
JFP 26, e16, 40 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000174

1

Eliminating dependent pattern matching
without K

JESPER COCKX, DOMINIQUE DEVRIESE

and FRANK PIESSENS

iMinds-Distrinet, KU Leuven

(e-mail: jesper.cockx@cs.kuleuven.be, dominique.devriese@cs.kuleuven.be,

frank.piessens@cs.kuleuven.be)

Abstract

Dependent pattern matching is an intuitive way to write programs and proofs in dependently

typed languages. It is reminiscent of both pattern matching in functional languages and case

analysis in on-paper mathematics. However, in general, it is incompatible with new type

theories such as homotopy type theory (HoTT). As a consequence, proofs in such theories

are typically harder to write and to understand. The source of this incompatibility is the

reliance of dependent pattern matching on the so-called K axiom – also known as the

uniqueness of identity proofs – which is inadmissible in HoTT. In this paper, we propose a

new criterion for dependent pattern matching without K, and prove it correct by a translation

to eliminators in the style of Goguen et al. (2006 Algebra, Meaning, and Computation). Our

criterion is both less restrictive than existing proposals, and solves a previously undetected

problem in the old criterion offered by Agda. It has been implemented in Agda and is the

first to be supported by a formal proof. Thus, it brings the benefits of dependent pattern

matching to contexts where we cannot assume K, such as HoTT.

1 Introduction

Dependent pattern matching (Coquand, 1992) is a technique for writing func-

tions in languages based on dependent type theory, such as Agda (Norell, 2007),

Coq (Sozeau, 2010), and Idris (Brady, 2013). It allows us to define functions in a

style similar to functional programming languages such as Haskell, by giving a

number of equalities called clauses. For example, the function half : � → � can

be defined as

half : � → �
half zero = zero

half (suc zero) = zero

half (suc (suc k)) = suc (half k)

(1)

Note that pattern matching combines two powerful programming features, namely

case analysis and recursion.

Additionally, dependent pattern matching can be used to write proofs (in the form

of dependently typed functions). For example, we can prove the transitivity of the

propositional equality x ≡ y (Martin-Löf, 1984; Paulin-Mohring, 1993) by pattern

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


2 J. Cockx et al.

matching on its only constructor refl of type x ≡ x:

trans : (x y z : A) → x ≡ y → y ≡ z → x ≡ z

trans x �x� �x� refl refl = refl
(2)

Inaccessible patterns, like �x� in this example, witness the fact that only one type-

correct argument can be in that position. Indeed, matching on a proof of x≡ y with

refl : x ≡ x forces x and y to be the same. Another example is the proof cong that

any function maps equal arguments to equal results:

cong : (f : A → B)(x y : A) → x ≡ y → f x ≡ f y

cong f x �x� refl = refl
(3)

Proofs by dependent pattern matching are typically much shorter and more

readable than ones that use the classical datatype eliminators associated with each

inductive family (see next section for more on eliminators). For example, let � be

the usual ordering on � defined as an inductive family (Dybjer, 1991) with two

constructors lz and ls:

lz : (n : �) → zero� n

ls : (m n : �) → m� n → suc m� suc n
(4)

We can prove antisymmetry of this relation by pattern matching as follows:

antisym : (m n : �) → m� n → n� m → m ≡ n

antisym �zero� �zero� (lz �zero�) (lz �zero�) = refl

antisym �suc m� �suc n� (ls m n x) (ls �n� �m� y) = cong suc (antisym m n x y)

(5)

Pattern matching allows us to skip the two cases where one of the arguments is lz n

and the other is ls n′ m′ because zero can never be of the form suc m′ (this is called

the conflict rule). In the second clause, m′ (the first argument of the second ls) was

replaced by �n� because suc m′ and suc n were forced to be equal, and similarly n′

(its second argument) is replaced by �m� (this is called the injectivity rule).

Desugaring pattern matching. In a dependent type theory with inductive families but

without pattern matching, functions have to be written using datatype eliminators.

For example, the standard eliminator for the � is

elim� : (P : (m : �)(n : �)(x : m� n) → Seti) →
(mlz : (n : �) → P zero n (lz n)) →
(mls : (m : �)(n : �)(x : m� n) →

P m n x → P (suc m) (suc n) (ls m n x)) →
(m : �)(n : �)(x : m� n) → P m n x

(6)

Here, P is called the motive (McBride, 2002) of the eliminator and mlz and mls are

called the methods. The eliminator elim� has the following evaluation rules:

elim� P mlz mls zero n (lz n) = mlz n

elim� P mlz mls (suc m) (suc n) (ls m n) = mls m n
(7)

Eliminators will be defined in general in Section 4.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 3

Fig. 1. This proof of the antisymmetry of � is more complex than the proof by

pattern matching (5) because it uses only the standard datatype eliminators (see

Section 4) and the “no confusion” property of the natural numbers. No confusion

can be constructed from the eliminator for � as well (see Section 5), but expanding

this construction here would make the proof even more complex.

Figure 1 gives an alternative definition of antisym that only uses eliminators. All

the equational reasoning that was done automatically in the definition by pattern

matching now has to be done explicitly. The proof with eliminators also requires

considerable work for the construction of the motive of each eliminator, whilst this

can be done automatically in many cases, including definitions by pattern matching

(McBride, 2002). So it is clearly preferable to use pattern matching for this proof.

As shown by Goguen et al. (2006), all definitions by dependent pattern matching

can be translated to ones that only use eliminators. However, for this translation they

depend on the so-called K axiom. Coquand (1992) already observed that pattern

matching allows proving this K axiom1:

K : (P : a ≡ a → Set)(p : P refl)(e : a ≡ a) → P e

K P p refl = p
(8)

The K axiom is equivalent with the uniqueness of identity proofs principle, which

states that any two proofs of x ≡ y must be equal. As observed by Hofmann and

Streicher (1994), the K axiom does not follow from the standard rules of type theory,

but it is compatible with them.

So far, none of the examples we gave needs the K axiom for the translation to

eliminators (except for the definition of K itself). The reason we need the K axiom is

to deal with reflexive equations; for example, an equation Bool ≡ Bool. Remember

that in type theory there is no strict boundary between types and terms, so we can

form equations between types as well, as in this example. Given such an equation

1 Actually, K is only an axiom in settings where we are unable to define it. Once we give a computational
behaviour to K like we do here, it ceases to be an axiom and becomes a theorem instead. However,
we will keep calling it the K axiom for the sake of tradition.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


4 J. Cockx et al.

between types, we can coerce terms of the first type to the other using the function

coerce : A ≡ B → A → B (which can be constructed by pattern matching on the

proof of A ≡ B). Now, we can use pattern matching to prove that coercing true by

any proof of Bool ≡ Bool results in true:

coerce-id : (e : Bool ≡ Bool) → coerce e true ≡ true

coerce-id refl = refl
(9)

This can be desugared to

coerce-id = λe. K (λe. coerce e true ≡ true) refl e (10)

Without the K axiom, it would be impossible to define coerce-id in terms of

eliminators.

Pattern matching in HoTT. An emerging field within dependent type theory is

homotopy type theory (HoTT) (The Univalent Foundations Program, 2013). It gives

a new interpretation of terms of type x ≡ y as paths from x to y. Many basic

constructions in HoTT can be written very elegantly using pattern matching; for

example, trans (2) corresponds to the composition of two paths, and cong (3) can

be interpreted as a proof that all functions in HoTT are continuous, in the sense

that they preserve paths.

One of the core elements of HoTT is the univalence axiom. This axiom states

roughly that any two isomorphic types can be identified, i.e. if there is a function

f : A → B which has both a left and a right inverse, then it gives us a proof ua f

of A ≡ B. Moreover, this proof satisfies coerce (ua f) x = f x. Univalence captures

the common mathematical practice of informal reasoning “up to isomorphism” in a

nice and formal way. It also has a number of useful consequences, such as functional

extensionality.2

However, the univalence axiom is incompatible with dependent pattern match-

ing. For example, we can construct a function swap : Bool → Bool such that

swap true = false and vice versa. This function is its own inverse, so by univalence

it gives us a proof ua swap of Bool≡ Bool such that coercing true along this proof

results in false. Together with the proof coerce-id (9), this leads to a proof of the

absurdity true ≡ false. This general incompatibility has forced people working on

HoTT to avoid using pattern matching or risk unsoundness.

The source of the incompatibility between univalence and dependent pattern

matching is that pattern matching relies on the K axiom. Intuitively, this makes

sense because HoTT (and the univalence axiom in particular) encodes important

information in equality proofs, whilst K is exactly the assertion that there is no such

information. So if we want to be able to use dependent pattern matching in HoTT,

we need a theory that keeps track of the information inside equality proofs, instead

of discarding it like Goguen et al. (2006).

2 There are other theories that also support functional extensionality, but in HoTT it can be proven
using nothing more than univalence as ascribed to Voevodsky by The Univalent Foundations Program
Section 4.9.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 5

Avoiding K. If we could somehow restrict definitions by pattern matching so that

we could translate them to type theory with eliminators but without the K axiom,

then we would be able to use pattern matching in HoTT. A previous attempt to

achieve this was an option in Agda called --without-K (Norell et al. 2012). Before

Agda version 2.4.0, it attempted to detect definitions by pattern matching that

make use of the K axiom by means of a syntactic check. The goal of this option

was to allow people to use pattern matching in a safe way when it is undesirable

to assume K. However, the option has been criticized many times, for being too

restrictive (Sicard-Ramı́rez, 2013), for having unclear semantics (Reed, 2013), and

for containing errors (Altenkirch, 2012; Cockx, 2014). These errors allowed one to

prove (weaker versions of) the K axiom. Whilst these errors are typically fixed

quickly after being found, this situation really calls for a more in-depth investigation

of dependent pattern matching without K.

Contributions.

• We present a new criterion that describes what kind of definitions by pattern

matching are still allowed if we do not assume K. This criterion is strictly more

general than previous attempts. In contrast to previous attempts, our criterion

is not based on a syntactic check, but on a modification to the unification

algorithm used for pattern matching.

• We give a formal proof that definitions by pattern matching satisfying this

criterion are conservative over standard type theory by translating them

to eliminators in the style of Goguen et al. (2006), but without relying

on the K axiom. For this proof, we develop some tools for working with

homogeneous telescopic equality. We also give generalized versions of the

unification transitions used in Goguen et al. (2006), where the return type

can depend on the equality proofs.

• Our criterion has been implemented as a patch to Agda. We test it on a body

of examples in order to show its adequacy, soundness, and generality. As of

Agda version 2.4.0 (released on June 5, 2014), our implementation replaces the

old version of --without-K.

• Finally, we give a general way to detect specific datatypes that do satisfy the

K axiom. This can be used to make our criterion even less restrictive.

An earlier version of this paper has appeared at the ICFP 2014 conference

(Cockx et al., 2014). This journal version extends the conference version by a

discussion of the interaction between termination checking and the K axiom

(Section 3.3) and a criterion to detect datatypes that satisfy K (Section 8). It

also adds a number of examples, and compares our work with a new version

of the Equations package for Coq (Sozeau, 2015) and the Lean theorem prover

(de Moura et al., 2015), neither of which were published at the time of writing the

conference version.

Overview. The rest of this paper is organized as follows. In Section 2, we give the

basic theory behind dependent pattern matching, and in Section 3, we describe our

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


6 J. Cockx et al.

Fig. 2. A representation of the function half by a case tree. At each internal node,

the variable on which the case split is performed is underlined.

criterion that removes the dependence on the K axiom. Sections 4 through 7 contain

the main technical contribution of this paper: a proof that definitions by pattern

matching satisfying our criterion can be translated to eliminators without using K.

Section 4 reviews the basics of type theory and inductive families, and Section 5

gives some general constructions that allow us to work with these inductive families.

Section 6 makes use of these constructions to implement the unification transitions,

the core element of the pattern matching translation. Finally, in Section 7, we bring

all these elements together for the main proof. In Section 8, we discuss how to

enhance our criterion with detection of types that satisfy K, and we discuss related

work in Section 9 and future work in Section 10.

