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Abstract
The cumulative residual extropy has been proposed recently as an alternative measure of extropy to the cumu-
lative distribution function of a random variable. In this paper, the concept of cumulative residual extropy has
been extended to cumulative residual extropy inaccuracy (CREI) and dynamic cumulative residual extropy inac-
curacy (DCREI). Some lower and upper bounds for these measures are provided. A characterization problem for
the DCREI measure under the proportional hazard rate model is studied. Nonparametric estimators for CREI and
DCREI measures based on kernel and empirical methods are suggested. Also, a simulation study is presented to
evaluate the performance of the suggested measures. Simulation results show that the kernel-based estimator per-
forms better than the empirical-based estimator. Finally, applications of the DCREI measure for model selection
are provided using two real data sets.

1. Introduction

Physicist Boltzmann [21] initially proposed the concept of entropy to characterize the level of disorder in
a physical system. Shannon [36] further developed this concept, which has wide-ranging applications in
statistics, information theory, probability, and other fields. Entropy measures the uncertainty associated
with a random variable, as detailed by Cover and Thomas [6].

Cumulative residual entropy (CRE), introduced by Rao et al. [34], uses the survival function (SF)
instead of the probability density function (PDF) in Shannon entropy, which provides a more organized
measure of uncertainty over the remaining lifetime of a system:

b (F) = −
∫ +∞

0
F̄ (x) log F̄ (x)dx. (1)

The SF is the negative derivative of the PDF, making it a more stable measure. Various aspects of CRE
have been studied by Rao [33] and Navarro et al. [29].

In this regard, Kerridge [14] introduced a measure of inaccuracy, which quantifies differences
between statistical models. The Kerridge inaccuracy measure differs from Shannon entropy by pro-
viding a way to assess the accuracy of statistical models. Properties of inaccuracy measures have been
studied in coding theory (Nath [28] and Bhatia [4]), and further developments can be found in the stud-
ies by Kundu and Nanda [18], Kundu et al.[17], Kayal et al.[13], and Psarrakos and Di Crescenzo [32].
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Kumar and Taneja [16] defined the cumulative residual inaccuracy measure of two random variables X
and Y as

b (F, G) = −
∫ +∞

0
F̄ (x) log Ḡ(x)dx. (2)

When Ḡ(x) = F̄ (x), this simplifies to equation (1), suggesting that the cumulative residual inaccuracy
measure is a broader version of the cumulative residual measure.

In dynamic contexts, such as continuously changing information measures, equations (1) and (2)
may not be suitable. Kumar and Taneja [16] extended the cumulative residual inaccuracy to a dynamic
form based on Asadi and Zohrevand’s [3] dynamic measure of cumulative residual entropy:

b (F, G; t) = −
∫ +∞

t

F̄ (x)
F̄ (t)

log
Ḡ(x)
Ḡ(t)

dx, t ≥ 0.

Moreover, b (F, G; t) tends to b (F, G) as t → 0.
Lad et al. [19] proposed the extropy measure as an alternative to quantify uncertainty. Extropy is

simpler to compute and has been explored in goodness-of-fit tests and inference methods. Yang et al.
[37] studied the relationship between extropy and variational distance, identifying distributions with
minimum or maximum extropy within a specified variational distance.

Jahanshahi et al. [12] introduced “cumulative residual extropy” (CRE) to measure the uncertainty of
a non-negative continuous random variable X:

bJ (F) = −1
2

∫ +∞

0
F̄2(x)dx. (3)

Abdul Sathar and Nair [1] suggested a dynamic version of CRE named dynamic survival extropy:

bJ (F; t) = − 1
2F̄2(t)

∫ +∞

t
F̄2(x)dx, t ≥ 0. (4)

If the DCRE of variable X is less than that of Y, X is more uncertain than Y.
Hashempour and Mohammadi [9] introduced cumulative past extropy inaccuracy (CPEI) and

dynamic cumulative past extropy inaccuracy (DCPEI):

b̄J (F; G) = −1
2

∫ +∞

0
F (x)G(x)dx,

b̄J (F, G; t) = −1
2

∫ t

0

F (x)G(x)
F (t)G(t) dx.

They discussed topics such as characterization and stochastic ordering for these measures. Recent gen-
eralizations of these measures have been studied in several works [9, 10, 26]. For further reading on the
relation between extropy and inaccuracy, see [11, 23–25].

In this paper, we introduce two novel metrics for assessing uncertainty, referred to as cumulative
residual extropy inaccuracy (CREI) and dynamic cumulative residual extropy inaccuracy (DCREI).
The fundamental concept involves substituting the PDF with the SF in extropy calculations. The SF is
deemed to be more consistent than the PDF since the PDF is derived from the SF. CREI and DCREI are
extensions of CRE measures. While CRE focuses on the uncertainty and information content over the
remaining lifetime of a system, CREI and DCREI provide a refined view by capturing the accuracy and
dynamics of these measures over time. This distinction is crucial in applications where the evolution of
inaccuracy is as important as its static measure. CRE measures the uncertainty remaining in the lifetime
of a system, whereas CREI and DCREI extend this concept to address the inaccuracies and dynamic
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aspects over time. This temporal aspect is particularly valuable in reliability modeling, where the con-
ditions and performance of systems can evolve. For instance, in industrial maintenance, equipment may
undergo changes due to wear and repairs and a static measure might not fully capture these dynamics.

CREI and DCREI have solid theoretical foundations, validated through simulations and real data
applications, demonstrating superior performance. By leveraging kernel-based and empirical methods
for nonparametric estimation, these measures offer flexibility across distributions, which is essential for
practical applications. Nonparametric methods, such as kernel-based estimators, do not rely on strict
parametric assumptions, making them suitable for a wide range of data types. Additionally, DCREI’s
dynamic evaluation of inaccuracy at specific time points provides valuable insights into model perfor-
mance. This is crucial for applications like industrial maintenance, where understanding how a model’s
accuracy changes over time can lead to better predictions of failure times, maintenance schedules, and
risk assessments. Unlike static measures like Akaike information criterion (AIC) or Bayesian informa-
tion criterion (BIC), which provide a single value, DCREI captures the variations in fit across different
intervals, allowing for a more detailed assessment of a model’s performance.

Additionally, by incorporating nonparametric estimators, CREI and DCREI allow for flexible mod-
eling of complex data without strict assumptions. This flexibility is particularly important in real-world
scenarios where data distributions may not follow conventional parametric forms. For example, in sup-
ply chain management, selecting the appropriate distribution impacts inventory policies, lead times, and
service levels. CREI and DCREI can provide a more accurate and dynamic understanding of these dis-
tributions, leading to better decision-making and resource allocation. So, the introduction of CREI and
DCREI addresses the need for dynamic and detailed measures of inaccuracy in reliability modeling and
information theory. By providing a more comprehensive view of inaccuracy over time, these measures
enable better model selection, improved predictions, and more informed decision-making.

This paper is organized into several sections to thoroughly address the proposed measures and their
applications. In Section 2, the definitions of CREI and DCREI are provided. Additionally, alterna-
tive formulations of DCREI are proposed in this section, and various bounds based on DCREI are
derived. In Section 3, we prove that the DCREI uniquely characterizes three specific lifetime distri-
butions. Nonparametric estimators for the CREI and DCREI measures based on kernel and empirical
methods are proposed in Section 4. In Section 5, a simulation study is presented to measure their accu-
racy. Finally, in Section 6, we present a real-life application of DCREI to find the best-fitted distribution
from data.

2. DCREI on Results

In this section, we will discuss a novel measure of inaccuracy called dynamic cumulative resid-
ual extropy inaccuracy (DCREI). This measure applies to two continuous random variables with
nonnegative values and the same range. We will also examine various properties of DCREI.

First, let us define the CREI measure by analogy to the CPEI as follows.

Definition 2.1. Assume that F̄ (x) and Ḡ(x) are SFs of non-negative continuous random variables X
and Y, respectively. The CREI between X and Y is defined as

bJ (F, G) = −1
2

∫ +∞

0
F̄ (x)Ḡ(x)dx. (5)

Remark 2.2. From (5), it holds bJ (F, G) ≤ 0 and bJ (F, G) = bJ (G, F). Moreover, when two random
variables X and Y have same SFs, the CREI reduces to the CRE given in (3). Indeed, the closer the
value of CREI is to CRE, the better Y is an approximation of X (see Example 2.4).

