∩ [0,1]2 ⊂ K \L.

Hence, whenever bj �= 0, one notes that f(α,β) is Z2-periodic to conclude

that∫ ∫
U

∣∣f(ajα, bjβ)∣∣s dαdβ =
1

|ajbj |

∫ ∫
{(α/|aj |,β/|bj |)∈U}

∣∣f(α,β)∣∣s dαdβ

≤
∫ ∫

K\L

∣∣f(α,β)∣∣s dαdβ,

and Lemma 10 estimates the last integral as O(P s−k−1−δ), where δ is any

real number not exceeding 1/(9k). By using Hölder’s inequality as in (8.19),

it now follows that whenever j = 1,2 and 3≤ j ≤ r, then

(8.21) Yij(U)� P s−k−1−δ.

For r < i ≤ s, we merely use orthogonality, and use (1.5) together with a

straightforward major arc estimate to infer that

Yij(U)≤
∫ 1

0

∣∣f(aiα,0)∣∣s−2
∫ 1

0

∣∣f(ajα, bjβ)∣∣2 dβ dα

≤ [P ]

∫ 1

0

∣∣f(aiα,0)∣∣s−2
dα� P s−k−1.

We now take w = U in (8.16). Since r ≥ 3, the bound (8.21) applies to at

least one of the factors, so that one may deduce that

(8.22)

∫ ∫
U

∣∣F(α,β)
∣∣dαdβ � P s−k−1−δ/s.

An asymptotic formula for N+
a,b(P ) is now available by combining the con-

clusions in (8.20) and (8.22) with those in Lemma 11. We summarize our

work so far in the next lemma.
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Lemma 12. Let s≥ 2k + 2, let r ≥ 3, and let b be primitive. Then

N+
a,b(P ) = J

+
a,bS

+
a,bP

s−k−1 +O(P s−k−1L−2).

We are ready to establish Theorem 1 in all cases where r ≥ 3. Let N (0)(P )

be the number of solutions counted by Na,b(P ) where xi = 0 for at least

one index i with 1≤ i≤ s. For the remaining solutions, we have xi �= 0 for

all i, and we write ηi = xi/|xi|. We group the solutions according to a given

value of η ∈ {1,−1}s, and we substitute x′i = ηixi in (1.1). We are then

reduced to counting solutions in positive integers of the system (1.1) with bi
replaced by ηibi and ai replaced by ηki ai. Thus, on writing ηb= (ηibi)1≤i≤s,

ηa= (ηki ai)1≤i≤s, we find that

(8.23) Na,b(P ) =N (0)(P ) +
∑

ηi∈{±1}
N+

ηa,ηb(P ).

We shall establish the estimate

(8.24) N (0)(P )� P s−k−1−δ

at the end of this section. Taking this for granted, the asymptotic formula

(1.3) is now available from (8.23) and Lemma 12, with

(8.25) C(a,b) =
∑

ηi∈{±1}
S

+
ηa,ηbJ

+
ηa,ηb.

However, substituting −x for x in (2.1) yields S(q,−a,−b) = S(q, a, b) when

k is odd, and S(q, a,−b) = S(q, a, b) when k is even. By (8.6) and (8.15),

this implies that S+
ηa,ηb =S

+
a,b =S. Moreover, since T (q) is multiplicative,

we have

(8.26) S=
∏
p

χp.

By (8.6) and orthogonality,

(8.27) χp = lim
H→∞

p−Hs
pH∑
a=1

pH∑
b=1

s∏
i=1

S(pH , aai, bbi) = lim
H→∞

pH(2−s)Ma,b(p
H),

where Ma,b(p
H) is the number of incongruent solutions to the system of

congruences

a1x
k
1 + · · ·+ asx

k
s ≡ b1x1 + · · ·+ bsxs ≡ 0 mod pH .

https://doi.org/10.1215/00277630-2891245 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2891245


LINEAR SLICES OF DIAGONAL HYPERSURFACES 97

In particular, it follows that χp is real and nonnegative. Because the product

(8.26) converges absolutely, it now follows that there is a p0 = p0(a,b) such

that

S≥ 1

2

∏
p≤p0

χp.

Moreover, the method of [23, proof of Lemma 7.5] combines with (8.27) to

show that whenever (1.1) has a nonsingular solution in Qp, then χp > 0.

Hence, if (1.1) has nonsingular solutions in Qp for all primes p, then S> 0.

We may now conclude that Ca,b =SJ, where

(8.28) J=
∑

ηi∈{±1}
J
+
ηa,ηb.

Also, provided only that (1.1) has nonsingular solutions in all Qp, we may

apply Lemma 12 together with S =S
+
ηa,ηb, S > 0, and N+

ηa,ηb(P ) ≥ 0 to

conclude that J+ηa,ηb is real and nonnegative, and in view of (8.28), the same

is true for J.