2 Dependent pattern matching: behind the scenes

To the user of a dependently typed language, a definition by pattern matching

appears to be no more than a list of equations the function should satisfy. However,

in order to translate such a list of clauses to a definition in terms of eliminators, they

must first be translated to a number of consecutive case splits on the arguments.

For example, the function half : � → � in Definition 1 is defined by first doing a

case split on the argument n : � – giving us two cases n = zero and n = suc m –

and then another case split on m.

Things get more complicated for an inductive family (Dybjer, 1991) such as Fin n,

the canonical finite set of n elements, or m� n, the type of proofs that m is smaller

than or equal to n. When splitting on a type from an inductive family, we need

to apply unification in order to determine which constructors can occur in a given

position.

In this section, we first describe how definitions by pattern matching can be

represented as a case tree (Augustsson, 1985), where each node represents a case

split. Next, we zoom in on the individual nodes, revealing how the subcases of each

node are determined by a unification process.

2.1 Case trees

A definition by pattern matching consists of one or more case splits. We represent

these case splits by a case tree. The nodes of a case tree for a function f are labelled

by patterns, where the label of the root node consists of variables only. Each internal

node of a case tree corresponds to a case split, whilst each leaf node corresponds

to a clause of the definition. An example of a case tree for the function half (1) is

given in Figure 2.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 7

Fig. 3. The structural order ≺ is used to check termination (Goguen et al., 2006).

To construct a case tree from a given set of clauses, in each node one pattern

variable is chosen on which to split the pattern. This variable must be a blocking

variable: In at least one of the function clauses, there has to be a constructor pattern

in the position of this variable. For each constructor of the correct type, one subtree

is created where the variable has been replaced by this constructor applied to fresh

variables. This process is repeated until there are no more blocking variables, at

which point the leaf node is filled in by the right-hand side of the corresponding

function clause.

Using case trees has a number of advantages. First, the patterns at the leaves of

a case tree always form a covering, hence a representation as a case tree guarantees

completeness of the definition. Second, they give an efficient method to evaluate

functions defined by pattern matching (Maranget, 2008). Third and most importantly

for our purposes, each internal node in a case tree corresponds exactly to the

application of an eliminator for an inductive family, so constructing a case tree is a

useful first step in the translation of dependent pattern matching to pure type theory

as demonstrated by Goguen et al. (2006).

2.2 Structural recursion

In order to guarantee termination, functions are required to be structurally recursive.

This means that the arguments of recursive calls should be structurally smaller than

the pattern on the left-hand side. The structural order ≺ is defined in Figure 3. For

functions with multiple arguments, the function should be structurally recursive on

one of its arguments, i.e. there should be some k such that sk ≺ pk for each clause

f p̄ = t and each recursive call f s̄ in t.

2.3 Unification of the indices

When checking a definition that pattern matches on an element of an inductive

family, we must decide which constructors can be used to construct a term of a

particular type, and under which constraints. For example, consider the inductive

family m� n with constructors lz and ls as given in Definition 4. Suppose we want

to do a case split on a variable of type n� zero as in the definition of antisym (5),

then we have to decide for what arguments the two constructors produce a result of

the form n� zero. To do this, we try to unify the indices in the type of the variable

with the indices of each constructor.

• For the lz constructor, unification tells us that n must be equal to zero:

n ≡� zero,

zero ≡� n′
m:=zero
====⇒ zero ≡� n

n′:=zero
====⇒ () (11)

Here, we renamed the argument n of lz to n′ to avoid a name conflict.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


8 J. Cockx et al.

Fig. 4. A representation of the function antisym (5) by a case tree. Whilst there are

two subtrees for the case split on x, each split on y only has a single subcase due to

the constraints on the type of y.

• For the ls constructor, unification ends in a conflict, as zero cannot be equal

to something of the form suc n :

n ≡� suc m′,

zero ≡� suc n′
n:=suc m′

=====⇒ zero ≡� suc n
conflict
===⇒ ⊥ (12)

As in the previous case, we renamed the arguments m and n of ls to m′ and

n′.

This is reflected in the upper subtree of antisym’s case tree given in Figure 4, where

there is only a case for y = lz �zero�, and none for y = ls m. Similarly, for the

second subtree, the indices are only has a case for the ls constructor, not for lz.

In general, suppose we are case splitting on a variable x : D ū, where D is an

inductive family with indices ū (we consider D to already be applied to its parameters,

if any). Suppose D has constructors ci with return type D v̄i for i = 1, . . . , k, then

we have to unify ū with each of the v̄i. Unification is the process of searching for

unifiers, i.e. substitutions σ such that ūσ = v̄iσ. A unification problem is represented

as a list of equations Θ = (u1 = vi,1, . . . , un = vin), and the following five unification

transitions are used to simplify the problem step by step:

Deletion: x = x,Θ ⇒ Θ (remove a reflexive equation from the list)

Solution: x = t,Θ ⇒ Θ[x �→ t] (assign a value to the variable x if x is not free in t)

Injectivity: c s̄ = c t̄,Θ ⇒ s̄ = t̄,Θ (applications of equal constructors can only be

equal if their arguments are equal)

Conflict: c1 s̄ = c2 t̄,Θ ⇒ ⊥ (applications of distinct constructors can never be

equal)

Cycle: x = c p̄[x],Θ ⇒ ⊥ (a term can never be structurally smaller than itself)

Exhaustively applying these rules whenever they are applicable terminates by the

usual argument (Jouannaud and Kirchner, 1990), with three possible outcomes:

Positive success: All equations have been solved, yielding a most general unifier σ.

Negative success: Either the conflict or the cycle rule applies, meaning that there

exist no unifiers, i.e. this case is absurd.

Failure: An equation is reached for which no transition applies, meaning that the

problem is too hard to be solved (by this unification algorithm).

This algorithm is complete for constructor forms: If both ū and v̄ are built from

constructors and variables only, then unification will never result in a failure.

Case splitting succeeds if unification of ū with each of the v̄i succeeds (either

positively or negatively). If all of them succeed negatively, we replace x by an absurd

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 9

pattern ∅, marking that case splitting resulted in zero cases.3 If on the other hand at

least one of them succeeds positively, we get the same number of new cases where x

has been replaced by ci ȳ and ȳ : Δi are fresh variables. To each of these cases, we

then apply the substitution σi constructed by unification. For example, a function

f : (n : �) → n� n → P n can be defined by the following patterns:

f �zero� (lz �zero�) = [. . . of type P zero]

f �suc n� (ls n �n� x) = [. . . of type P (suc n) where n : � and x : n� n]
(13)

Here, �. . .� marks an inaccessible pattern: It is not part of a case split, but rather

computed by unification. The substitution σi is also applied to the result type: In

the first clause, the right-hand side should have type P zero, whilst in the second

one, it should have type P (suc n).

If the splitting done at each node of a case tree can be computed by the unification

algorithm above and moreover the definition is structurally recursive, we call the

case tree valid. If a case tree is valid, then Goguen et al. (2006) show that the function

can be translated to one using eliminators and the K axiom.

3 A criterion for pattern matching without K

For function definition that match only on simple types, like the function half (1),

each case split corresponds exactly to one application of the standard eliminator for

�, hence the K axiom is not needed. However, the unification algorithm used for

case splitting on an inductive family depends crucially on the K axiom, so we have

to restrict it in order to remove this dependence.

In this section, we describe our restricted unification algorithm that does not

depend on K. We give a high-level view of the soundness proof of our criterion,

which is the main subject of the rest of this paper. We also compare our criterion

with the previous (syntactic) criterion for pattern matching without K in Agda.

Finally, we give a short evaluation of our implementation of this criterion in Agda.

3.1 Restricting the unification rules

Our criterion for pattern matching without K limits the unification algorithm in two

ways:

• It is not allowed to use the deletion step.

• When applying the injectivity step on the equation c s̄ = c t̄, where c s̄, c t̄ : D ū,

the indices ū should be self-unifiable, i.e. unification of ū with itself should

succeed positively (whilst still adhering to these two restrictions).

This inevitably means that unification will fail more often. However, if unification

results in a success (a positive or negative one), then we know that the original

rules would have given the same result. Where the original algorithm was complete

3 The reason for replacing x by an absurd pattern instead of removing the pattern entirely, is to keep
coverage checking decidable (Goguen et al., 2006).

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


10 J. Cockx et al.

for constructor forms, our modified version is only complete for linear constructor

forms (i.e. ones where each variable occurs only once).

3.2 Examples and counterexamples

As a first example, our criterion allows the definition of the J-eliminator for

propositional equality4 by pattern matching:

J : (P : (b : A) → a ≡ b → Set)(p : P a refl)(b : A)(e : a ≡ b) → P b e

J P p �a� refl = p
(14)

Note that J does not express the property that the only equality proofs are given by

refl , that property is expressed by K (Licata, 2011).

The unification problem for the case split on e : a ≡ b with the constructor

refl : a ≡ a is given by b = a. Unification succeeds positively after one solution

step, with the most general unifier [b �→ a] as the result. Likewise, the definitions of

trans (2), cong (3), and antisym (5) in the introduction are also accepted.

In contrast, the definition of K by pattern matching is not allowed, as case splitting

on the argument of type a ≡ a produces a unification problem a = a, which fails

without the deletion step of the unification algorithm.

K : (P : a ≡ a → Set)(p : P refl)(e : a ≡ a) → P e

K P p refl = p
(15)

This already explains the need for the first restriction to the unification algorithm.

As an example of why the second restriction is needed, consider the following

weaker variant of K:

weakK : (P : refl ≡a≡a refl → Set) →
(p : P refl)(e : refl ≡a≡a refl) → P e

weakK P p refl = p

(16)

The type of weakK says basically that any proof e of refl ≡ refl (where both

instances of refl have type a ≡ a) must be equal to refl.5 Like the regular K, this

weakK does not follow from the standard rules of type theory and is incompatible

with univalence (Kraus and Sattler, 2015). Case splitting on the argument e of

type refl ≡a≡a refl requires unification of refl : a ≡ a with refl : a ≡ a. Before

applying the injectivity rule, the unifier will first check whether the index a can be

unified with itself. However, this fails because it is not allowed to apply the deletion

rule, hence the definition of weakK is not accepted. It would be accepted if we did

not have the second restriction to the unification algorithm.

4 Following Paulin-Mohring (1993), we consider the first argument x of the identity type x ≡ y to be a
datatype parameter instead of an index. This means this version of J corresponds to the principle of
based path induction in HoTT.

5 In the HoTT interpretation of elements of the identity type as paths, this would mean that there are
no non-trivial paths between paths, i.e. all spaces have a dimension of at most 1.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 11

Fig. 5. An example of what can go wrong when recursion on an argument of

variable type is allowed. Here, One : Set is a datatype with a single constructor

wrap : (⊥ → One) → One.

3.3 Interaction with termination checking

One important but easily overlooked detail in the translation of dependent pattern

matching to eliminators by Goguen et al. (2006) is that the type of the argument on

which the function is structurally recursive must be a datatype. When working in a

theory without the K axiom, this restriction becomes very important. Figure 5 gives

an example6 of what can go wrong if we would allow recursion on an argument of

variable type.

In the example, One : Set is a datatype with a single constructor wrap : (⊥ →
One) → One. Since wrap is a constructor and hence injective, it gives rise to an

equivalence between One and ⊥ → One. By univalence, it follows that these two

types are equal (iso). The function noo illustrates the problem at hand: first, it

pattern matches on a proof of One ≡ X, forcing X to be equal to One. Next, it

proceeds by induction on its third argument, which first had type X but now type

One. According to the naive interpretation, the function noo is structurally recursive

on its third argument. However, the type of this argument changes from One in

the argument position to ⊥ → One in the recursive call. In effect, the definition of

noo first strips the wrap constructor from its third argument in order to fool the

termination checker, only to apply it again via a backdoor using the equality iso.