Proposition 2.3. Let X and Y be two non-negative continuous random variables with SFs F̄ (x) and
Ḡ(x), respectively. Then
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bJ (F, F) > (<) bJ (F, G) if F̄ (x) < (>) Ḡ(x).

In the following remark, we illustrate an application of CREI for comparing statistical models.

Remark 2.4. Let the SF F̄ (x) = (1 − x), 0 < x < 1, be the true statistical model for a random variable
X that generated some data. Also, suppose Ḡ(x) = (1 − x2) and Ī (x) = (1 − x3), 0 < x < 1, are
two power SFs determined through nonparametric statistical tests to approximation X. From equation
(5), we obtain bJ (F, F) = bJ (F) = −0.167, bJ (F, G) = −0.208, and bJ (F, I) = −0.225. Thus, the
CREI between X and a random variable Y that follows the SF Ḡ(x) is closer to the CRE of X than
the CREI between X and a random variable Z that follows the SF Ī (x). Therefore, Y provides a better
approximation to X than Z, that is, the statistical model Ḡ(x) is closer than Ī (x) to the statistical model
F̄ (x) that generates data.

In life testing experiments, it is common for the experimenter to have knowledge about the current
age of the system being studied. However, the existing CREI measure presented in (5) is not appropriate
for such situations. Therefore, it needs to be revised in order to incorporate the current age of the system
as well. In what follows, if X is the lifetime of a component that has already survived upto time t, then
the random variable Xt = [X − t |X > t] called the residual lifetime random variable has the SF

F̄t (x) =
{

F̄ (x)
F̄ (t) if x > t,
1 if x ≤ t,

and similarly for Yt = [Y − t |Y > t]. Thus, by analogy to the DCPEI, we define a dynamic version of
the CREI between two random variables X and Y as follows.

Definition 2.5. Let F̄ (x) and Ḡ(x) be SFs of lifetime random variables X and Y, respectively. The DCREI
between X and Y is defined as

bJ (F, G; t) = −1
2

∫ +∞

0
F̄t (x)Ḡt (x)dx = −1

2

∫ +∞

t

F̄ (x)Ḡ(x)
F̄ (t)Ḡ(t)

dx, x ≥ 0, t ≥ 0, (6)

where F̄t (x) = P(X − t > x |X > t) = F̄ (t+x)
F̄ (t) with F̄ (t) > 0 and Ḡ(t) > 0.

Example 2.6. Suppose that X and Y have exponential distributions with SFs as follows:

F̄ (t) = e−\ t , t ≥ 0, \ > 0,
Ḡ(t) = e−_t , t ≥ 0, _ > 0.

From equation (5), we have

bJ (F, G) = − 1
2(\ + _) .

We observe that bJ (F, G) = bJ (F, G; t) and so bJ (F, G; t) remains constant over time, which is
expected due to the memoryless property of the exponential distribution. This constancy implies that the
inaccuracy measure does not change with t, reinforcing the idea that the characteristics of the exponential
distribution are time-invariant.

Functions bJ (F, G; t) and bJ (F, G) are shown in Figure 1 for some selected values of \ and _. From
the left panel, we observe that bJ (F, G) is a nondecreasing function with respect to \. As \ increases,
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Figure 1. Graphs of bJ (F, G) for Example 2.6.

the value of bJ (F, G) becomes less negative, indicating that the inaccuracy between F (t) and G(t)
decreases with larger \. Similarly, higher values of _ also result in smaller (less negative) values of
bJ (F, G), reflecting a decrease in inaccuracy as _ increases. This behavior aligns with the intuition that
as the rates of decay (represented by \ and _) increase, the survival functions become more aligned,
reducing inaccuracy.

Example 2.7. Suppose that X and Y are two non-negative continuous random variables with SFs F̄ (t) =
e−\ t2 ; t ≥ 0, \ > 0, and Ḡ(t) = e−_t2 ; t ≥ 0, _ > 0, respectively. From equation (5), we obtain

bJ (F, G) = −
√
c

4
√
\ + _

.

Also, from equation (6), we have

bJ (F, G; t) = −
√
c

4
√
\ + _

e(\+_)t
2
erfc(

√
\ + _t),

where erfc(z) = 2√
c

∫ ∞
z e−x2dx.

The behavior of functions bJ (F, G) and bJ (F, G; t) is shown in Figure 2. The left panel of Figure 2
shows the function bJ (F, G), which represents a static measure of inaccuracy between the SFs F̄ (t)
and Ḡ(t) as a function of \ with different values of _. From the left panel, we observe that bJ (F, G)
is a nondecreasing function of \. This indicates that as \ increases, the inaccuracy measure bJ (F, G)
becomes less negative, which means that the inaccuracy between the SFs F̄ (t) and Ḡ(t) decreases. The
right panel of Figure 2 illustrates the function bJ (F, G; t), which is a dynamic measure of inaccuracy
evaluated at specific time points t. In this panel, bJ (F, G; t) increases over time, demonstrating that it
is a nondecreasing function with respect to t, \, and _. This increase reflects the accumulating effect of
differences between F (t) and G(t) over time.

Introducing the DCREI as a novel measure of inaccuracy for two continuous random variables with
non-negative values and the same range is a significant contribution to the field. This measure provides a
new perspective on assessing data accuracy and can offer valuable insights into the relationship between
these variables. By examining various properties of DCREI, researchers can gain a deeper understanding
of the dynamics and patterns within the data, leading to potential advancements in statistical analysis
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Figure 2. Graphs of bJ (F, G) (left panel) and bJ (F, G; t) (right panel) for Example 2.7.

and decision-making processes. This research opens up new possibilities for evaluating and interpreting
data more nuanced and comprehensively.

Remark 2.8. From equation (6), it holds bJ (F, G; t) ≤ 0 and bJ (F, G; t) = bJ (G, F; t). Furthermore,
on taking limit as t → 0 in equation (6), the DCREI becomes CREI (5). Additionally, when
two random variables X and Y have same SFs, the DCREI reduces to the DCRE given in
equation (4).

An alternative statement to (6) of the DCREI of a non-negative random variable X is presented
herein. Let us consider the following function:

kF (t, x) =
∫ x

t
F̄ (z)dz (7)

= Ḡ(t)M̃F,G (t) − WF (x)
= F̄ (t)MF (t) − F̄ (x)MF (x),

where M̃F,G (t) =
∫ +∞
t

F̄ (x)
Ḡ (t) dx is an auxiliary function (see the study by Psarrakos and Di Crescenzo

[32]), WF (x) =
∫ +∞
x F̄ (z)dz is stop-loss transforms and MF (t) =

∫ +∞
t

F̄ (x)
F̄ (t) dx is the mean residual life

(MRL) function, which is a worthy tool for modeling and analyzing the data in reliability and survival
analysis. It is worth noting that the partial derivative of kF (t, x) with respect to t is closely related to
the SF of random variable X.

Theorem 2.9 Let X and Y be two non-negative continuous random variables with SFs F̄ (x) and Ḡ(x),
respectively. Then

bJ (F, G; t) = −E [kF (t, X) |Y > t]
2F̄ (t)

. (8)
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Figure 3. Graphs of bJ (F, G; t) for Example 2.10 (left panel) and Example 2.11 (right panel).

Proof. Using equation (7) and applying Fubini’s theorem, we obtain

E [kF (t, X) |Y > t] =
∫ +∞

t

g(x)
Ḡ(t)

( ∫ x

t
F̄ (z)dz

)
dx

=

∫ +∞

t
F̄ (z)

( ∫ +∞

z

g(x)
Ḡ(t)

dx
)
dz

=

∫ +∞

t
F̄ (t)

(
F̄ (z)
F̄ (t)

Ḡ(z)
Ḡ(t)

)
dz

= −2F̄ (t)bJ (F, G; t),

which leads to the outcome mentioned. �

Example 2.10. Let X be a non-negative random variable with SF F̄ (x) = (1 − x2), 0 < x < 1, and let
the random variable Y be uniformly distributed over (0, 1) with SF given by ḠY (x) = (1−x), 0 < x < 1.
From both relations (6) and (8), we obtain

bJ (F, G; t) = (t − 1) (3t + 5)
24 (t + 1) , 0 ≤ t < 1.

Example 2.11. Let X and Y be two non-negative random variables with SFs F̄ (x) = (x + 1)e−x and
Ḡ(x) = e−2x, x > 0, respectively. Substituting these functions in (6) or (8), we obtain

bJ (F, G; t) = − 3t + 4
18(1 + t) .