Now suppose that the equations

(8.29) a1ξ
k
1 + · · ·+ asξ

k
s = b1ξ1 + · · ·+ bsξs = 0

have a nonsingular real solution ξ0. By the implicit function theorem, the

equations (8.29) define an (s− 2)-dimensional manifold in a neighborhood

of ξ0. Consequently, we may choose ξ0 such that ξ
(0)
i �= 0 for all 1≤ i≤ s. By

homogeneity, we may also suppose that |ξ(0)i |< 1, for 1≤ i≤ s. Now define

ηi = ξ
(0)
i /|ξ(0)i |. Then, [23, proof of Lemma 7.4] confirms that J

+
ηa,ηb > 0.

Note that once this is established, it follows from (8.28) and the discussion

following that formula that J> 0. Then, recalling the properties of S and

Ca,b = SJ, it follows that Ca,b > 0 certainly holds whenever (1.1) admits

nonsingular solutions in all completions of Q. This establishes Theorem 1.

We are left with the task of proving (8.24). First consider the contribution

to N (0)(P ) that stems from solutions where two or more of the xi are zero.

If, say, u≥ 2 and x1 = x2 = · · ·= xu = 0, xi �= 0 for u < i≤ s, then these solu-

tions of (1.1) satisfy au+1x
k
u+1+ · · ·+asx

k
s = 0, and by writing their number

as an integral suitable for application of the Hardy–Littlewood method, the

inequalities of Hölder and Hua show that the number of these solutions does

not exceed ∫ 1

0

∣∣f(α,0)∣∣s−u
dα� P s−2−k+ε.
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By symmetry, this argument applies when any set of u variables xi vanishes.

If exactly one of the variables vanishes, say, x1 = 0, then an analysis of

the signs of the other variables similar to (8.23) reduces the problem of

counting solutions to (1.1) with x1 = 0 but 1 ≤ |xi| ≤ P (2 ≤ i ≤ s) to an

estimate for ∫ 1

0

∫ 1

0

s∏
i=2

∣∣f(aiα, biβ)∣∣dαdβ.

Note that b2b3 �= 0 (recall r ≥ 3). An argument similar to (8.16) bounds the

above integral by

3∑
j=2

s∏
i=4

(∫ 1

0

∫ 1

0

∣∣f(ajα, bjβ)∣∣2∣∣f(aiα, biβ)∣∣s−3
dαdβ

)1/(s−3)
.

When bi = 0, we use orthogonality and the classical lemma of Hua to deduce

that∫ 1

0

∫ 1

0

∣∣f(ajα, bjβ)∣∣2∣∣f(aiα, biβ)∣∣s−3
dαdβ ≤ P

∫ 1

0

∣∣f(aiα,0)∣∣s−3
dα

� P s−k−1−δ,

where δ > 0. When bi �= 0, one may apply Hölder’s inequality again, to

separate f(ajα, bjβ) from f(aiα, biβ). An obvious substitution then reduces

the problem to that of estimating

∫ 1

0

∫ 1

0

∣∣f(α,β)∣∣s−1
dαdβ.

Lemma 5 coupled with Hölder’s inequality shows that this is O(P s−k−1−δ),

for some δ > 0. Hence, the contribution to N (0)(P ) from solutions with

x1 = 0, xi �= 0 (2 ≤ i ≤ s) is acceptable. The argument applies when some

other variable vanishes (note that two bj with bj �= 0 remain active, which

is crucial), and this completes the proof of (8.24).
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[6] J. Brüdern, and R. J. Cook, On simultaneous diagonal equations and inequalities,
Acta Arith. 62 (1992), 125–149. MR 1183985.

[7] J. W. S. Cassels and M. J. T. Guy, On the Hasse principle for cubic surfaces, Math-
ematika 13 (1966), 111–120. MR 0211966.

[8] J. H. H. Chalk, On Hua’s estimates for exponential sums, Mathematika 34 (1987),
115–123. MR 0933491. DOI 10.1112/S002557930001336X.

[9] H. Davenport and D. J. Lewis, Cubic equations of additive type, Philos. Trans. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci. 261 (1966), 97–136. MR 0205962.

[10] , Simultaneous equations of additive type, Philos. Trans. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. 264 (1969), 557–595. MR 0245542.

[11] G. Greaves, Some Diophantine equations with almost all solutions trivial, Mathe-
matika 44 (1997), 14–36. MR 1464372. DOI 10.1112/S002557930001192X.

[12] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monogr. Ser.
4, Academic Press, London, 1974. MR 0424730.

[13] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Math. 90, Cambridge
University Press, Cambridge, 1988. MR 0964687. DOI 10.1017/CBO9780511566004.