This type of recursion is not allowed by the eliminator for the One type, and is

in fact incompatible with univalence as made evident by the proof absurd of ⊥. So

we need to be careful to disallow this kind of recursion, both in our proof and in

the implementation of our criterion.

3.4 Soundness

We have seen that our criterion rules out a direct definition of K (15) or a weaker

form of it (16). But how can we know for sure that pattern matching doesn’t allow

us to prove anything that we wouldn’t be able to using only the basic rules of

type theory without the K axiom? We should prove that any definition by pattern

matching satisfying our criterion could just as well be written using eliminators, like

6 This example has been adapted from the ones given by Maxime Dénès and Conor McBride on the
Agda mailing list, see https://lists.chalmers.se/pipermail/agda/2014/006252.html.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


12 J. Cockx et al.

Goguen et al. (2006) did for pattern matching with K. Formally, we will prove the

following theorem:

Theorem 1

Let f : (̄t : Δ) → T be a function given by a valid case tree, adhering to the two

restrictions given in Section 3.1. Then, we can construct a term f’ : (̄t : Δ) →
T constructed from eliminators only. Moreover, define {e}ff’ by replacing all

occurrences of f by f’ in e. Then, f’ satisfies f’ t̄�∗ {u}ff’ whenever f t̄� u, i.e.

it has the same reduction behaviour as f.

We give a high-level overview of the proof in this section, with more details in the

following sections.

Our proof mostly follows the translation from pattern matching to eliminators by

Goguen et al. (2006). There is a reason why it is hard to see where exactly the K

axiom is used in their work: They do not use the axiom directly, but instead depend

on the heterogeneous propositional equality. Heterogeneous equality x∼=y allows the

formation of equalities between terms x : A and y : B of different types. However,

the only constructor of this type is refl : x ∼= x, requiring that the types are in fact

the same. This heterogeneous equality is convenient for expressing equality between

sequences of data in a given telescope, as the types of later terms in the sequence may

differ. Unfortunately, the elimination rule for this heterogeneous equality proposed

by McBride is equivalent with the K axiom (McBride, 2000). Heterogeneous equality

(and its elimination rule) is used almost everywhere in the translation, making it

impossible to see where the K axiom is really needed, and where it’s merely used

out of convenience. So instead we work with the homogeneous propositional equality

and the standard J eliminator.

The general idea of the proof is as follows. First, the definition by pattern matching

is translated to a case tree as explained in Section 2.1, keeping into consideration

the restrictions to the unification algorithm given in Section 3.1. Each leaf node of

the case tree corresponds to a clause f p̄ = e, i.e. it defines f on arguments that

match the pattern p̄, and each internal node corresponds to a case split of p̄ on

some variable x : D ū into patterns p̄1, . . . , p̄n. If we can assemble the definitions of

f p̄1, . . . , f p̄n into a definition of f p̄, then we can work backwards from the leaf

nodes towards the root, ultimately obtaining a definition of f on arbitrary variables.

So how do we assemble the definitions of f p̄1, . . . , f p̄n into a definition of f p̄?

This assembly proceeds in two steps. First, we apply a technique called basic caseD-

analysis at ū; x. This splits the problem into one subproblem for each constructor

ci of D̄, and gives us proofs of the equations ū = v̄i and x = c ȳ. The second

step is to apply specialization by unification, simplifying these equations step by step.

The unification transitions make sure that we do not have to fill in anything for a

negative success. Finally, we fill in the translated definition of f p̄i for each positive

success.

In general, there can be recursive calls to the function f in each clause f p̄ = e.

These recursive calls are required to be structurally recursive on some argument

x : D ū of f. It is important for the proof that the top-level type of x in the type Δ

of f’s arguments is already a datatype, not just the type of x in each of the clauses

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 13

separately (see Section 3.3). This allows us to use well-founded recursion on D to

obtain an inductive hypothesis H , asserting that f is already defined on arguments

structurally smaller than x. This inductive hypothesis is then used to replace the

recursive calls to f in e.

The challenge is then to construct all these techniques (case analysis, specialization

by unification, and structural recursion) as terms internal to type theory. Before

we begin this construction, we repeat some standard definitions from type theory

(Section 4), including telescopic equality. We then recall some standard equipment for

inductive datatypes given by McBride et al. (2006): case analysis, structural recursion,

no confusion, and acyclicity, of which the latter two are slightly adapted to take the

additional dependencies on equality proofs into account (Section 5). This is a return

to an early version of McBride (1998) that was still based on homogeneous equality.

No confusion and acyclicity are subsequently used to construct the unification

transitions as terms inside type theory (Section 6). Finally, all these tools are brought

together for the translation of case trees to eliminators (Section 7).

3.5 Comparison with the syntactic criterion

So far, the only credible proposal of a criterion for pattern matching without K

was the syntactic criterion previously used by Agda. So how does our criterion

compare to it? One reason to prefer our criterion is that it is more amenable to the

correctness proof given in Section 7. But we should also compare their generality, i.e.

what kind of definitions are still allowed by each. The criterion previously used in

Agda for pattern matching without K is specified as follows: If the flag is activated,

then Agda only accepts certain case-splits. If the type of the variable to be split is D

pars ixs, where D is a data (or record) type, pars stands for the parameters, and

ixs the indices, then the following requirements must be satisfied:

• The indices ixs must be applications of constructors (or literals) to distinct

variables. Constructors are usually not applied to parameters, but for the

purposes of this check constructor parameters are treated as other arguments.

• These distinct variables must not be free in pars.

This criterion implies that the deletion rule is never used during unification. To

see why this is true, note that it guarantees that all unification problems generated

by pattern matching are of the form ū = v̄i, where ū consists of constructors applied

to free variables and each variable occurs only once in ū. Moreover, since new

constructors introduced by case splitting are applied to fresh variables, the variables

in ū are not free in v̄i. Both the solution and the injectivity step preserve these three

properties, hence we will never reach an equation of the form x = x.

On the other hand, the syntactic criterion does not imply that the indices are self-

unifiable when applying the injectivity rule. But this is actually a bug in the syntactic

criterion, allowing one to prove a weaker version of the K axiom (Cockx, 2014),

similar to the example weakK (16). So the fact that our criterion is more restrictive

in this case is actually a good thing.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


14 J. Cockx et al.

Apart from that issue, our criterion is in fact strictly more general than the

syntactic one. For example, the syntactic criterion allows us to pattern match with

refl on an argument of type k + l ≡ m (where k, l, m : � are previous arguments),

but not on an argument of type m ≡ k + l. This asymmetry is created by a technical

detail in the standard definition of propositional equality as an inductive family:

The first argument is a parameter (so it can be anything), whilst the second one is

an index (so it must consist of constructors applied to free variables). In contrast,

our criterion allows both variants because we look at the unifications that are

performed instead of syntactical artefacts like the distinction between a parameter

and an index. Similarly, Agda’s syntactic criterion does not allow us to pattern

match on an argument of type n � n because the variable n occurs twice. But this

turns out to be over-conservative, as evidenced by the fact that it is allowed by our

criterion.

Another advantage of our criterion is that unlike the syntactic criterion, it does not

put any requirements on the datatype parameters. This is very useful when we need

injectivity of a constructor of a parameterized datatype. For example, the syntactic

criterion does not allow case splitting on an argument of type x :: xs ≡ y :: ys,

where :: is the list constructor, since the type A of x and y is a parameter and the

constructor :: is considered to be applied to this parameter. Our criterion has no

such problems. This is especially useful in Agda since module parameters are also

considered to be parameters of the datatypes defined inside that module chapter 4.

So with the syntactic criterion, moving a definition to another module can cause an

error, but with our criterion this is no longer the case.

Unfortunately, our criterion still has some limitations. For example, when working

with the � relation on finite sets Fin n, we cannot pattern match on an argument

of type i� i, where i : Fin n. This is because unification gets stuck on the problem

fs n x = fs n y, where the deletion rule is needed to remove the equation n = n.

However, this definition is also refused by the syntactic criterion. In Section 8, we

discuss possible solutions to problems of this kind.

Another limitation arises when an equation cannot be solved right away, but

must be postponed until later. As the types of later equations may depend on the

solution of these postponed equations, this may cause the types of both sides of an

equation to be different. The algorithm presented in this paper expects the types to

be (definitionally) equal, so it cannot deal with postponed equations.

3.6 Implementation

Our new criterion for pattern matching without K has been implemented as a patch

to Agda, included as of version 2.4.0. This patch consists of three changes to the

typechecker when the --without-K option is enabled:

• Whenever the unification algorithm used by the case splitter encounters a

reflexive equation t = t, instead of deleting the equation Agda throws an error,

notifying the user that K has been disabled.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 15

• Whenever the unification algorithm encounters an equation c ū = c v̄, where

c is the constructor of some inductive family D, Agda first tries to unify the

indices of D with themselves before continuing to unify ū with v̄.

• When checking termination of a function f that is structurally recursive on

its kth argument, Agda checks whether the type of the kth argument of f is

actually a datatype. If not, Agda considers the function to be non-terminating.

We used our patch with a number of Agda programs in order to test it for adequacy,

soundness, and generality.

Adequacy. In order to test the adequacy of our approach, we tested it on a number

of small examples that should be definable without K, such as the functions half

(1), trans (2), cong (3), and antisym (5) from the introduction. We also tested it

on a body of Agda code related to propositional equality and HoTT by Danielsson

(2013), which was written with Agda’s current --without-K flag in mind. All these

examples are accepted without problems.

Soundness. To test the soundness of our criterion, we also tested it on a number

of variations on the K axiom and weaker versions of it. For example, when we

try to define K as in Definition 15, we get the following error message: “Cannot

eliminate reflexive equation x = x of type A because K has been disabled (when

checking that the pattern refl has type x ≡ x)”. Pattern matching with refl on a

proof of Bool≡ Bool is also prohibited by our check. Similarly, the elimination rule

for heterogeneous equality given by McBride (2000) (which is equivalent with K)

is rejected, as are the weaker versions of K given by Altenkirch (2012) and Cockx

(2014).

Generality. Finally, to test the generality of our approach, we gave it some definitions

that are rejected by Agda’s syntactic criterion, but do not actually rely on the K

axiom. For example, definitions involving case splitting on types such as m � m,

k ≡ l + m, and x ≡ f y are accepted.

4 Type theory

As our version of type theory, we use Luo’s Unified Theory of Dependent Types

with dependent products, inductive families, and universes (Luo, 1994). We omit the

meta-level logical framework and the impredicative universe of propositions because

they are not needed for our current work. The formal rules of the version of Unified

Theory of Dependent Types we use are summarized in Figure 6.

Contexts and telescopes. We use Greek capitals Γ,Δ, . . . for both contexts and

telescopes, capitals T ,U, . . . for types, and small letters t, u, . . . for terms. Telescopes

can best be thought of as the tail of a context: They are typed relative to a context,

and they grow to the left rather than to the right. Note that the empty telescope ()

is inhabited by the empty list ().

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


16 J. Cockx et al.

Fig. 6. The core formal rules of UTT, including dependent function types (x : A) →
B, an infinite hierarchy of universes Set0, Set1, Set2, . . ., and β-equality.

A list of terms is indicated by a bar above the letter, for example t̄. Telescopes can

take the role of the type of such a list of terms (see Figure 7), so we can write for

example t̄ : Γ, where Γ = (m : �)(p : m ≡ zero) and t̄ = zero; refl. More precisely,

this means we give a semantics �Γ� to a telescope Γ as iterated sigma types as

defined in Figure 7. For example, Γ � a; b; c : (x : A)(y : B x)(z : C x y) stands for

Γ � a, (b, (c, tt)) : Σ A (λx. Σ (B x) (λy. Σ (C x y) (λz. �))) (17)

which is equivalent with saying a : A, b : B a, and c : C a b.