Figure 3 provides the graphs of bJ (F, G; t) for various values of t in the case where X and Y are
random variables with SFs given by Examples 2.10 and 2.11. Note that bJ (F, G; t) is nondecreasing in
Examples 2.10 and 2.11 in terms of t.

In what follows, we provide two lower bounds for the DCREI of non-negative random variables in
terms of CREI and MRL functions.
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Proposition 2.12. Assume that X and Y are two non-negative continuous random variables with SFs
F̄ (x) and Ḡ(x), respectively. Then

bJ (F, G; t) = 1
F̄ (t)Ḡ(t)

(
1
2

HF,G (t) + bJ (F, G)
)

and

bJ (F, G; t) ≥ bJ (F, G)
F̄ (t)Ḡ(t)

,

where HF,G (t) =
∫ t
0 F̄ (x)Ḡ(x)dx.

Proof. From relations (6) and (5), we have

bJ (F, G; t) = −1
2

∫ +∞

t

F̄ (x)
F̄ (t)

Ḡ(x)
Ḡ(t)

dx (9)

= − 1
2F̄ (t)Ḡ(t)

∫ +∞

t
F̄ (x)Ḡ(x)dx

= − 1
2F̄ (t)Ḡ(t)

(∫ +∞

0
F̄ (x)Ḡ(x)dx − HF,G (t)

)
=

1
F̄ (t)Ḡ(t)

(
bJ (F, G) + 1

2
HF,G (t)

)
.

Since HF,G (t) ≥ 0, relation (9) gives bJ (F, G; t) ≥ bJ (F,G)
F̄ (t)Ḡ (t) . Thus, the proof is completed. �

Theorem 2.13 Let X and Y be two non-negative continuous random variables with SFs F̄ (x) and Ḡ(x),
respectively. Then, we have

bJ (F, G; t) ≥ max
{
−MF (t)

2
,−MG (t)

2

}
.

Proof. It is obvious that Ḡ(x) is nonincreasing in x. Therefore, we have Ḡ (x)
Ḡ (t) ≤ 1, for x ≥ t. This implies

that bJ (F, G; t) ≥ −MF (t)
2 . Similar result too holds for Y, that is, bJ (F, G; t) ≥ −MG (t)

2 . The proof is
completed. �

Example 2.14. Let X ∼ F and Y ∼ G have Pareto distribution with the same scale parameter f, so that
they have SFs and MRL functions as follows:

F̄ (t) =
( f

t + f

)U1
, MF (t) =

t + f

U1 − 1
, t ≥ 0,f > 0,U1 > 1,

Ḡ(t) =
( f

t + f

)U2
, MG (t) =

t + f

U2 − 1
, t ≥ 0,f > 0,U2 > 1.

In this case, by using Proposition 2.12, we have

bJ (F, G; t) = − t + f

2(U1 + U2 − 1) ≥ − (t + f)U1+U2

2(U1 + U2 − 1) ≥ bJ (F, G)
F̄ (t)Ḡ(t)

, U1 + U2 > 1, t ≥ 0.
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Figure 4. Graphs of bJ (F, G; t) for Example 2.14 and various values of U1, U2, and f.

Moreover, by using Proposition 2.13, we find

bJ (F, G; t) ≥ max
{
− t + f

2(U1 − 1) ,− t + f

2(U2 − 1)

}
=max

{
−MF (t)

2
,−MG (t)

2

}
, U1,U2 > 1, t ≥ 0.

The functions bJ (F, G) and bJ (F, G; t) are shown in Figure 4 for some selected values of U1, U2,
and f. The left panel of Figure 4 shows the function bJ (F, G) as a function of the scale parameter
f for various values of U1 and U2. From the left panel, we observe that bJ (F, G) is a nondecreasing
function off. This indicates that asf increases, the value of bJ (F, G) becomes less negative, suggesting
that the inaccuracy between the SFs F̄ (t) and Ḡ(t) decreases. Additionally, as U1 and U2 increase, the
function bJ (F, G) reflects a lower level of inaccuracy. The right panel of Figure 4 illustrates the function
bJ (F, G; t) as a dynamic measure of inaccuracy evaluated over time t for different combinations of U1,
U2, and f. In this panel, it is evident that bJ (F, G; t) does not increase with respect to time t. Instead,
bJ (F, G; t) remains constant or decreases over time, illustrating that the inaccuracy measure is not
strictly increasing with time t. This behavior is consistent with the properties of the Pareto distribution
and the cumulative residual inaccuracy measure, reflecting the relationship between U1, U2, and f in
the context of the dynamic measure.

Example 2.15. Suppose that X and Y follow exponential distribution and Lindley distribution with SFs
and MRL functions given by

F̄ (t) = e−\ t , MF (t) =
1
\

, \ > 0, t ≥ 0,

Ḡ(t) = (_ + 1 + _t)e−_t

_ + 1
, MG (t) =

_ + 2 + _t
_(_ + 1 + _t) , _ > 0, t ≥ 0.

In this case, due to (6) or (8) and by using Proposition 2.12, we have
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Figure 5. Graphs of bJ (F, G; t) for Example 2.15 and various values of _ and \.

bJ (F, G; t) = −_ + 1 + _(_ + \)et (_+\ )Γt (2,_ + \)
2(_ + \) (_ + 1 + _t)

≥ −_ + 1 + _(_ + \)et (_+\ )Γ(2,_ + \)
2(_ + \) (_ + 1 + _t) =

bJ (F, G)
F̄ (t)Ḡ(t)

, _, \ > 0, t ≥ 0,

where Γ̄x (U, V) = Γx (U)/VU and Γx (U) is the classical incomplete (upper) gamma function. Moreover,
by using the Proposition 2.13, we find

bJ (F, G; t) ≥ max
{
− 1

2\
,− _ + 2 + _t

2_(_ + 1 + _t)

}
= max

{
−MF (t)

2
,−MG (t)

2

}
, \,_ > 0, t ≥ 0.

The function bJ (F, G; t) is shown in Figure 5 for selected values of \ and _ with respect to t. From
the left panel, we observe that bJ (F, G; t) behaves nonmonotonically for smaller values of _ and \.
In the right panel, we see that for values of _ and \ greater than 1, bJ (F, G; t) consistently exhibits a
decreasing trend over time. This decreasing behavior indicates that the measure of inaccuracy between
the exponential and Lindley distributions diminishes as time progresses, without the nonmonotonic
fluctuations observed at smaller parameter values.

In the following, we provide lower and upper bounds for the DCREI of non-negative random variables
in terms of dynamic survival extropy based on the usual stochastic order.

Definition 2.16. Let X and Y be two non-negative continuous random variables with SFs F̄ (x) and
Ḡ(x), respectively. Then X is said to be less than Y in the usual stochastic order (written as X

st
6 Y) if

F̄ (x) ≤ Ḡ(x).

Corollary 2.17. Let X and Y be two non-negative continuous random variables with SFs F̄ (x) and
Ḡ(x), respectively. If Xt

st
6 Yt , t> 0, then bJ (G; t) ≤ bJ (F, G; t) ≤ bJ (F; t).

Proof. Suppose that Xt
st
6 Yt , t > 0. Then

F̄t (x) ≤ Ḡt (x), x ≥ t. (10)
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Multiplying both sides of (10) by −F̄t (x)/2, it follows that bJ (F, G; t) ≤ bJ (F; t). Again, multiplying
both sides of (10) by −Ḡt (x)/2, we have bJ (F, G; t) ≥ bJ (G; t). This completes the proof. �

Proposition 2.18. For non-negative random variable X, Abdul Sathar and Nair [1] proposed lower
and upper bounds for dynamic survival extropy in terms of MRL function as

−MF (t)
2

≤ bJ (F; t) ≤ −e−E [MF (X ) |X≥t]

2
. (11)

Based on (11), Proposition 2.17 gives the following lower and upper bounds for the DCREI in terms of
MRL functions:

−MG (t)
2

≤ bJ (F, G; t) ≤ −e−E [MF (X ) |X≥t]

2
. (12)

3. Characterization results

The main challenge is to identify the conditions under which the given inaccuracy measure referenced
as (6) provides a unique characterization of the distribution function. The proportional hazard model
(PHM) is described by two non-negative continuous random variables X and Y as (Cox [7] and Efron
[8])

Ḡ(x) = [F̄ (x)] X , X > 0. (13)

In the following, we propose some characterization results for the DCREI under the PHM (13). In
Theorem 3, we propose that if DCREI remains finite and increases for all t ≥ 0, then it uniquely
determines the SF F̄ (x) of the variable X. In Theorem 4, we further provide the characterization of
three specific lifetime distributions based on the DCREI under the PHM. For instance, X follows a
finite range distribution, Pareto distribution, and exponential distribution under certain conditions for
the constant c. These theorems establish the theoretical basis for the unique characterization of these
distributions by DCREI.