[14] M. P. Harvey, Minor arc moments of Weyl sums, Glasg. Math. J. 55 (2013), 97–113.
MR 3001332. DOI 10.1017/S0017089512000365.

[15] C. Hooley, On the representation of a number as the sum of two h-th powers, Math.
Z. 84 (1964), 126–136. MR 0162767.

[16] ,On a new technique and its applications to the theory of numbers, Proc. Lond.
Math. Soc. (3) 38 (1979), 115–151. MR 0520975. DOI 10.1112/plms/s3-38.1.115.

[17] , On another sieve method and the numbers that are a sum of two
hth powers, Proc. Lond. Math. Soc. (3) 43 (1981), 73–109. MR 0623719.
DOI 10.1112/plms/s3-43.1.73.

[18] , On nonary cubic forms, J. Reine Angew. Math. 386 (1988), 32–98.
MR 0936992. DOI 10.1515/crll.1988.386.32.

[19] , On nonary cubic forms, II, J. Reine Angew. Math. 415 (1991), 95–165.
MR 1096903. DOI 10.1515/crll.1991.415.95.

[20] , On nonary cubic forms, III, J. Reine Angew. Math. 456 (1994), 53–63.
MR 1301451. DOI 10.1515/crll.1994.456.53.

[21] , On another sieve method and the numbers that are a sum of two
hth powers, II, J. Reine Angew. Math. 475 (1996), 55–75. MR 1396726.
DOI 10.1515/crll.1996.475.55.

[22] L. K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monogr. 13, Amer.
Math. Soc., Providence, 1965. MR 0194404.

https://doi.org/10.1215/00277630-2891245 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=0150129
http://www.ams.org/mathscinet-getitem?mr=1240121
http://www.ams.org/mathscinet-getitem?mr=2329549
http://dx.doi.org/10.1112/plms/pdm001
http://dx.doi.org/10.1112/plms/pdm001
http://www.ams.org/mathscinet-getitem?mr=2527413
http://dx.doi.org/10.1515/CRELLE.2009.026
http://dx.doi.org/10.1515/CRELLE.2009.026
http://www.ams.org/mathscinet-getitem?mr=0913447
http://dx.doi.org/10.1017/S0305004100064586
http://dx.doi.org/10.1017/S0305004100064586
http://www.ams.org/mathscinet-getitem?mr=1183985
http://www.ams.org/mathscinet-getitem?mr=0211966
http://www.ams.org/mathscinet-getitem?mr=0933491
http://dx.doi.org/10.1112/S002557930001336X
http://dx.doi.org/10.1112/S002557930001336X
http://www.ams.org/mathscinet-getitem?mr=0205962
http://www.ams.org/mathscinet-getitem?mr=0245542
http://www.ams.org/mathscinet-getitem?mr=1464372
http://dx.doi.org/10.1112/S002557930001192X
http://dx.doi.org/10.1112/S002557930001192X
http://www.ams.org/mathscinet-getitem?mr=0424730
http://www.ams.org/mathscinet-getitem?mr=0964687
http://dx.doi.org/10.1017/CBO9780511566004
http://dx.doi.org/10.1017/CBO9780511566004
http://www.ams.org/mathscinet-getitem?mr=3001332
http://dx.doi.org/10.1017/S0017089512000365
http://dx.doi.org/10.1017/S0017089512000365
http://www.ams.org/mathscinet-getitem?mr=0162767
http://www.ams.org/mathscinet-getitem?mr=0520975
http://dx.doi.org/10.1112/plms/s3-38.1.115
http://dx.doi.org/10.1112/plms/s3-38.1.115
http://www.ams.org/mathscinet-getitem?mr=0623719
http://dx.doi.org/10.1112/plms/s3-43.1.73
http://dx.doi.org/10.1112/plms/s3-43.1.73
http://www.ams.org/mathscinet-getitem?mr=0936992
http://dx.doi.org/10.1515/crll.1988.386.32
http://dx.doi.org/10.1515/crll.1988.386.32
http://www.ams.org/mathscinet-getitem?mr=1096903
http://dx.doi.org/10.1515/crll.1991.415.95
http://dx.doi.org/10.1515/crll.1991.415.95
http://www.ams.org/mathscinet-getitem?mr=1301451
http://dx.doi.org/10.1515/crll.1994.456.53
http://dx.doi.org/10.1515/crll.1994.456.53
http://www.ams.org/mathscinet-getitem?mr=1396726
http://dx.doi.org/10.1515/crll.1996.475.55
http://dx.doi.org/10.1515/crll.1996.475.55
http://www.ams.org/mathscinet-getitem?mr=0194404
https://doi.org/10.1215/00277630-2891245
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