Substitutions. The simultaneous substitution of the terms t̄ for the variables in the

telescope Δ is written as [Δ �→ t̄]. We denote substitutions by small Greek letters

σ, τ, . . . A substitution can also be seen as a function between telescopes, i.e. if

Γ � t̄ : Δ, then we have σ = [Δ �→ t̄] : Γ → Δ. The identity substitution is written as

id : Δ → Δ and the composition of two substitutions σ : Δ2 → Δ3 and τ : Δ1 → Δ2

is written as σ ◦ τ : Δ1 → Δ3.

Definitional and propositional equality. In (intensional) type theory, there are two

distinct notions of equality. On the one hand, two terms s and t are definitionally

equal (or convertible) if we can derive Γ � s = t : T , i.e. if s and t are equal up to

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 17

Fig. 7. The typing rules for telescopes and their semantics as iterated sigma types.

β-reduction. On the other hand, two terms s and t are propositionally equal if we

can prove their equality, i.e. if we can give a term of type s≡ t. Propositional equality

was introduced by Martin-Löf (Martin-Löf, 1984). We follow the definition of

Paulin-Mohring (Paulin-Mohring, 1993), as an inductive family with two parameters

A : Seti and a : A, one index b : A, and one constructor refl : a ≡ a. The standard

eliminator for this datatype is exactly the J rule (14). Substitution by a propositional

equality subst : (P : A → Seti) → x ≡ y → P x → P y can readily be defined from

J by dropping the dependence of P on the equality proof in the type of J. In the

style of HoTT, we will write e∗ for subst P e when P is clear from the context.

Telescopic equality. We define telescopic equality s̄ ≡ t̄ inductively on the length of

the telescope as follows:

() ≡ () := ()

s; s̄ ≡ t; t̄ := (e : s ≡ t)(ē : e∗ s̄ ≡ t̄)
(18)

Note that the substitution e∗ is needed to make the equation between s̄ and t̄ again

homogeneous. Here, we consider s̄ to be an element of the iterated sigma type as

defined in Figure 7 for the purpose of applying the substitution e∗. So to be fully

explicit, the e∗ in the definition stands for subst (λx : A. �Γ�) e, where (x : A)Γ is

the type of s; s̄ and t; t̄. Telescopic inequality is defined by s̄ �≡ t̄ := s̄ ≡ t̄ → ⊥. For

each t̄ : Δ, we define refl : t̄ ≡ t̄ as refl; . . . ; refl. We also have the telescopic

eliminator

J̄ : (P : (̄s : Δ) → r̄ ≡ s̄ → Seti) → P r̄ refl → (̄s : Δ) → (ē : r̄ ≡ s̄) → P s̄ ē (19)

It is defined by eliminating the equations ē from left to right using J:

J̄ P p () () = p

J̄ P p (s; s̄) (e; ē) = J (λs; e. (̄s : Δ)(ē : r̄ ≡ s̄) → P (s; s̄) (e; ē))

(λs̄; ē. J̄ (λs̄; ē. P (r; s̄) (refl; ē)) p ē)

e s̄ ē

(20)

Each elimination of an equation ei : ri ≡ si fills in refl for all occurrences of ei,

allowing the next equations to reduce and in particular ensuring that the following

equation is of the correct form. Telescopic substitution subst is defined by dropping

the dependence of P on r̄≡ s̄ in the definition of J̄. Again, we write ē∗ for subst P ē

when P is clear from the context.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


18 J. Cockx et al.

Inductive families. Inductive families (Dybjer, 1991) are (dependent) types induc-

tively defined by a number of constructors, for example � is defined by the

constructors zero : � and suc : � → �. Inductive families can also have

parameters and indices,7 for example, Vec A n is an inductive family with one

parameter A : Set, one index n : �, and two constructors nil : Vec A zero and

cons : (n : �) → A → Vec A n → Vec A (suc n). Each inductive family comes

equipped with a datatype eliminator, for example, the eliminator for � is

elim� : (P : � → Seti) → (mzero : P zero) →
(msuc : (n : �) → P n → P (suc n)) →
(n : �) → P n

(21)

In general, let D be an inductive family. Since everything we do in this paper is

parametric in the datatype parameters of D, we consider D to be already applied

to (arbitrary) parameters. So D is defined by the telescope Ξ of the indices and the

constructors:

ci : Δi → (Φi,1 → D v̄i,1) → . . . → (Φi,ni → D v̄i,ni) → D ūi (22)

for i = 1, . . . , k. We write D̄ for the telescope (ū : Ξ)(x : D ū). The standard eliminator

for D has a type of the form

elimD : (P : D̄ → Seti)(m1 : . . .) . . . (mk : . . .) →
(x̄ : D̄) → P x̄

(23)

where the types of m1, . . . , mk are given by

mi : (̄t : Δi) →
(x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni ) →
(h1 : (̄s1 : Φi,1) → P v̄i,1 (x1 s̄1)) → . . . →
(hni : (̄sni : Φi,ni) → P v̄i,ni (xni s̄ni)) →
P ūi (ci t̄ x1 . . . xni )

(24)

Elimination operators. Datatype eliminators are an instance of the more general

concept of an elimination operator. For any telescope Ξ, we define a Ξ-elimination

operator (McBride, 2002) to be any function with a type of the form

(P : Ξ → Seti) →
(m1 : Δ1 → P s̄1) . . . (mn : Δn → P s̄n) →
(̄t : Ξ) → P t̄

(25)

We call Ξ the target, P the motive, and m1, . . . , mn the methods of the elimination

operator. The reader may think of a Ξ-elimination operator as a way to transform a

7 In the original definition of indexed families by Dybjer (1991), parameters are required to occur
uniformly everywhere in the definition of the datatype, whilst indices can vary from constructor to
constructor. Agda is less restrictive and also allows parameters to occur non-uniformly in the types of
recursive constructor arguments, but not in their return types.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 19

problem into a set of subproblems. In the type shown above, the original problem is

to construct a result of type P t̄ when given arbitrary values t̄ in the telescope Ξ. This

original problem is transformed into n sub-problems given by each of the methods:

The ith subproblem is to construct a result of type P s̄i when given arbitrary values

of type Δi. The elimination operator’s type can be read as a function that transforms

solutions for the sub-problems into a solution for the original problem.

Basic analysis. Note that a Ξ-elimination operator returns something of type

(ū : Ξ) → P ū when given a motive P : Ξ → Setj . However, we often need a

return type where the arguments ū are more specialized, for example, to construct

a function of type (k : �)(y : k � zero) → zero ≡ k. McBride (2002) solves this

problem by adding the constraints on the indices as additional arguments to the

motive P , and filling in refl as soon as the constraints are satisfied. This technique

is called basic analysis. For example, let case� be the standard eliminator for m� n

with its recursive arguments dropped:

case� : (P : (m : �)(n : �)(x : m� n) → Seti) →
(mlz : (m : �) → P zero m (lz m)) →
(mls : (m : �)(n : �)(x : m� n) → P (suc m) (suc n) (ls m n x)) →
(m : �)(n : �)(x : m� n) → P m n x

(26)

Then, the basic case�-analysis of zero ≡ k at k; zero; y has type

(mlz : (m : �)(k : �)(y : k � zero) →
(zero;m; lz m) ≡ (k; zero; y) → zero ≡ k) →

(mls : (m n : �)(x : m� n)(k : �)(y : k � zero) →
(suc m; suc n; ls m n x) ≡ (k; zero; y) → zero ≡ k) →

(k : �)(y : k � zero) → zero ≡ k

(27)

Note that applying case� directly to y : k � zero would lead to loss of the

information that the second index of y is zero, thus leaving us unable to provide

mlz and mls.

In general, let elim be any Ξ-elimination operator, and suppose we want to

construct a function of type Δ → Φ by applying this eliminator to t̄ where Δ � t̄ : Ξ.

Then, we apply elim to the motive λ(̄s : Ξ). Δ → s̄ ≡ t̄ → Φ. Filling in t̄ for s̄ and

refl for the proof of s̄ ≡ t̄ gives us the basic elim-analysis of Φ at t̄:

λm1; . . . ;mn; x̄.elim (λs̄. Δ → s̄ ≡ t̄ → Φ) m1 . . . mn t̄ x̄ refl (28)

which is of type

(m1 : Δ1Δ → s̄1 ≡ t̄ → Φ) . . . (mn : ΔnΔ → s̄n ≡ t̄ → Φ) → Δ → Φ (29)

Basic analysis will be used throughout the proof: once with recD for structural

recursion, and once with caseD for each case split.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


20 J. Cockx et al.

5 A few homogeneous constructions on constructors

McBride et al. (2006) developed tools for working with inductive families of

data types: case analysis, recursion, no confusion (subsuming both injectivity and

disjointness of constructors), and acyclicity. In this section, we present these rules

adapted to work with homogeneous instead of heterogeneous equality. Since the

general form of these rules can be rather complex, we start by constructing them

on an example datatype. Following the pedagogy of McBride et al. (2006), we take

binary trees as our example data type (5.1). Once we have tackled this example, we

will be equipped to handle the general case (5.2).

5.1 Example: binary trees

As a first example, we consider the type Tree of binary trees, consisting of two

constructors leaf : Tree and node : Tree → Tree → Tree. The eliminator for Tree

is

elimTree : (P : Tree → Seti) → P leaf →
((l r : Tree) → P l → P r → P (node l r)) → (x : Tree) → P x

(30)

Case Analysis. Case analysis allows us to distinguish between the constructors of

a datatype. In effect, it’s just a weaker version of the standard eliminator, with the

inductive hypotheses for the recursive arguments dropped. Here, it is for the Tree

type:

caseTree : (P : Tree → Seti) → P leaf →
((l r : Tree) → P (node l r)) → (x : Tree) → P x

caseTree P mleaf mnode t = elimTree P mleaf (λl r . mnode l r) x

(31)

Recursion. Recursion allows us to prove things about trees by complete induction.

It resembles the standard eliminator, but the inductive step allows us to assume P t′

for all subtrees of t, not just the direct ones. To construct the recursion principle,

we first define a type BelowTree P x, expressing that the property P : Tree → Set

holds for any subtree of x : Tree. In other words, we have

BelowTree P leaf = �
BelowTree P (node l r) = (BelowTree P l × P l) × (BelowTree P r × P r)

(32)

Second, the function belowTree encodes proof by complete induction on trees: if we

can give a step function s that proves BelowTree P t implies P t for any tree t, then

belowTree P s is a proof that BelowTree P t holds for any t. Finally, the recursion

operator recTree P s applies the step function s one more time to conclude P t for

any tree t.

No Confusion. The principle of no confusion packages two properties of construc-

tors: injectivity and disjointness. In the case of Tree, injectivity allows us to conclude

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 21

l1 ≡ l2 and r1 ≡ r2 from node l1 r1 ≡ node l2 r2, and disjointness allows us to refute

any equation of the form leaf ≡ node l r. To package these two principles together,

we first define a type NoConfusion t1 t2 that computes a goal type for two trees:

NoConfusion leaf leaf = �
NoConfusion leaf (node l r) = ⊥
NoConfusion (node l r) leaf = ⊥
NoConfusion (node l1 r1) (node l2 r2) = l1 ≡ l2 × r1 ≡ r2

(33)

The function noConfTree gives a proof of NoConfusionTree s t for any two trees s

and t that are equal:

noConfTree : (s t : Tree) → s ≡ t → NoConfusionTree s t (34)

It is constructed using the J eliminator and caseTree. We will also need an inverse

noConf-1Tree of noConfTree in order to type the injectivity rule in Section 6:

noConf-1Tree : (s t : Tree) → NoConfusionTree s t → s ≡ t (35)

Acyclicity. Acyclicity for trees means that no tree can ever be a subtree of itself, i.e.

all trees are well-founded. As for recursion and no confusion, we first define a type

that states this property, and then prove it. The type we define is x �< t, expressing

that x is not a subtree of t. It is defined using BelowTree: x �< t = BelowTree (λs.x �≡s) t.

Next, noCycleTree is a proof that t �< t for any tree t:

noCycleTree leaf = tt

noCycleTree (node l r) = stepleft (noCycleTree l), stepright (noCycleTree r)
(36)

Here, stepleft : x �< t → node x s �� t and stepright : x �< t → node s x �� t are two

helper functions that can be defined using elimTree and noConfTree.