Theorem 3.1 Let X and Y be two non-negative random variables with SFs F̄ (x) and Ḡ(x) satisfying the
PHM. If the function bJ (F; G, t) remains finite and increases for all t ≥ 0, then it uniquely determines
the SF F̄ (x) of the variable X.

Proof. Since X and Y satisfy the PHM, the DCREI (6) can be rewritten as

bJ (F, G; t) = −1
2

∫ +∞

t

[
F̄ (x)
F̄ (t)

] X+1
dx. (14)

Differentiating (14) with respect to t on both sides, we obtain

m

mt
bJ (F, G; t) = 1

2
+ (X + 1) _F (t)bJ (F, G; t), (15)

where _F (x) = fX (x)
F̄X (x) is the hazard rate function. Assume that F1(x), G1(x) and F2(x), G2 (x) are two

sets of the PDFs satisfying the PHM, that is, Ḡ1(x) = F̄1(x) and Ḡ2(x) = F̄2(x). Suppose that

bJ (F1, G1; t) = bJ (F2, G2; t), t ≥ 0. (16)
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By taking the derivative of equation (16) with respect to t on both sides, equation (15) can be used to
determine the value of

_F1 (t) (X + 1) bJ (F1, G1; t) = _F2 (t) (X + 1) bJ (F2, G2; t). (17)

If ∀ t ≥ 0, _F1 (t) = _F2(t), then F̄1(x) = F̄2(x) and the evidence will be finished.
Otherwise, assume that A =

{
t : t ≥ 0, and _F1 (t) ≠ _F2 (t)

}
, and let set A to be nonempty. Thus for

some t0 ∈ A, _F1 (t0) ≠ _F2 (t0). Without loss of generality, let _F2 (t0) > _F1 (t0). Using this, equation
(17) gives _F1 (t) (X + 1) bJ (F1, G1; t) ≥ _F2 (t) (X + 1) bJ (F2, G2; t), so for t = t0, _F2 (t0) < _F1 (t0).
Therefore, set A is empty, which completes the proof. �

In what follows, we give the characterization of three distributions based on the DCREI.

Theorem 3.2 Let X and Y be two non-negative continuous random variables satisfying the PHM. Then,
for t ≥ 0,

bJ (F, G; t) = c MF (t), (18)

if and only if

(I) the random variable X follows the finite range distribution for c = − a+1
2(aX+(a+1) ) , a, X > 0,

(II) the random variable X follows the Pareto distribution for c = − a−1
2(a(X+1)−1) , a, X > 0,

(III) X follows the exponential distribution for c = − 1
2(X+1) , X > 0.

Proof. First we prove the if part.

(I) Let X follow a finite range distribution with SF and MRL as follows:

F̄ (t) = (1 − t)a , MF (t) =
1 − t
1 + a

.

Then, DCREI (6) under PHM is given by

bJ (F, G; t) = − 1 − t
2 (1 + (X + 1)a) = c MF (t),

where c = − a+1
2(aX+(a+1) ) .

(II) Suppose that X follows the Pareto distribution with SF and MRL as follows:

F̄ (t) =
(
1 + t

b

)−a
, MF (t) =

t + b
a − 1

, t ≥ 0.
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Then, DCREI (6) under PHM is obtained as

bJ (F, G; t) = − t
2 (a(X + 1) − 1) = c MF (t),

where c = − a−1
2(a(X+1)−1) .

(III) Let X have the exponential distribution with SF F̄ (x) = e−\x, \ > 0, and MRL function
MF (t) = 1

\
. Then, under PHM and for c = − 1

2(X+1) , we have

bJ (F, G; t) = − 1
2\ (X + 1) = c MF (t).

To prove the only if part, let relation (18) hold. Then, under the PHM assumptions, we have∫ +∞

t
F̄

X+1 (x)dx = −2c MF (t)F̄
X+1 (t).

Differentiating both sides with respect to t and using the relation _F (x) =
M′

F (x)+1
MF (x) , we get

M
′
F (t) = −1 + 2c(X + 1)

2cX
,

which by integration gives

MF (t) = −1 + 2c(X + 1)
2cX

t + W ,

where W is a constant of integration. Now, c = − a+1
2(aX+(a+1) ) and W = 1

a+1 imply that MF (t) = 1−t
1+a .

Thus, we have the finite range distribution with parameter a> 0. The proof of the other cases is similar
and hence omitted. �

Since the MRL function for a random variable X having the exponential distribution is constant, part
(III) of Theorem 3.2 gives the following result.

Remark 3.3. Let X be an exponentially distributed random variable. Then bJ (F, G; t) is independent
of t if and only if two random variables X and Y satisfy the PHM (13).

Example 3.4. Let X1, X2, . . . , Xn be independent and identically distributed (iid) non-negative random
variables having SFs F̄ (x). If Xi:n denotes the ith order statistics in this sample of size n, then the lifetime
of series system is determined by X1:n with SF F̄1:n(x) = [F̄ (x)]n. Hence, the two random variables X
and X1:n satisfy the PHM. Therefore, Remark 3.3 gives

bJ (F, F1:n; t) = −
Mn+1

F (t)
2

= − 1
2(n + 1)\ ,

which is independent of t.

4. Nonparametric estimation

In this section, we design nonparametric estimators for the CREI and DCREI measures. Suppose that
X1, . . . , Xn is a random sample from F (·) and G(·), which is a known Cumulative Distribution Function
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(CDF). From (5) and (6), we define nonparametric estimators of CREI and DCREI, respectively, as

bJ (F̂, G) = −1
2

∫ ∞

0

̂̄F (x)Ḡ(x)dx, (19)

bJ (F̂, G; t) = −1
2

∫ ∞

t

̂̄F (x)̂̄F (t)
Ḡ(x)
Ḡ(t)

dx, (20)

where Ḡ(·) = 1 − G(·) in which ̂̄F (·) = 1 − F̂ (·), and F̂ (·) denotes the estimator of F (·). We provide
empirical and kernel methods to estimate the CDF F(x) used in (19) and (20).

In the empirical method, the CDF is estimated by F̂n(x) = 1
n
∑n

i=1 I (Xi ≤ x). So, denoting by X(1) ≤
X(2) ≤ · · · ≤ X(n) the order statistics of random samples, we define the empirical CREI as

bJ (F̂n, G) = −1
2

∫ ∞

0
(1 − F̂n(x))Ḡ(x)dx

= −1
2

n−1∑
j=1

∫ X(j+1)

X(j)

(1 − j
n
)Ḡ(x)dx

= −1
2

n−1∑
j=1

(1 − j
n
)U(j+1) ,

where U(j+1) = V (X(j+1) ) − V (X(j) ), j = 1, 2, · · · , n − 1 are based on the sample spacings and mV (x)
mx =

Ḡ(x). Also, by considering the sample values greater than t as X(j) ≤ X(j+1) ≤ · · · ≤ X(n) , we define
the empirical DCREI as

bJ (F̂n, G; t) = − 1
2Ḡ(t)

∫ ∞

t
(1 − F̂n(x))Ḡ(x)dx

= − n
2Ḡ(t)

n−1∑
j=i

∫ X(j+1)

X(j)

(1 − j
n
)Ḡ(x)dx

= − n
2Ḡ(t)

n−1∑
j=i

(1 − j
n
)U(j+1) .

Now, we provide another method for the estimation of CREI and DCREI measures by replacing
the kernel estimator of CDF in (19) and (20). The empirical estimation is the most commonly used
nonparametric estimation of CDF, but this estimation of CDF is a step function even in the case that
CDF is continuous. So, Nadaraya [27] proposed the kernel distribution estimator as

F̂h(x) =
1
n

n∑
i=1

W ( x − Xi

h
),

where h is a bandwidth or smoothness parameter and W (x) =
∫ x
−∞ K (t)dt is a CDF of a kernel function

K (·) defined by Parzen [30]. When applying F̂h, one needs to choose the kernel and the bandwidth.
The kernel function is a fundamental component in kernel density estimation and other nonparamet-

ric statistical methods. It is a symmetric, non-negative function that integrates to one over its entire
domain, ensuring that the estimated density is a valid probability distribution. The kernel function
smoothens data points by placing a weighted influence around each point, with the bandwidth parameter
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controlling the width of this influence. Common kernel functions include the Gaussian, Epanechnikov,
and uniform kernels, each with unique properties but all sharing the essential characteristics of sym-
metry, non-negativity, and normalization. These properties ensure that the kernel function effectively
balances bias and variance in the density estimation process, providing a smooth and accurate repre-
sentation of the underlying data distribution. It is shown by Lejeune and Sarda [22] that the choice of
the kernel is less important than the choice of the bandwidth for the performance of the estimation of
CDF.