5.2 The general case

For the rest of this section, let D : Ξ → Seti be an inductive family.

Case Analysis. caseD is a weakened version of the standard eliminator elimD that

we get by dropping the inductive hypotheses of the methods. caseD is given by

dropping the inductive hypotheses from the eliminator, i.e. it is itself a D̄-elimination

operator with methods:

mi : (̄t : Δi) → (x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni ) → P ūi (ci t̄ x1 . . . xni )

(37)

for i = 1, . . . k.

Recursion. First, for x : D ū, BelowD P ū x is a tuple type that is inhabited whenever

P v̄ y holds for all y : D v̄ which are structurally smaller than x : D ū. In order to

define BelowD P , we apply the eliminator elimD to the motive Φ = λ . Seti. For the

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


22 J. Cockx et al.

method mi corresponding to the constructor ci, we give the following:

mi = λ̄t; x1; . . . ; xni ; h1; . . . ; hni .

(Φi,1 → h1 Φi,1 × P v̄i,1 (x1 Φi,1))×
. . . × (Φi,ni → hni Φi,ni × P v̄i,ni (xni Φi,ni))

(38)

i.e. BelowD P x is a tuple asserting P y for all y structurally smaller than x. Second,

the helper function belowD constructs this tuple:

belowD : (P : (x̄ : D̄) → Seti) → ((x̄ : D̄) → BelowD P x̄ → P x̄) →
(x̄ : D̄) → BelowD P x̄

(39)

To define belowD P p, we apply elimD with the motive BelowD P . We give the

following for the method mi:

mi = λ̄t; x1; . . . ; xni ; h1; . . . ; hni .

(λΦi,1. h1 Φi,1, p v̄i,1 x1 (h1 Φi,1)),

. . . , (λΦi,ni . hni Φi,ni , p v̄i,ni xni (hni Φi,ni))

(40)

Finally,

recD : (P : (x̄ : D̄) → Seti) → ((x̄ : D̄) → BelowD P x̄ → P x̄) → (x̄ : D̄) → P x̄ (41)

is used for well-founded recursion over values of type D. It is defined as recD P p D̄ :=

p D̄ (belowD P p D̄).

No Confusion. First, NoConfusionD : D̄ → D̄ → Setd is a type such that

NoConfusionD (ū; c s̄) (v̄; c t̄) = s̄ ≡ t̄

NoConfusionD (ū; c s̄) (v̄; c′ t̄) = ⊥ (when c �= c′)
(42)

Note that the diagonal case (where we have two times the same constructor)

NoConfusionD only requires s̄ ≡ t̄. From this, it follows that ū ≡ v̄ as well, since the

indices are determined by the constructor arguments.

Second, we construct

noConfD : (x̄ ȳ : D̄) → x̄ ≡ ȳ → NoConfusionD x̄ ȳ (43)

We also construct an inverse

noConfD
−1 : (x̄ ȳ : D̄) → NoConfusionD x̄ ȳ → x̄ ≡ ȳ (44)

and give a proof isLeftInvD that (noConfD−1 x̄ ȳ) ◦ (noConf x̄ ȳ) is the identity on

x̄≡ ȳ.8 The need for this inverse will become clear when we construct the unification

transitions in Section 6.

To define NoConfusionD ā b̄, we apply caseD with the motive λ . Seti on ā. For

each method mi x̄, we apply caseD again with the same motive, but this time on b̄.

This gives us k2 methods mi,j to fill in, one for each pair of constructors. On the

8 We could also prove that (noConfD x̄ ȳ) ◦ (noConfD
−1 x̄ ȳ) is the identity on NoConfusionD x̄ ȳ, thus

establishing that noConfD x̄ ȳ is an equivalence. However, this is not needed for the present work.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 23

diagonal (where i = j), we define mii = λx̄; x̄′. x̄ ≡ x̄′, and if i �= j we simply give

mi,j = λx̄; x̄′. ⊥ (the empty type).

Next, we define noConfD ā b̄. To do this, we apply telescopic substitution subst

with motive NoConfusionD ā. We need to give a function of type

(ā : D̄) → NoConfusionD ā ā (45)

But this can be done using caseD with motive λ ā. NoConfusionD ā ā. For each

method mi x̄, we can fill in refl.

For the inverse noConfD−1 ā b̄, we need to do a little more work. First, we apply

caseD twice as in the definition of NoConfusionD. Now, we are left to give methods

mi,j : NoConfusionD (ūi; ci x̄) (ū′
j; cj x̄

′) → ūi (ci x̄) ≡ ū′
j (cj x̄

′) (46)

When i �= j, this is easy: We get an element of type ⊥ from NoConfusionD, from

which we can conclude anything. On the diagonal (where i = j), we get a proof of

x̄ ≡ x̄′. Applying subst to this equality leaves us the goal ū′
j; (cj x̄′) ≡ ū′

j; (cj x̄′),

which we can fill in with refl. This particular combination of subst and refl

could be seen as a telescopic version of congruence on the mapping x̄ �→ ūj; cj x̄.

Finally, we prove that this is indeed a (left) inverse by constructing a function of

type

(ā b̄ : D̄)(ē : ā ≡ b̄) → noConfD
−1 ā b̄ (noConfD ā b̄ ē) ≡ ē (47)

By J̄, it is sufficient to give a function of type

(ā : D̄) → noConfD
−1 ā ā (noConfD ā ā refl) ≡ refl (48)

But this we can do by applying caseD with methods mi x̄ = refl.

Acyclicity. First, x̄ �< ȳ is defined as a tuple type stating that x̄ : D̄ is not structurally

smaller than ȳ : D̄. Second, noCycleD : (x̄ ȳ : D̄) → x̄ ≡ ȳ → x̄ �< ȳ states that no

term can be structurally smaller than itself.

The relation �< is defined using BelowD: ā �< b̄ := BelowD (λb̄′. ā �≡ b̄′) b̄. We also

define ā �� b̄ := ā �< b̄ × ā �≡ b̄. If x : D ū and y : D v̄, then we often write x �< y and

x �� y instead of ū; x �< v̄; y and ū; x �� v̄; y to avoid having to write too much clutter.

Note that x �< ci Δi x1 . . . xni = (Φi,1 → x �� x1 Φi,1) × · · · × (Φi,ni → x �� xni Φi,ni)

by definition of BelowD and ��. Now to construct noCycleD, we start by eliminating

the equation ā ≡ b̄ using J̄, which leaves us the goal (ā : D̄) → ā �< ā. Next, we apply

elimD with motive λā. ā �< ā, producing for each constructor ci : Δi → (Φi,1 →
D v̄i,1) → . . . → (Φi,ni → D v̄i,ni ) → D ūi the subgoal

(̄t : Δi) → (x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni ) →
(h1 : Φi,1 → x1 Φi,1 �< x1 Φi,1) . . . (hni : Φi,ni → xni Φi,ni �< xni Φi,ni) →
ci t̄ x1 . . . xni �< ci t̄ x1 . . . xni

(49)

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


24 J. Cockx et al.

In order to continue, we first define the auxiliary types Stepi,j for i = 1, . . . , k and

j = 1, . . . , ni as follows:

Stepi,j : Δi → (x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni ) →
Φi,j → D̄ → Setd

Stepi,j t̄ x1 . . . xni Φi,j (ū; b) = (xj Φi,j) �< b → (ci t̄ x1 . . . xni ) �� b

(50)

Now, suppose that we can construct

stepi,j : (̄t : Δi) → (x1 : Φi,1 → D v̄i,1) . . . (xni : Φi,ni → D v̄i,ni) →
Φi,j → (ā : D̄) → Stepi,j t̄ x1 . . . xni Φi,j ā

(51)

Then, we can solve the subgoal by filling in

λ̄t; x̄; h̄.

(λΦi,1. stepi,1 t̄ x̄ Φi,1 v̄i,1 (x1 Φi,1) (h1 Φi,1)),

. . . ,

(λΦi,ni . stepini t̄ x̄ Φi,ni v̄i,ni (xni Φi,ni ) (hni Φi,ni))

(52)

So we only need to construct stepi,j. The construction of stepi,j t̄ x1 . . . xni Φi,j

(of type (ā : D̄) → Stepi,j t̄ x1 . . . xni Φi,j ā) proceeds by applying elimD with the

motive Stepi,j t̄ x1 . . . xni Φi,j . The new subgoals are of the form

(̄t′ : Δ′
p)(x

′
1 : Φ′

p1 → D v̄′
p1) . . . (x′

np
: Φ′

pnp
→ D v̄′

pnp
) →

(h1 : (̄s′
1 : Φ′

p1) → Stepi,j t̄ x̄ Φi,j v̄
′
p1 (x′

1 s̄
′
1)) . . .

(hnp : (̄s′
np

: Φ′
pnp

) → Stepi,j t̄ x̄ Φi,j v̄
′
pnp

(x′
np
s̄′
np

)) →

Stepi,j t̄ x̄ Φi,j ū
′
p (cp t̄

′ x̄′)

(53)

We solve them by giving

λ̄t′; x′
1; . . . ; x

′
np

; h1; . . . ; hnp ;H. α, β (54)

where we still have to construct

α : ci t̄ x1 . . . xni �< cp t̄
′ x′

1 . . . x′
np

(55)

and

β : ci t̄ x1 . . . xni �≡ cp t̄
′ x′

1 . . . x′
np

(56)

For any s̄ : Φi,j , we have H : xj s̄ �< cp Δ′
p x′

1 . . . x′
np

or, by definition of �<,

H = (H1, . . . , Hnp ), where Hq : (̄s′ : Φ′
pq) → xj s̄ �� x′

q s̄′. The construction of α

reduces to the construction of components αq : Φ′
pq → ci t̄ x1 . . . xni �� x′

q Φ′
pq . But

these we can give as αq = λs̄′. hq (π1 (Hp s̄′)) (where π1 is projection onto the first

component). For constructing β, we assume ci t̄ x1 . . . xni ≡ cp t̄′ x′
1 . . . x′

np
and

derive an element of ⊥. By noConfD, it suffices to consider the case where i = p,

Δi = Δ′
i, and x1; . . . ; xni = x′

1, . . . , x
′
ni
. But then we have Hj s̄ : xj s̄ �� xj s̄, hence

π2 (Hj Φi,j) refl : ⊥. This finishes the construction of noCycleD.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 25

Fig. 8. The unification transitions represented as type-theoretic terms. Compared to

the transitions given by Goguen et al. (2006), these work with the homogeneous

equality and Φ has an additional dependence on the equality proof. Whilst these

unification transitions are the most general ones we can construct, they are not the

ones that we use for case splitting in practice. Rather, injectivity, conflict, and

cycle are replaced by their more specialized variants injectivity’ (61), conflict’

(62), and cycle’ (63).

6 Unification rules

In order to translate a node of the case tree to the application of an eliminator, we

need terms that give an account of the unification process inside of type theory itself.

In order to do this, we use the “no confusion” and “no cycle” properties from the

previous section. This results in very general unification transitions; however, they

can be difficult to apply in practice. So we also give more specialized versions of the

transitions, which we will use for the proof in the next section.

6.1 An internal representation of the unification rules

The unification transitions are given in Figure 8. Compared to Goguen et al. (2006),

working with homogeneous equality leads us very naturally to upgraded unification

transitions which are dependent on the equality proof. For example, consider a

telescope Ξ = (a : A)(b : B a) and a Ξ-elimination operator elim. Basic elim-

analysis requires us to construct methods of type Δ → a; b ≡ a′; b′ → T , or if we

expand the definition of telescopic equality:

Δ → (ea : a ≡ a′) → (ea)∗ b ≡ b′ → T (57)

The motive for eliminating a ≡ a′ is (ea)∗ b ≡ b′ → T , which depends on the proof

ea. So the dependence of Φ on the equality proofs is caused by the need to use

substitution in the definition of homogeneous telescopic equality. Intuitively, it is

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


26 J. Cockx et al.

not surprising that not assuming uniqueness of identity proofs principle leads us to

consider identity proofs relevant!

Note the lack of a deletion transition in Figure 8. The non-dependent version

of deletion given by Goguen et al. (2006) has type

(Φ : Seti) → (m : Φ) → (e : x0 ≡ x0) → Φ (58)

which can be constructed without K but would be quite useless in our situation

because Φ cannot depend on e. In contrast, a dependent deletion rule would look

like

deletion : (Φ : (e : x0 ≡ x0) → Seti)(m : Φ refl)(e : x0 ≡ x0) → Φ e (59)

which is exactly the K axiom. This is the reason for the first restriction on the

unification algorithm in our criterion, namely that the deletion rule cannot be used.

6.2 Adapting the unification rules for practical use

Another point of interest in Figure 8 is the type of Φ in the injectivity function:

It is indexed over the equality proof of the indices ūs and ūt as well as the equality

proof of c s̄ and c t̄. Whilst this is the most general form of injectivity that we can

construct, it is quite difficult to apply in practice. This is because we need equations

on each index of the datatype in addition to the equation between the constructors.

This is in contrast to the injectivity rule from Section 2.3.

To get a function corresponding exactly to the injectivity rule, we need a

more specialized version of injectivity, where the indices ūs and ūt are already

definitionally equal:

injectivitybad : (Φ : (e : c s̄ ≡ c t̄) → Seti)(m : (ē : s̄ ≡ t̄) → Φ ???)) →
(e : c s̄ ≡ c t̄) → Φ e

(60)

However, unlike injectivity such a function can not be constructed from noConfD.

This is because in order to fill in the question marks, we need a function g : s̄≡ t̄ →
c s̄≡ c t̄ such that we can prove g (noConfD (ūs; c s̄) (ūt; c t̄) refl e) ≡ e for arbitrary

e, but no such g can be found. In fact, wrongly using this transition caused a bug

in Agda’s --without-K option, allowing one to prove a weaker version of the K

axiom (Cockx, 2014).

What we can construct from noConfD is the following:

injectivity’ : (Φ : (ē : ū; c s̄ ≡ ū; c t̄) → Seti) →
(m : (ē : s̄ ≡ t̄) → Φ (noConfD

−1 (ū; c s̄) (ū; c t̄) ē)) →
(e : c s̄ ≡ c t̄) → Φ refl e

(61)

This rule is simply a specialized version of the injectivity rule in Figure 8.

However, there is still a problem with this rule. Suppose we want to use it to

construct a function of type (e : c s̄ ≡ c t̄) → Φ′ e, where Φ′ : c s̄ ≡ c t̄ → Seti, and

we want to apply injectivity’. Then, we need to find Φ : ū; c s̄ ≡ ū; c t̄ → Seti
such that Φ refl e = Φ′ e for arbitrary e : c s̄ ≡ c t̄. This is problematic because we

cannot eliminate the equations ū ≡ ū in general without using the K axiom. This is

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 27

the reason for the second restriction on the unification algorithm in our criterion,

namely that the indices ū should be self-unifiable, i.e. specialization by unification of

ū with itself should succeed positively (see below for the definition of specialization

by unification). This condition guarantees that we can construct Φ from Φ′ by

applying the unification transitions used in the self-unification of ū.

At first sight, the conflict and cycle rule suffer from the same problem as the

injectivity rule because their motive Φ depends on the proof of ūs ≡ ūt as well.

However, in these cases, the problem can be solved because both conflict and

cycle factor through the empty type ⊥. To illustrate this, suppose we want to

construct a function of type (e : c1 s̄ ≡ c2 t̄) → Φ′ e. First, we apply conflict with

Φ = λē. ⊥, giving us a function of type (ē : ū; c1 s̄≡ ū; c2 t̄) → ⊥. Filling in refl for

the equations ū ≡ ū gives us (e : c1 s̄ ≡ c2 t̄) → ⊥. Now by ⊥-elimination, we also

get a function (e : c1 s̄ ≡ c2 t̄) → Φ′ e. This gives us the following rule:

conflict’ : (Φ : (e : c1 s̄ ≡ c2 t̄) → Seti)(e : c1 s̄ ≡ c2 t̄) → Φ e (62)

Analogously we can construct a function

cycle’ : (Φ : (e : x ≡ c s̄[x]) → Seti)(e : x ≡ c s̄[x]) → Φ ē (63)

In our proof, we will use the primed variants injectivity’, conflict’, and

cycle’.

6.3 Specialization by unification

Given any type of the form Δ → ū ≡ v̄ → T (for example, the types of m1, . . . , mn in

the basic caseD analysis), we may seek to construct an inhabitant of this type, called

a specializer, by exhaustively iterating the unification transitions as applicable. Note

that the shape of the first equation in ū ≡ v̄ uniquely determines which unification

rule applies (if any), so the unification process is deterministic. In case of a positive

success, a specializer is found together with a substitution σ : Δ′ → Δ, given some

m : Δ′ → Tσ. In the case of a negative success, a specializer is found without any

additional assumptions.

As an example, suppose we want to construct a function of type

f : (n : �) → (e1 : n ≡ zero)(e2 : e∗
1 (lz n) ≡ lz zero) → T n e1 e2 (64)

i.e. we have Δ = (n : �), ū = n; (lz n) and v̄ = zero; (lz zero) (of type (m : �)(x :

zero � m)). The first unification step is solution, solving the variable n to zero

and leaving the following goal:

(e2 : lz zero ≡ lz zero) → T zero refl e2 (65)

The next step is injectivity’, but as noted in Section 6.2, this step requires us

to check first that the indices of lz zero are self-unifiable. In this case, we have

lz zero : zero � zero, so the indices are zero; zero, which can clearly be unified

with themselves by applying injectivity twice (note that injectivity is the same

as injectivity’ in this case because � is not indexed). So by injectivity on e2,

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


28 J. Cockx et al.

we can simplify the equation further to

(e′
2 : zero ≡ zero) →

T zero refl (noConf�−1 (zero; zero; (lz zero)) (zero; zero; (lz zero)) e′
2)

(66)

Finally, we apply injectivity’ to e′
2 to simplify the goal to its final form:

T zero refl refl (67)

The result of the unification process is the substitution σ = [n �→ zero] and the

specializer f of the required type, where the remaining goal is m : T zero refl refl:

f : (n : �) → (e1 : n ≡ zero)(e2 : e∗
1 (lz n) ≡ lz zero) → T n e1 e2

f = solution Φ1 (injectivity’ Φ2 (injectivity Φ3 m))
(68)

where

Φ1 = λn. λe1. (e2 : lz n ≡ lz zero) → T n e1 e2

Φ2 = injectivity Φm (injectivity Φn (λe′
2. T zero refl e2))

Φm = λem. (en : zero ≡ zero)(e2 : (em; en)∗ (lz zero) ≡ lz zero) → Set

Φn = λen. (e2 : (en)∗ (lz zero) ≡ lz zero) → Set

Φ3 = λe′
2 → T zero refl (noConfD−1 (zero; zero; (lz zero))

(zero; zero; (lz zero)) e′
2)

(69)

Evaluation behaviour of the specializer. There is something more we can say about

the evaluation behaviour of specializers when applied to refl:

Lemma 1

If specialization by unification delivers a substitution σ : Δ′ → Δ and a specializer s

satisfying

(m : Δ′ → Tσ) � s : Δ → ū ≡ v̄ → T (70)

then we have s (σ t̄) refl�∗ m t̄ for any t̄ : Δ′.

Proof

Note that the specializer s consist of a series of applications s1 (s2 . . . (sn m) . . .),

where each si : (Δi+1 → ūi+1 ≡ v̄i+1 → Tσi+1) → (Δi → ūi ≡ v̄i → Tσi) is either

solution Φi
9 or injectivity’ Φi, as the other rules cannot occur since they don’t

require a method m. Here, we have that σi : Δi → Δ such that Δ1 = Δ, ū1 = ū,

v̄1 = v̄, σ1 = id, Δn+1 = Δ′, ūn+1 = v̄n+1 = (), σn+1 = σ, and each σi+1 can be written

as σi ◦ τi for τi : Δi+1 → Δi (i.e. σ = τ1 ◦ τ2 ◦ . . . ◦ τn). Then, it is sufficient to prove

that for each si, we have si k (τi t̄) refl � k t̄ refl for arbitrary t̄ : Δi+1 and

k : Δi+1 → ūi+1 ≡ v̄i+1 → Tσi+1.

• For si = solution Φi, we have Δi = (x : A)Δi+i and τi x̄ = s; x̄ for some s : A.

So by the computation rule for applying J to refl, we have si k (τi t̄) refl =

J Φ k (τi t̄) refl� k t̄ refl.

9 Possibly composed with a dependency-preserving permutation of the arguments.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 29

• For si = injectivity’ Φi, we have Δi = Δi+1 and τi = id. As injectivity’

is constructed from noConf and isLeftInv, and both these functions map

refl to refl, we have si k (τi t̄) refl� k t̄ refl.

So we have

s (σ t̄) refl = s1 (s2 . . . (sn m) . . .) (τ1 (τ2 . . . (τn t̄) . . .)) refl

� (s2 . . . (sn m) . . .) (τ2 . . . (τn t̄) . . .) refl

� . . .� m t̄

(71)

as we wanted to prove. �

7 Eliminating pattern matching without K

In this section, we will prove our main theorem (see Section 3.4), i.e. we will

show that definitions by dependent pattern matching satisfying our criterion can

be translated to type theory with universes and inductive families, without using

the K axiom. So let f : (̄t : Δ) → T be a function given by a valid case tree. As a

running example, let f = antisym from Definition (5). For this example, we have

Δ = (m n : �)(x : m� n)(y : n� m) and T = m ≡ n.

Proof

Without loss of generality, let f be structurally recursive on some tj : D v̄, the

jth variable in Δ, where D is a datatype. In our example, antisym is structurally

recursive on all four arguments, so we arbitrarily choose to do structural recursion

on x : m� n. The basic recD-analysis of T at v̄; tj is

λms; t̄. recD P ms (v̄; tj) t̄ refl (72)

which has type

(ms : (x̄ : D̄) → BelowD P x̄ → P x̄) → (̄t : Δ) → T (73)

where P = λx̄. (̄t : Δ) → x̄≡ v̄; tj → T . In our example, we have P = λm′; n′; x′. Δ →
(m′; n′; x′) ≡ (m; n; x) → m ≡ n.

Suppose we have an m : (̄t : Δ) → BelowD P (v̄; tj) → T , then we construct

ms : (x̄ : D̄) → BelowD P x̄ → (̄t : Δ) → x̄ ≡ v̄; tj → T by applying the telescopic

equality eliminator J̄ on the equations x̄ ≡ v̄; tj . More precisely, ms is defined as

λx̄;H; t̄; ē. J̄ (λx̄; ē. BelowD P x̄ → T ) (m t̄) (sym ē) H (74)

where sym : x̄ ≡ ȳ → ȳ ≡ x̄. By Section 6.3, for any t̄ : Δ, we have

ms (v̄; tj) H t̄ refl� m t̄ H (75)

We will define f’ as

λ̄t. recD P ms (v̄; tj) t̄ refl : (̄t : Δ) → T (76)

once we have constructed a suitable m. Note that m may make “recursive calls” to f’

on arguments structurally smaller than tj using its argument of type BelowD P (v̄; tj).

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


30 J. Cockx et al.

Also, note that

f’ t̄�∗ recD P ms (v̄; tj) t̄ refl

�∗ ms (v̄; tj) (belowD P ms (v̄; tj)) t̄ refl

�∗ m t̄ (belowD P ms (v̄; tj))

(77)

In order to construct m, we proceed by induction on the structure of f’s case tree.