The bandwidth parameter in the kernel estimator of the cumulative distribution function (CDF) plays
a crucial role in determining the smoothness of the estimated distribution. Essentially, the bandwidth
parameter controls the width of the kernel function, which is used to smooth the data points. A larger
bandwidth parameter results in a smoother CDF estimate, reducing the variance but potentially intro-
ducing bias by over-smoothing the data. Conversely, a smaller bandwidth parameter captures more
details and variations in the data, reducing bias but increasing variance and the risk of overfitting to
noise. Selecting an appropriate bandwidth is vital for balancing this trade-off between bias and variance,
ensuring an accurate and reliable estimation of the underlying distribution.

In general, the idea underlying bandwidth selection is the minimization of the mean integrated
squared error (MISE), defined as

MISE(h) = E
[ ∫ +∞

−∞

(
F̂h(x) − F (x)

)2dx
]
, (21)

where E denotes the expected value with respect to that sample. The MISE is a key metric in CDF esti-
mation that measures the average squared difference between the estimated CDF and the true CDF over
the entire data range. It combines both bias and variance of the estimator, providing a comprehensive
assessment of its accuracy. In the context of bandwidth selection, MISE is crucial because the band-
width controls the smoothness of the density estimate. A well-chosen bandwidth minimizes the MISE,
balancing the trade-off between bias (under-smoothing) and variance (over-smoothing), leading to a
more accurate and reliable CDF estimate. This makes MISE a fundamental concept in nonparametric
statistics, guiding the optimal bandwidth selection for CDF estimation.

For bandwidth selection in CDF estimation, the plug-in (PI) method and cross-validation (CV)
method are commonly used. The PI method involves estimating the optimal bandwidth by substitut-
ing estimates of unknown quantities into an asymptotic formula for the mean integrated squared error
(MISE). This approach leverages theoretical properties of the data distribution to derive a bandwidth
that minimizes the MISE. On the other hand, the CV method involves dividing the data into subsets,
using one subset to estimate the CDF and another to evaluate the error. The bandwidth that minimizes
the CV error is selected. This method is more data-driven and does not rely on theoretical assumptions,
making it versatile but computationally intensive. Both methods aim to balance the trade-off between
bias and variance to achieve an accurate CDF estimate.

Choosing between the PI method and the CV method for bandwidth selection often depends on
the specific context and requirements of your analysis. The PI method is generally preferred when you
have a good theoretical understanding of the data distribution, as it leverages this knowledge to provide
a more computationally efficient bandwidth estimate. However, if you lack strong assumptions about
the data or prefer a more data-driven approach, the CV method is advantageous. It directly evaluates
the performance of different bandwidths on the data itself although it can be more computationally
intensive. Ultimately, the choice hinges on the balance between computational efficiency and the need
for flexibility in handling diverse data characteristics.

In this paper, we use the PI approach provided by Polansky and Baker [31] that developed the
previous ideas by Altman and Leger [2]. They showed that hPI = Ĉn−1/3, where Ĉ is estimated
through the data sample. A well-known method on the bandwidth selection for the CDF estimation
is the CV method that is initially proposed by Sarda [35]. Here, we use the CV approach proposed by
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Bowman et al. [5]. They considered a CV bandwidth selection as

hCV = arg min
h

1
n

n∑
i=1

∫ ∞

−∞

(
I (x − xi ≥ 0) − F̂h,−i (x)

)2dx,

where F̂h,−i (Xi) denotes the kernel estimator constructed from the data with observation xi omitted. The
simulation study by Bowman et al. [5] showed that the CV approach has better performance than the
PI approach.

5. Simulation study

Now, we provide a simulation study to evaluate the performance of the estimators proposed in the pre-
vious section. The primary objective of this simulation study is to assess the accuracy and reliability of
the estimators under various conditions. Specifically, we aim to compare the performance of these esti-
mators using two key metrics: Bias and root mean squared error (RMSE). Bias measures the difference
between the expected value of the estimator and the true value of the parameter being estimated. It pro-
vides insight into the systematic error present in the estimators. A lower bias indicates that the estimator
is, on average, closer to the true parameter value. RMSE combines both the variance and the bias of the
estimator, offering a comprehensive measure of its accuracy. RMSE is particularly useful as it penalizes
larger errors more heavily, thus providing a more stringent assessment of the estimator’s performance.
By doing so, we gain valuable insights into how well these estimators perform under various conditions
and identify any potential strengths or limitations.

Considering various sample sizes, parameters, and times in the simulation study enhances our under-
standing of estimator behaviour, robustness, and applicability. Researchers can make informed decisions
based on these insights. By comparing estimators across different sample sizes, we assess their statisti-
cal power. Larger sample sizes tend to yield more precise estimates and reduce bias. Understanding how
estimators behave under varying sample sizes informs our confidence in their performance. Investigating
performance across different sample sizes and parameters helps us understand how estimators behave
in practical scenarios. Smaller samples may represent limited data availability, while larger samples
provide more robust estimates. Also, investigating estimators across various parameters helps us iden-
tify optimal settings. Properly tuned parameters lead to better estimation accuracy. Sensitivity analysis
reveals how estimators respond to parameter changes. Furthermore, estimators can exhibit different
behaviour at different time points. Studying estimators at multiple time points allows us to capture
dynamic processes. Some estimators may adapt better to changing distributions over time, while others
may be more stable.

For simulations, we consider exponential, Weibull, and Pareto distributions used in Examples 2.6,
2.7, and 2.14. Also, we calculate the bias and RMSE of DCREI estimators for various sample sizes
(n = 20, 100) and times (t = 0, 0.2, 0.5, 1). It is obvious that in the case when t = 0, the CREI measure
will be estimated. The Bias and RMSE of the proposed estimators are computed as follows: for the
exponential distribution with scale parameters (_ = 0.1 and 0.5), see Table 1; for the Weibull distribution
with scale parameters (_ = 0.1 and 0.5) and shape parameter (f = 2), see Table 2; for the Pareto
distribution with scale parameters (f = 1 and 5) and shape parameter (U = 1.5), see Table 3; and for
the Pareto distribution with scale parameters (f = 1 and 5) and shape parameter (U = 2), see Table 4.

By evaluating the performance of the estimators, the following results were obtained:

• Kernel-based estimators generally outperform empirical-based estimators in terms of root mean
squared error (RMSE) across various scenarios. These estimators leverage kernel functions to
smooth the data and provide more accurate estimates.

• The choice of kernel and bandwidth parameters significantly impacts the performance of kernel-
based estimators. Properly tuning these parameters is crucial for achieving optimal results.
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Table 1. Bias and RMSE estimation of DCREI estimators based on exponential distribution with
parameter \ for the F (·) and parameter _ for the G(·)
n (\,_) t bJ (F̂n, G; t) bJ (F̂hPI , G; t) bJ (F̂hCV , G; t)

Bias RMSE Bias RMSE Bias RMSE

20 (0.1,0.1) 0 −0.31606 0.45735 −0.28171 0.43560 −0.00775 0.34992
0.2 −0.30175 0.44911 −0.26783 0.42947 −0.00642 0.33007
0.5 −0.27227 0.43148 −0.23637 0.40992 −0.00715 0.32947
1 −0.22014 0.41215 −0.18453 0.39308 0.00364 0.31353

(0.1,0.5) 0 −0.05775 0.06531 −0.05356 0.06289 −0.00136 0.05984
0.2 −0.05549 0.06412 −0.05068 0.06180 −0.00213 0.05809
0.5 −0.05013 0.06078 −0.04453 0.05844 0.00022 0.05778
1 −0.04350 0.05688 −0.03820 0.05505 −0.00397 0.05477

(0.5,0.5) 0 −0.06399 0.09276 −0.05773 0.08906 −0.00142 0.07919
0.2 −0.04566 0.08283 −0.03880 0.07928 −0.00077 0.07637
0.5 −0.02110 0.07427 −0.01544 0.07379 0.00296 0.07219
1 −0.01064 0.07287 0.01037 0.07092 0.00272 0.06634