So suppose that we have arrived at some node with label p̄, where p̄ has pattern

variables from a telescope Θ and we wish to construct m : Θ → BelowD P (v̄; tj)τ →
Tτ, where τ = [Δ �→ �p̄�]10. Note that we have Θ = Δ at the root node. There are

three cases:

Internal node. In this case, the telescope is split on some variable y, where Θ =

Θ1(y : D’ v̄y)Θ2 and D’ is an inductive family. The basic caseD’ analysis of

BelowD P (v̄; tj)τ → Tτ at v̄y; y has type

. . . →
(mc : (̄s : Δc) → Θ → ūs; c s̄ ≡ v̄y; y →

BelowD P (v̄; tj)τ → Tτ) →
. . . →
Θ → BelowD P (v̄; tj)τ → Tτ

(78)

where there is one method mc for each constructor c of D’. In our example, the

first case split is on x : m� n, and the basic case� analysis has type

(mlz : (k m n : �)(x : m� n)(y : n� m) → (zero; k; lz k) ≡ (m; n; x) →
Below P m n x → m ≡ n)

(mls : (k l : �)(u : k � l)(m n : �)(x : m� n)(y : n� m) →
(suc k; suc l; ls k l u) ≡ (m; n; x) → Below P m n x → m ≡ n)

(m n : �)(x : m� n)(y : n� m) → Below P m n x → m ≡ n

(79)

To construct the methods mc, we apply specialization by unification on the

equations ūs; c s̄ ≡ v̄y; y, which we know will succeed by the definition of a valid

case tree in Section 2.3. For the method mlz above, the first step is to apply

solution to the equation zero ≡ m, simplifying the goal type to

m′
lz : (k n : �)(x : zero� n)(y : n� zero) → (k; lz k) ≡ (n; x) →

Below P zero n x → zero ≡ n
(80)

As another example, later on conflict is applied to the equation suc l ≡ zero

to construct a function

mlz;ls : (k l : �)(u : k � l)(y : suc k � zero) → (suc l; ls k l u) ≡ (zero; y) →
Below� P zero (suc k) (lz (suc k)) → zero ≡ suc k

(81)

10 We define the operation �p̄� as taking a pattern p̄ back to its underlying term, i.e. for a variable x,
we have �x� = x, for a constructor c, we have �c p1 . . . pn� = c �p1� . . . �pn� and for an inaccessible
pattern �t�, we have ��t�� = t.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 31

For each c with positive success, we have to deliver a

m′
c : Θ′ → BelowD P (v̄; tj)τσ → Tτσ (82)

where σ : Θ′ → ΔcΘ is the substitution found by unification. But the inductive

hypothesis for the subtree corresponding to the constructor c gives us exactly

such a function. For mlz, the goal type becomes

m′′′
lz : (k : �)(y : k � zero) → Below P zero k (lz k) → zero ≡ k (83)

after applying solution two more times, at which point we proceed with another

case split on y.

To determine the evaluation behaviour of m when applied to a constructor,

suppose we have some t̄1; c s̄; t̄2 : Θ1(y : D’ v̄y)Θ2. Note that this means we must

have ūs[Δc �→ s̄] = v̄y[Θ1 �→ t̄1], hence the equations ūs; c s̄ ≡ v̄y; y are satisfied

under the substitution mapping Δc to s̄ and Θ to t̄1; c s̄; t̄2. But σ is the most

general unifier of these equations, so there must exist some t̄′ : Θ′ such that

σ t̄′ = s̄; t̄1; c s̄; t̄2. By Lemma 1, it follows that

m (̄t1; c s̄; t̄2)�
∗ mc s̄ (̄t1; c s̄; t̄2) refl

= mc (σ t̄′)

�∗ m′
c t̄

′
(84)

Moreover, by construction of the unifier, we have that t̄′ consists of exactly those

terms in s̄; t̄1; c s̄; t̄2 that haven’t been instantiated by unification.

Empty node. We follow the same construction as in the previous case, noting that

all unifications will succeed negatively, hence no methods mc are needed. Absurd

clauses have no right-hand side, so they describe no reduction behaviour.

Leaf node. At each leaf node, we have the right-hand side Δi � ei : Tτ. We wish

to instantiate mi = λs̄;H. ei, but ei may still contain recursive calls to f. In our

example, the goal type for the second leaf node is

mls : (k l : �)(u : k � l)(v : l � k) → Below� P (suc k) (suc l) (ls k l u)

→ suc k ≡ suc l (85)

and the right-hand side is cong suc (antisym k l u v). We first have to replace

these recursive calls by appropriate calls to H : BelowD P (v̄; tj)τ. So consider

a recursive call f r̄ in ei. Since f is structurally recursive, we have rj ≺ �pi,j�,
where rj : D w̄. By construction of BelowD, we have a projection π such that

π H : (̄t : Δ) → w̄; rj ≡ v̄; tj → T . Hence, we can define e′
i by replacing f r̄ by

π H r̄ refl : T [Δ �→ r̄] in ei, and take mi = λs̄;H. e′
i. For antisym, we have

π1 H : (m n : �)(x : m� n)(y : n� m) → (k; l; u) ≡ (m; n; x) → m ≡ n (86)

so we replace the recursive call antisym k l u v by π1 H k l u v refl. When we

fill in H = belowD P ms (v̄; tj), we get

π (belowD P ms (v̄; tj)) r̄ refl

�∗ ms (w̄; rj) (belowD P ms (w̄; rj)) r̄ refl

�∗ m r̄ (belowD P ms (w̄; rj)) = f’ r̄

(87)

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


32 J. Cockx et al.

By induction, we now have the required m : (̄t : Δ) → BelowD P v̄ x → T , thus

finishing the construction of f’.

For each clause

f p̄i = ei (88)

with pattern variables s̄ : Δi at a leaf node of f’s case tree, we have

f’ �p̄i��∗ m �p̄i� (belowD P ms ū �pi,j�)
�∗ mc . . . (working our way down the case tree)

�∗ mi s̄ (belowD P ms ū �pi,j�)
�∗ e′

i[H �→ belowD P ms ū �pi,j�]
�∗ {ei}ff’

(89)

Hence, we can conclude that whenever f t̄� u, we also have f’ t̄�∗ {u}ff’, as we

wanted to prove. �

8 Making pattern matching without K less restrictive

In Section 3.5, we remarked that our criterion was more general than the syntactic

one. However, it still has some problems of its own. Suppose for example, we are

working with the inequality � indexed over finite sets Fin n, and we try to unify

two successors in the same finite set. The problem fs n x = fs n y requires solving

n = n, but then we get stuck because we cannot use deletion. It can be proven that

assuming K in general is not really needed for this example, so the criterion is still

overly conservative. We now discuss a possible solution to handle cases like this one.

Looking back at the construction of the unification transitions in Section 6, we

disallowed using deletion on an equation x = x because in general this requires

assuming K. However, for certain types of x, K can actually be proven without

assuming it as an axiom. These types are called (homotopy) sets in HoTT. For

example, � is a set (see Figure 9 for a proof of this fact), so it would be fine to use

deletion on an equation n = n when n : �. This would already solve the problem

described above.

The question then remains how to detect which types satisfy K and which do not.

One possible solution is to require the user to prove K manually for a particular type,

and then use this proof during unification by means of Agda’s instance arguments

(Devriese and Piessens, 2011). However, there is a problem with this approach: Agda

does not keep any evidence of the unification performed whilst checking a definition

by pattern matching. So if a proof of K is used that contains free variables whilst

checking a function, the fact that the proof of K contains free variables is not

reflected in the definition of that function. This could cause major problems with

typechecking later on. Additionally, the proof of K used by unification also needs to

satisfy a certain definitional behaviour: K x P p refl has to evaluate to p. Otherwise,

the definitional behaviour of the desugared function will disagree with the original

definition.

Another approach that requires less user input and less checks is to try to

automatically detect which types satisfy K. There is no general way to do this, but

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 33

Fig. 9. A proof that the type � of natural numbers satisfies K, using dependent

pattern matching with our criterion. The match on refl in the first clause passes

our criterion because the unification problem is zero = zero, which can be solved

by injectivity. The recursive call to K� in the second clause is permitted because the

first argument decreases from suc n to n. We use the functions noConf, noConf−1,

and isLeftInv constructed from eliminators in Section 5, but we could define these

functions using pattern matching as well.

we could at least try to detect easy cases like �. For example, let D be a simple

(non-indexed) datatype such that each constructor is of the form c : D → . . . →
D → D. Then, D has decidable equality, hence it is a set by Hedberg’s theorem

(Kraus et al., 2013). More generally, we will prove the following theorem:

Theorem 2

Suppose that D is an inductive family with indices Ξ and constructors ci : Δi →
D v̄i,1 → . . . → D v̄i,ni → D ūi (i.e. all recursive arguments are first-order). Suppose

moreover that we already know all types in Ξ and Δ1, . . . ,Δk to satisfy K. Then, D ū

satisfies K as well for arbitrary ū.

This criterion can be used to reintroduce the deletion step of the unification

algorithm on a more limited basis, namely to delete an equation x = x only if the

type of x can be seen to be a set based on the criterion.

Proof

We will first construct a variant of K:

K′
D : (x̄ : D̄)(Φ : x̄ ≡ x̄ → Seti) → Φ refl → (ē : x̄ ≡ x̄) → Φ ē (90)

By recD, during the construction of K′
D, we can assume to have a proof of (Φ :

ȳ ≡ ȳ → Seti) → Φ refl → (ē : ȳ ≡ ȳ) → Φ ē for all ȳ ≺ x̄. We start by applying

elimD to x̄, requiring us to provide for each constructor ci : Δi → D ūi a method

mi : (ē : ūi; ci s̄i ≡ ūi; ci s̄i) → Φ ē, given Φ : (ē : ūi; ci s̄i ≡ ūi; ci s̄i) → Seti and

a proof φ : Φ refl. We construct mi by applying injectivity Φ (see Figure 8),

reducing the goal to finding a m′
i : (ē : s̄i ≡ s̄i) → Φ (noConfD−1 (ūi; ci s̄i) (ūi; ci s̄i) ē).

Now, note that the types of all s̄i satisfy K: For the non-recursive arguments, this is

true because they come from Δi, and for the recursive arguments, this holds because

of the inductive hypothesis. So by K for these types, we can assume ē to be refl,

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


34 J. Cockx et al.

reducing the goal to Φ (noConfD−1 (ūi; ci s̄i) (ūi; ci s̄i) refl) � Φ refl. But this is

exactly the type of φ, completing the construction of KD
′.

Finally, we construct KD : (x : D ū)(Φ : x ≡ x → Seti) → Φ refl → (e : x ≡ x) →
Φ e from K′

D. Since the index types Ξ of D all satisfy K, we can eliminate all but the

last equation of x̄≡ x̄ in the type of Φ to construct KD : (x : D ū)(Φ : x≡x → Seti) →
Φ refl → (e : x ≡ x) → Φ e. More explicitly, KD x Φ φ e = K′

D (ū; x) Φ′ φ (refl; e),

where

Φ′ = KΞ ū (λē. subst D x ū ē ≡ x → Seti) Φ (91)

and KΞ : (ū : Ξ)(Φ : ū≡ ū → Seti) → Φ refl → (ē : ū≡ ū) → Φ ē can be constructed

from the proofs of K for the individual types in Ξ. So this also concludes the

construction of KD. �

Note that the term proving K constructed by this theorem does not satisfy the

usual computational behaviour of the general K axiom 15 that K P p refl � p.

The reason for this is that it is defined by induction on x̄ : D̄, so it is stuck if x̄ is

normal. As a consequence, if this proof of K is used for compiling a definition by

pattern matching to eliminators, then Lemma 1 will fail to hold, and the result will

not satisfy the reduction behaviour on open terms given in Theorem 1. However,

any construction of K for a datatype that only uses the eliminator of that datatype

will necessarily have to be recursive on the datatype, so there is no way to fix

this problem without extending the theory with additional evaluation rules that go

beyond the type theory presented in this paper.

9 Related work

Most implementations of dependent pattern matching in the style of Coquand

(1992) do this by assuming the K axiom. Examples include Agda (when – with-

out K is not enabled), Epigram (McBride and McKinna, 2004; McBride, 2005),

Idris (Brady, 2013), the pattern matching construct for Coq described by Barras

et al. (2009), and the Equations package for Coq described by Sozeau (2010).