100 (0.1,0.1) 0 −0.25968 0.29937 −0.19204 0.24408 −0.00489 0.16817
0.2 −0.23606 0.28141 −0.16613 0.22556 0.00167 0.15605
0.5 −0.21611 0.26547 −0.14316 0.20936 −0.00239 0.15295
1 −0.16847 0.22638 −0.10027 0.17996 0.00058 0.14829

(0.1,0.5) 0 −0.05124 0.05328 −0.04163 0.04519 0.00014 0.02761
0.2 −0.04730 0.04975 −0.03671 0.04108 0.00122 0.02607
0.5 −0.04364 0.04645 −0.03247 0.03749 0.00011 0.02545
1 −0.03530 0.03896 −0.02282 0.03016 0.00122 0.02393

(0.5,0.5) 0 −0.05130 0.05879 −0.03781 0.04773 0.00000 0.03881
0.2 −0.03380 0.05115 −0.02016 0.04658 0.00013 0.03397
0.5 −0.01631 0.04952 −0.00627 0.03904 −0.00046 0.03264
1 −0.00307 0.03907 −0.00111 0.03158 −0.00109 0.03004

• Among the estimators considered, the one denoted as bJ (F̂hCV , G; t) exhibits the best performance.
This estimator likely benefits from CV bandwidth selection, which helps adapt to the underlying
data distribution.

• The estimator bJ (F̂hPI , G; t) also performs well, surpassing the performance of the simple empir-
ical estimator bJ (F̂n, G; t). The use of PI bandwidth selection likely contributes to its improved
accuracy.

• Increasing the sample size has a positive impact on both bias and RMSE values for the proposed
estimators. As the sample size grows, estimators tend to converge to the true distribution, resulting
in reduced bias and more precise estimates.

The implications of the Bias and RMSE values in Tables 1–4 for each estimator and distribution are
as follows:

1. Exponential and Weibull Distributions:
- RMSE Decreases with Time (t): As time increases, the RMSE values decrease for both exponen-

tial and Weibull distributions. This suggests that estimators become more accurate as more data
become available over time.
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Table 2. Bias and RMSE estimation of DCREI estimators based on Weibull distribution with parameters
(\,f = 2) for the F (·) and parameters (_,f = 2) for the G(·)
n (\,_) t bJ (F̂n, G; t) bJ (F̂hPI , G; t) bJ (F̂hCV , G; t)

Bias RMSE Bias RMSE Bias RMSE

20 (0.1,0.1) 0 0.00119 0.07685 −0.01176 0.06715 −0.02992 0.06401
0.2 0.00229 0.07505 −0.00944 0.06518 −0.01297 0.06289
0.5 0.00316 0.06878 −0.01423 0.06089 −0.01909 0.05893
1 −0.00303 0.06491 −0.01877 0.05729 −0.02492 0.05661

(0.1,0.5) 0 0.00046 0.02327 0.00551 0.01935 0.00678 0.01872
0.2 −0.00123 0.02215 −0.00457 0.01553 0.00520 0.01448
0.5 −0.00064 0.01971 −0.00249 0.01355 −0.00272 0.01224
1 0.00020 0.01712 −0.00278 0.01089 −0.00364 0.00996

(0.5,0.5) 0 −0.00082 0.03302 −0.00951 0.02960 −0.01731 0.02834
0.2 −0.00074 0.03168 −0.00779 0.02816 −0.00970 0.02723
0.5 0.00035 0.02985 −0.00687 0.02571 −0.00989 0.02484
1 0.00062 0.02695 −0.00460 0.02144 −0.00708 0.02083

100 (0.1,0.1) 0 0.00014 0.03347 0.00645 0.03093 0.00608 0.03030
0.2 −0.00092 0.03216 −0.00675 0.03010 −0.00802 0.02961
0.5 0.00092 0.03150 −0.00894 0.02919 −0.01109 0.02849
1 0.00026 0.02944 −0.01063 0.02793 −0.01350 0.02792

(0.1,0.5) 0 0.00002 0.01005 0.00432 0.00955 0.00495 0.00947
0.2 −0.00023 0.00980 0.00071 0.00747 0.00098 0.00722
0.5 0.00005 0.00936 −0.00129 0.00666 −0.00151 0.00629
1 0.00013 0.00772 −0.00147 0.00538 −0.00196 0.00507

(0.5,0.5) 0 0.00033 0.01406 0.00063 0.01403 0.00040 0.01373
0.2 −0.00034 0.01364 −0.00448 0.01308 −0.00538 0.01299
0.5 0.00032 0.01321 −0.00468 0.01230 −0.00603 0.01131
1 0.00009 0.01267 −0.00403 0.01071 −0.00494 0.00977

- Scale Parameter Influence: By decreasing the scale parameter (\) in F (·) or increasing the scale
parameter (_) in G(·), the RMSE values decrease. Properly tuning these parameters improves
estimator performance.

2. Pareto Distribution:
- RMSE Increase with Time (t): Unlike exponential and Weibull distributions, the RMSE values

increase with time for the Pareto distribution. This indicates that estimators struggle to handle the
tail-heavy nature of the Pareto distribution.

- Reducing Scale Parameter Improves Performance: By reducing the scale parameter in the Pareto
distribution, both Bias and RMSE values decrease. This adjustment enhances estimator accuracy.

- Scale Parameter Impact on Bias and RMSE: The comparison between Tables 3 and 4 high-
lights that reducing the scale parameter in the Pareto distribution leads to improved estimator
performance. Both Bias and RMSE values benefit from this adjustment.

In summary, understanding how different distributions and parameters affect Bias and RMSE values
helps us choose appropriate estimators for specific scenarios. Researchers can use this information to
make informed decisions when analyzing real-world data.
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Table 3. Bias and RMSE estimation of DCREI estimators based on Pareto distribution with parameters
(f1 = 1,U1) for the F (·) and parameters (f2 = 1,U2) for the G(·)
n (U1,U2) t bJ (F̂n, G; t) bJ (F̂hPI , G; t) bJ (F̂hCV , G; t)

Bias RMSE Bias RMSE Bias RMSE

20 (1.5,1.5) 0 −0.05075 0.07689 −0.04065 0.06715 0.00137 0.04264
0.2 −0.02613 0.07805 −0.01638 0.07023 −0.00101 0.06284
0.5 0.01061 0.08521 0.01241 0.08166 0.00205 0.08152
1 0.03085 0.15601 0.02299 0.14099 0.00323 0.13274

(1.5,2) 0 −0.03982 0.04553 −0.03235 0.04280 −0.00091 0.03060
0.2 −0.01970 0.05030 −0.01276 0.04504 −0.00085 0.04030
0.5 0.00263 0.05488 0.00452 0.05200 −0.00129 0.05150
1 0.01874 0.12321 0.01363 0.08575 −0.00218 0.07132

(2,2) 0 −0.03095 0.03615 −0.02532 0.03123 0.00034 0.02703
0.2 −0.00863 0.04023 −0.00450 0.03690 −0.00012 0.03646
0.5 0.01114 0.05315 0.00942 0.05174 0.00271 0.04396
1 0.00695 0.10283 0.00377 0.06800 −0.00533 0.05255

100 (1.5,1.5) 0 −0.04245 0.02504 −0.02767 0.02279 −0.00009 0.01981
0.2 −0.01755 0.03372 −0.00716 0.03168 −0.00054 0.02757
0.5 0.00609 0.03968 0.00185 0.03721 0.00152 0.03187
1 0.00738 0.06721 −0.00279 0.06677 −0.00105 0.06147

(1.5,2) 0 −0.03196 0.01580 −0.02088 0.01561 −0.00007 0.01304
0.2 −0.01317 0.02186 −0.00489 0.01881 0.00049 0.01748
0.5 0.00258 0.02427 0.00034 0.02362 −0.00019 0.02256
1 0.00582 0.03730 −0.00114 0.03641 −0.00179 0.03429

(2,2) 0 −0.02447 0.01282 −0.01590 0.01058 0.00025 0.00911
0.2 −0.00456 0.01801 −0.00052 0.01611 −0.00010 0.01573
0.5 0.00479 0.02259 0.00084 0.02141 −0.00074 0.02032
1 0.00159 0.03725 −0.00144 0.03560 −0.00016 0.03291

6. Application

The objective of the application section is to demonstrate the usefulness of the dynamic cumulative
residual extropy inaccuracy (DCREI) measure in real-life problems. Specifically, the authors apply the
DCREI measure to model selection. By doing so, they showcase how this novel inaccuracy measure can
be practically employed in statistical analysis and decision-making processes. Overall, the application
section aims to illustrate the practical implications and benefits of the DCREI measure in statistical
modeling and inference.

The DCREI measure plays a crucial role in identifying the best-fitted distribution from data. DCREI
allows us to compare different lifetime distribution models based on their inaccuracy. By calculating
DCREI for each candidate distribution, we can assess how well they fit the observed data and lower
DCREI values indicate better model fit. So, This ensures that the selected model minimizes the discrep-
ancy between the theoretical and observed cumulative residual extropy. In reliability analysis, DCREI
helps choose an appropriate distribution for modeling failure times. It guides practitioners toward the
most suitable distribution, improving predictions and decision-making. In summary, DCREI serves as
a practical tool for assessing model fit and selecting the best-fitted distribution, enhancing statistical
inference and reliability modeling.
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Table 4. Bias and RMSE estimation of DCREI estimators based on Pareto distribution with parameters
(f1 = 5,U1) for the F (·) and parameters (f2 = 5,U2) for the G(·)
n (U1,U2) t bJ (F̂n, G; t) bJ (F̂hPI , G; t) bJ (F̂hCV , G; t)

Bias RMSE Bias RMSE Bias RMSE

20 (1.5,1.5) 0 −0.25376 0.38446 −0.20322 0.33567 0.00681 0.21321
0.2 −0.24039 0.39853 −0.18655 0.35083 −0.00476 0.24352
0.5 −0.17665 0.41368 −0.12621 0.37587 0.00918 0.26063
1 −0.12628 0.43736 −0.07773 0.39543 −0.00853 0.30487

(1.5,2) 0 −0.19912 0.25381 −0.16176 0.22546 −0.00153 0.15304
0.2 −0.18008 0.26070 −0.14401 0.22795 −0.00659 0.15752
0.5 −0.15132 0.26588 −0.11188 0.23467 −0.00458 0.17372
1 −0.10189 0.27634 −0.06541 0.24398 −0.00810 0.20502

(2,2) 0 −0.15473 0.19802 −0.12659 0.18204 0.00699 0.13511
0.2 −0.13370 0.20540 −0.10563 0.18408 −0.00408 0.14234
0.5 −0.08505 0.21594 −0.05830 0.19257 0.00525 0.15806
1 −0.03280 0.23073 −0.01259 0.20613 0.00639 0.18477

100 (1.5,1.5) 0 −0.21224 0.18435 −0.13834 0.15792 −0.00049 0.09904
0.2 −0.18617 0.19625 −0.11355 0.14756 −0.00355 0.10588
0.5 −0.13577 0.23574 −0.06840 0.17621 0.00481 0.11621
1 −0.08926 0.25187 −0.03873 0.18945 −0.00148 0.13884

(1.5,2) 0 −0.15979 0.12406 −0.10437 0.09803 −0.00035 0.06520
0.2 −0.13832 0.14545 −0.08265 0.10319 −0.00079 0.06880
0.5 −0.11254 0.16262 −0.05952 0.11371 −0.00327 0.07461
1 −0.06569 0.17899 −0.02407 0.12806 0.00803 0.09343

(2,2) 0 −0.12235 0.09197 −0.07950 0.08271 0.00124 0.05696
0.2 −0.09953 0.10331 −0.05638 0.07791 −0.00098 0.06407
0.5 −0.06527 0.12559 −0.02732 0.09053 0.00088 0.07126
1 −0.02320 0.14111 −0.00280 0.10291 −0.00023 0.08664

Now, we show how the DCREI measure can be a proper measure to find the best-fitted distribution
from data in two real data sets.

1. Gas oil production data
We consider the data set that consists of gas oil production (in cubic meters per day) in the country’s

refineries in Iran from 1,992 to 2,014 as follows:
64,731, 69,545, 69,945, 70,879, 71,923, 73,154, 77,037, 79,215, 80,473, 81,549, 84,957, 88,702,

90,951, 94,677, 93,595, 97,689, 96,016.
The data on gas oil (crude oil) production in Iran from 1,992 to 2,014 are significant for understand-

ing Iran’s energy landscape during that period. This data set is reported in Khorashadizadeh [15]. In
generally, this type of data comes from various reputable sources, including the International Energy
Statistics provided by organizations such as the Energy Information Administration and the Organization
of the Petroleum Exporting Countries. These organizations collect and report data on energy produc-
tion, consumption, and related metrics globally. The data represent the annual production of crude oil
(gas oil) in Iran, measured in barrels per day (bbl/d). It provides insights into Iran’s oil industry, its
capacity, and fluctuations over time. Understanding Iran’s crude oil production during this time frame
is crucial for assessing its economic stability, energy security, and geopolitical influence. Researchers,
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Table 5. Model selection criteria for Gas oil production data
Distribution Log-likelihood AIC BIC K–S P-Value [G (t)
Exponential −209.236 420.473 421.306 0.548 2.53E-05 246.931
Weibull −181.487 366.973 368.639 0.141 0.841 54.818
Log-normal −181.123 366.245 367.912 0.137 0.866 15.943
Logistic −183.953 371.906 373.573 0.182 0.566 94.872
Pareto −214.811 433.621 435.287 0.590 3.67E-06 256.572
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Figure 6. Graphs of DCREI function (left panel) and [G (t) (right panel) for gas oil production data.

policymakers, and analysts use these data to study trends, identify patterns, and evaluate the impact of
global events (such as sanctions, conflicts, or technological advancements) on Iran’s oil production. In
summary, the gas oil production data from 1,992 to 2,014 provide valuable context for analyzing Iran’s
energy dynamics and its role in the global oil market.

In Table 5, the values of the log-likelihood, AIC, and BIC, as well as the Kolmogorov–Smirnov
(K–S) goodness of fit test, are presented for choosing the best model among exponential, Weibull, log-
normal, Logistic, and Pareto distributions. The results of this table show that among the considered
distributions, the log-normal distribution is closer to the real distribution of Gas oil production data.
In this distribution, the maximum likelihood estimation of the location and dispersion parameters are
equal to 11.30 and 0.12, respectively.

In the right panel of Figure 6, the behavior of the proposed estimators compared to the theoretical
values of bJ (F, G; t) based on the log-normal distribution is plotted. It can be seen that the behavior of
estimator bJ (F̂hCV , G; t) is closer to the theoretical values than other estimators, which can be a reason
for the better performance of this estimator compared to other estimators.

Now, we propose the following criterion for model selection among the proposed distributions based
on DCREI measures, as

[G (t) = |bJ (F̂, G; t) − bJ (G, G; t) |, t ∈ T ,

where T is determined based on the change interval of real data. For gas oil production data, T ∈
[92686, 97689] is considered. In the right panel of Figure 6, the behavior of [G (t) with respect to time
(t) is plotted. It can be seen that the values of [G (t) on different times for the log-normal distribution
have smaller values than other distributions.
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The criterion [G (t) is defined as the absolute difference between two terms bJ (F̂, G; t) and
bJ (G, G; t). Essentially, [G (t) quantifies the deviation of the estimated cumulative residual extropy
from the theoretical one. [G (t) is indeed defined as the absolute difference between bJ (F̂, G; t) and
bJ (G, G; t). The term bJ (G, G; t) represents the CRE of the model G, which serves as our theoretical
benchmark. This expression does not directly depend on the survival functions of both X and Y but rather
captures the CRE of the fitted distribution G under consideration. We know that bJ (F̂, G; t) represents
the estimated cumulative residual extropy using the empirical data F̂ and the model G and bJ (G, G; t)
is the cumulative residual extropy based purely on the model G, without influence from the empirical
data. This serves as the theoretical value for comparison. In essence, [G (t) quantifies the deviation of
the empirical CRE from the theoretical CRE derived from the model G. By minimizing [G (t) over the
specified time interval T, we aim to select the distribution that best aligns with the observed data.

To choose the best-fitting distribution, one should consider the average value of [G (t) over the spec-
ified time interval T. The preferred model is the one that minimizes [G (t), where [G (t) is defined
as the average value of [G (t) across the interval T. In simpler terms, opt for the distribution that, on
average, minimizes the difference between the estimated and theoretical cumulative residual extropy.
Researchers can confidently utilize this model selection criterion to make informed decisions. By mini-
mizing DCREI, they ensure that the selected distribution aligns well with the observed data. The chosen
distribution, with consistently smaller [G (t) values, emerges as a strong candidate for practical applica-
tions. Therefore, the proposed criterion guides us toward selecting a distribution that optimally fits the
data, highlighting the significance of DCREI in statistical modeling and inference.

The log-normal distribution effectively models right-skewed data, which is common in gas oil pro-
duction due to various factors. It has a uni-modal shape, aligning with the central tendency of production
values. Also, taking the natural logarithm of data transforms it into a normal distribution, aiding analysis
and the log-normal distribution ensures non-negative production rates. Thus, the log-normal distribu-
tion suits gas oil production modeling and provides valuable insights for decision-making in the energy
industry.

In the last column of Table 5, values of [G (t) are calculated for considered distributions. The log-
normal distribution has the minimum value of [G (t) and therefore has the best fits for Gas oil production
data. After that, the Weibull distribution has the minimum value of [G (t), and so this distribution is the
second best fitted distribution. These results confirm the results obtained based on log-likelihood, AIC,
and BIC. Since the difference between the value of [G (t) for the considered distributions is higher, it can
show the difference between the distributions more clearly and so the best distribution can be chosen
more accurately.

2. Failure time data
The following data are from Lawless [20], and they involve failure times for 36 appliances that under-

went an automatic life test. The failure times refer to the time until an appliance fails or stops functioning.
The study explores survival analysis techniques and their applications in reliability modeling.

111, 351, 491, 1,701, 3,291, 3,811, 7,081, 9,581, 10,621, 11,671, 15,941, 19,251, 19,901, 22,231,
23,271, 24,001, 24,511, 24,711, 25,511, 25,651, 25,681, 26,941, 27,021, 27,611, 28,311, 30,341,
30,591, 31,121, 32,141, 34,781, 35,041, 43,291, 63,671, 69,761, 78,461, 13,403.

Table 6 provides various statistical measures for evaluating different probability distributions (expo-
nential, Weibull, log-normal, logistic, and Pareto) based on their fit to the observed failure time data.
The results indicate that the exponential distribution is the best-fitting model among those consid-
ered. Specifically, the maximum likelihood estimate for the scale parameter in this distribution is
approximately 4.13e−05.

The column in Table 6 contains the calculated values of [G (t) for each considered distribution. Recall
that [G (t) represents the weighted cumulative residual extropy, which is a measure of inaccuracy or
deviation from the ideal distribution. Lower values of [G (t) indicate better fits to the observed failure
times data. The exponential distribution exhibits the minimum [G (t) value among all the distributions
considered. This finding suggests that the exponential distribution provides the best overall fit to the
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Table 6. Model selection criteria for failure times data
Distribution Log-likelihood AIC BIC K–S P-Value [G (t)
Exponential −399.415 800.830 802.414 0.215 0.061 121.364
Weibull −399.259 802.518 805.685 0.170 0.222 130.730
Log-normal −408.624 821.249 824.416 0.249 0.019 194.934
Logistic −402.201 808.401 811.568 0.145 0.398 148.967
Pareto −401.675 807.350 810.517 0.251 0.017 136.632

data. Following the exponential distribution, the Weibull distribution has the second-lowest [G (t) value.
While not as optimal as the exponential distribution, it still reasonably fits the failure times data.

The results align with those obtained based on the Bayesian Information Criterion (BIC). BIC is a
model selection criterion that penalizes complexity, favoring simpler models. The fact that the exponen-
tial distribution performs well both in terms of [G (t) and BIC reinforces its suitability for modeling the
data. In summary, the exponential distribution emerges as the preferred choice for modeling the failure
times data, with the Weibull distribution as a close second. These insights can guide further statistical
analysis and decision-making.

Overall, the proposed criterion [G (t) for model selection, which compares DCREI, offers several jus-
tifications and enhancements compared to existing methods like log-likelihood, AIC, and BIC. Unlike
likelihood-based criteria, [G (t) explicitly considers cumulative residual extropy. Extropy captures
information beyond likelihood, especially in reliability modeling, where understanding the inaccuracy
between model predictions and observed data is crucial. On the other hand, the DCREI accounts for
changes over time by comparing extropy at different intervals. It provides insights into how well a
distribution fits the data across various time points, addressing temporal variations. Also, [G (t) accom-
modates nonparametric estimators (e.g., kernel-based methods), allowing flexibility beyond parametric
assumptions. Researchers can apply it even when specific distributional assumptions are challenging or
unknown. While AIC and BIC balanced model complexity and goodness of fit, [G (t) offers an alter-
native approach. [G (t) enriches the model selection toolkit by emphasizing extropy, adaptability, and
dynamic assessment, making it a valuable tool for choosing the best-fitted distribution.

The dynamic evaluation of inaccuracy provided by CREI and DCREI can be beneficial in numerous
applications beyond model selection. For instance, in healthcare, these measures can be used to improve
the accuracy of predictive models for patient outcomes, enabling more effective treatment planning and
resource allocation. In finance, CREI and DCREI can enhance risk assessment models by capturing the
time-varying nature of financial risk, leading to better investment decisions and portfolio management.
In environmental studies, these measures can aid in modeling and predicting the impacts of climate
change by providing a more dynamic understanding of environmental data. Moreover, the flexibility
of nonparametric methods and kernel-based estimators in CREI and DCREI allows for their applica-
tion in various domains where data distributions may not follow conventional parametric forms. This
adaptability is crucial for accurately modeling complex, real-world scenarios, such as in supply chain
management, industrial maintenance, and beyond.

7. Conclusion

In this paper, by considering the concept of the CREI measure, its dynamic version was proposed.
Characterization of certain specific lifetime distribution functions such as Pareto, exponential, and finite
range distributions was derived, which play a vital role in reliability modeling. Moreover, upper and
lower bounds and some inequalities concerning DCREI were determined. The results reported for the
new inaccuracy measure are a generalization of the results obtained for CREI. Instead of a single overall
measure, DCREI evaluates inaccuracy at specific time points and it captures variations in fit across dif-
ferent intervals. When we calculate DCREI for a specific time point (t = 0), it reduces to CREI. DCREI
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provides a more detailed view of inaccuracy, allowing us to track deviations over time. By analyzing
DCREI across multiple time points, we gain richer insights than CREI alone. Thus, DCREI generalizes
CREI by considering temporal dynamics, providing a more nuanced understanding of distribution fit.

The nonparametric estimators of the DCREI measure were provided. Results of the simulation study
showed that kernel-based estimators outperform empirical-based estimators in terms of Root Mean
Squared Error (RMSE) across various sample sizes, parameters, and time points. Among the kernel-
based estimators, the estimator bJ (F̂hCV , G; t) exhibits the best performance, followed by bJ (F̂hPI , G; t),
which also surpasses the empirical estimator bJ (F̂n, G; t). Additionally, both bias and RMSE values
of the proposed estimators decrease as the sample size increases, highlighting the effectiveness of
larger sample sizes in improving estimation accuracy. These findings underscore the importance of
selecting appropriate bandwidths and leveraging kernel-based methods for more reliable nonparamet-
ric estimation. However, it is also important to acknowledge potential limitations. For instance, while
kernel-based estimators generally perform well, they may require careful bandwidth selection to avoid
issues like over-smoothing or under-smoothing. Additionally, in situations with very small sample sizes,
nonparametric methods might not perform as robustly as parametric alternatives due to higher variance.

By minimizing DCREI, we ensure that the selected distribution closely aligns with observed data, and
researchers and practitioners can confidently use DCREI as a criterion for model comparison. Therefore,
improved reliability models lead to better predictions of failure times, maintenance schedules, and risk
assessments. Unlike static criteria (e.g., AIC or BIC), DCREI evaluates inaccuracy dynamically over
time. It captures variations in fit, especially when data patterns change. So, decision-makers gain insights
into how well a model adapts to evolving conditions. For instance, in industrial equipment maintenance,
DCREI helps adjust reliability estimates as machinery ages or undergoes repairs. Also, DCREI accom-
modates nonparametric estimators (kernel-based methods), where these estimators handle complex data
distributions without strict assumptions. Furthermore, DCREI informs choices beyond statistical mod-
eling. In supply chain management, for instance, selecting a distribution impacts inventory policies,
lead times, and service levels. Decision-makers can optimize resource allocation based on reliable
distribution models supported by DCREI analysis. In summary, DCREI bridges theory and practice
by enhancing distribution selection, adapting to changing contexts, and aiding informed decisions. Its
dynamic nature and flexibility make it a valuable tool in reliability modeling and beyond.
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