Coq also support a more primitive notion of pattern matching via the match

construct in Gallina (The Coq development team, 2012). The full version of this

construct is

match e as x in D ū return P with

| c1 ȳ1 ⇒ e1

| . . .

| cn ȳn ⇒ en

end

(92)

In the language of this paper, this corresponds to

caseD (λū; x. P ) (λȳ1. e1) . . . (λȳn. en) e (93)

Coq also allows skipping the parts labelled by as, in, and return, in which case it

will attempt to construct the motive P automatically.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 35

Note that the motive P must be fully generalized over the indices ū, ensuring

that no unification is necessary. Hence, this kind of matching also prevents us from

proving K. However, it is more low level than the kind of pattern matching described

in this paper, because it requires the user to give each case split explicitly, and does

not perform any unification.

Recently, a new version of the Equations package for Coq has been developed

that also supports pattern matching without assuming the K axiom

(Mangin and Sozeau, 2015; Sozeau, 2015). Similarly to the work presented in this

paper, it uses a generalization of homogeneous telescopic equality to achieve compi-

lation of pattern matching definitions without K. In contrast to the implementation

of our criterion in Agda, the Equations package also performs the actual translation

of definitions by pattern matching to eliminators. It also allows the use of the deletion

rule in some cases that are non-dependent or justified by user-provided instances

of K.

The Lean theorem prover (de Moura et al., 2015) is a new dependently typed

language that also supports dependently typed pattern matching by a translation

to eliminators, similar to the Equations package. Lean can currently be used with

two instantiations of its core theory: one based on the Calculus of Inductive

Constructions which allows proving K, and a second one based on HoTT which

doesn’t. So using this second instantiation also allows one to use dependent pattern

matching without relying on the K axiom. The authors cite the conference version

of our current paper as an important source of inspiration for the implementation

of the Lean system.

An unpublished first version of dependent pattern matching by McBride (1998)

also used homogeneous equality with telescopic substitution and hence a proof-

relevant unification algorithm. Similar to our present work, he observes that the

innocent-looking deletion rule turns into the rather less innocent K. However, the

published version of this work uses the heterogeneous equality, thus making it rely

on K. This resulted in a significant simplification by avoiding dependency on equality

proofs. In our current work, this extra complexity becomes a feature.

In his thesis, Boutillier (2014) describes an algorithm for compiling definitions by

pattern matching to eliminators in Coq. The criterion he uses is very similar to the

old criterion used by Agda: In order to perform a case distinction on a variable of an

inductive family, the indices need to be constructors applied to distinct variables, and

those variables must not occur in the parameters. To this, he adds a preprocessing

step where indices are erased if they are not used in the return type or if they are

determined by the type of the other indices. For the translation, he constructs a

diagonalizer based on the skeleton of the indices, encoding the induction principle for

a particular subset of the inductive family. Compared to our work, Boutillier doesn’t

give a closed criterion for when a definition by pattern matching is acceptable in a

theory without K. Instead, he provides a desugaring of which the result still has to

be checked by Coq. In our opinion, this is bad practice because it requires the user

to be aware of about the desugaring in order to predict whether a definition will be

accepted. In contrast, our criterion only requires the user to know the unification

algorithm in order to predict its behaviour. The computational behaviour of the

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


36 J. Cockx et al.

desugaring also seems more like an afterthought in Boutillier’s work, whilst it is an

essential part of ours. Nevertheless, he does a better job than us of analysing whether

an argument is actually used, either in the type of a later argument or in the return

type. This gives a good heuristic for preprocessing pattern matching definitions in

order to remove superfluous uses of K, so it could be used complementarily to our

criterion.

10 Future work

Automatic translation to eliminators. One thing we noticed during the writing of

this proof is how easily a small mistake can have grave impact on the soundness.

For example, it was only after a long time that we realized just disabling deletion

was not enough, but that the injectivity rule also subtly depends on K. To increase

our confidence, we should make the typechecker of our languages perform the

translation from pattern matching to a core calculus in practice. This is already done

in Epigram (McBride and McKinna, 2004; McBride, 2005) and in the Equations

package for Coq by Sozeau (2010). The latest version of the Equations package can

also avoid using K (Sozeau, 2015). A very appealing idea to continue this line of

work is to perform the compilation of dependent pattern matching to eliminators

inside the type theory itself by means of datatype-generic programming as described

by Dagand (2013), which would increase our confidence in the translation even

further.

Type class approach for user-provided instances of K. As mentioned in Section 8,

two problems prevent us from using the type class approach for user-provided

instances of K in our current Agda implementation: These instances might contain

free (meta-)variables, and they might not have the correct reduction behaviour.

However, if Agda were to actually perform the desugaring of pattern matching to

eliminators, it seems possible to soundly integrate such user-provided K instances

into the desugared functions, even if they contain free variables or axioms. We expect

that the resulting desugared functions would be type-safe, but their computational

behaviour would depend on the computational behaviour of the user-provided K

instances: If these do not reduce to refl when applied to refl, the function clauses

would not hold definitionally. We think it could be interesting to investigate whether

such a solution would be useful in practice.

A global view on unification problems. In the treatment of the unification rules in

Section 6, we were forced to work with a specialized version of the injectivity rule

rather than the fully general one. The main reason is that our current approach

only deals with one equation at a time. In a new paper (Cockx et al., to appear), we

solve this limitation by taking a global view at unification problems and tracking

how exactly the type of certain equations depends on others.

Adaptation to cubical type theory. The current version of our criterion (and the

corresponding proof) are written for an Agda-like theory based on Unified Theory

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 37

of Dependent Types (Luo, 1994). In such a theory, principles such as functional

extensionality or univalence can be postulated but they don’t get any computational

behaviour. On the other hand, a new and promising theory called cubical type

theory (Bezem et al., 2014; Cohen et al., 2015) gives a constructive interpretation to

the univalence axiom, and hence also functional extensionality. In the future, we

would like to adapt the work in this paper to this setting, so our criterion would

become usable in languages based on cubical type theory as well.

One obstacle for this adaptation is the fact that the representation of data

types in our theory (and also that of Agda, Coq, Idris, . . . ) is computationally

incompatible with functional extensionality. We will give an example to illustrate the

problem.11 Let Favourite : (� → �) → Set be a data type with one constructor

favourite : Favourite (λx. 0+x). We can give a proof p of (x : �) → 0+x≡x+0,

so we have ext p : λx. 0 + x ≡ λx. x + 0 and thence

subst Favourite (ext p) favourite : Favourite (λx. x + 0) (94)

However, there is no closed canonical form of type Favourite (λx. x+0) so this term

doesn’t reduce to a canonical form. This cannot be fixed by taking the constructor

itself to be the canonical form (i.e. by letting favourite : Favourite (λx. x+0)), as

this would require the typechecker to check whether two functions are extensionally

equal, which is undecidable in general.

This incompatibility could be solved by using a different internal representation

of data types where each constructor carries explicit proofs of the constraints it

imposes on the indices. For example, favourite would have the internal type

(e : f ≡ (λx. 0 + x) → Favourite f. The surface-level constructor can then be

represented as favourite refl, whilst subst Favourite (ext p) favourite will

compute to favourite (ext p). With this representation of data types, the work

done in this paper is just as necessary as before (modulo some details in the final

proof), since we still need unification to solve the (telescopic) equations embedded

in the constructors.

Pattern matching with higher inductive types. Our criterion makes it possible to do

pattern matching on regular inductive families without assuming K. But HoTT also

introduces the concept of higher inductive types, which can have non-trivial identity

proofs between their constructors. This implies that in general they do not satisfy

the injectivity, disjointness, or acyclicity properties. Luckily, the proof given in this

paper is entirely parametric in the actual unification transitions that are used. So in

order to allow pattern matching in a context with higher inductive types, we should

start by limiting the unification algorithm further, for example, by cutting out the

“no confusion” and “cycle” properties for types to which they don’t apply.

As a second step, these principles can be replaced by type-specific solvers that

exploit any extra structure which may be available. For example, the “no confusion”

principle in this paper is very similar to the encode/decode technique used by Licata

11 Thanks to Conor McBride for pointing out the problem and giving this example.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


38 J. Cockx et al.

and Shulman (2013) to calculate the fundamental group of the circle. In particular,

they also construct an equivalence between an equality/path type and a type of

codes taking the role of our NoConfusion type. So it may be possible to construct

a new unification rule for the circle type based on this equivalence. Future research

will have to show how much of the original pattern matching algorithm can be

salvaged in this setting.

11 Conclusion

Dependent pattern matching is an important tool for writing dependently typed

functions and proofs in a readable way, but so far it needed the K axiom to

function. What this paper shows, is that there is no need to throw out the baby with

the bath water: By carefully analysing where K is used, we can give a restricted

formulation of dependent pattern matching that does not need it. We hope that this

is enough to convince the HoTT community that pattern matching does not require

K an sich, and maybe even helps in the creation of a practical language based on

HoTT.

References

Altenkirch, T. (2012) Without-K problem. Available at: https://lists.chalmers.se/

pipermail/agda/2012/004104.html. On the Agda mailing list. (last accessed date

09/08/2016)

Augustsson, L. (1985) Compiling pattern matching. In Functional Programming Languages and

Computer Architecture: Nancy, France, September 16–19, 1985, Jouannaud, J.-P. (ed), Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 368–381.

Barras, B., Corbineau, P., Grégoire, B., Herbelin, H. & Sacchini, J. L. (2009) A new

elimination rule for the calculus of inductive constructions. In Types for Proofs and

Programs: International Conference, TYPES 2008 Torino, Italy, March 26–29, 2008 Revised

Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 32–48.

Bezem, M., Coquand, T. & Huber, S. (2014) A model of type theory in cubical sets. In 19th

International Conference on Types for Proofs and Programs (TYPES 2013), Matthes, R.

and Schubert, A. (eds), Leibniz International Proceedings in Informatics (LIPIcs), vol. 26.

Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 107–128.

Boutillier, P. (2014) De nouveaux outils pour Calculer avec des inductifs en Coq. PhD Thesis,

Université Paris-Diderot-Paris VII.

Brady, E. (2013) Idris, a general purpose dependently typed programming language: Design

and implementation. J. Funct. Program. 23(5), 552–593.

Cockx, J. (2014) Yet another way Agda –without-K is incompatible with univalence.

Available at: https://lists.chalmers.se/pipermail/agda/2014/006367.html. On the

Agda mailing list. (last accessed date 09/08/2016)

Cockx, J., Devriese, D. & Piessens, F. (2014) Pattern matching without K. In Proceedings

of the 19th ACM SIGPLAN International Conference on Functional Programming. New

York, NY, USA: ACM, pp. 257–268.

Cockx, J., Devriese, D. & Piessens, F. (to appear) Unifiers as Equivalences: Proof-relevant

unification of dependently typed data. In Proceedings of the 21th ACM SIGPLAN

International Conference on Functional Programming. ACM.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


Eliminating dependent pattern matching without K 39

Cohen, C., Coquand, T., Huber, S. & Mörtberg, A. (2015) Cubical type theory:

A constructive interpretation of the univalence axiom. http://www.cse.chalmers.

se/~coquand/cubicaltt.pdf (last accessed date 09/08/2016)

Coquand, T. (1992) Pattern matching with dependent types. In Proceedings of the 3rd Workshop

on Types for Proofs and Program, pp. 66–79.

Dagand, P.-E. (2013) A Cosmology of Datatypes: Reusability and Dependent Types. PhD Thesis,

University of Strathclyde.

Danielsson, N.-A. (2013) Experiments related to equality. Available at:

http://www.cse.chalmers.se/~nad/repos/equality/. Agda code. (last accessed

date 09/08/2016)

de Moura, L., Kong, S., Avigad, J., van Doorn, F. & von Raumer, J. (2015) The lean

theorem prover (system description). In Proceedings of 25th International Conference on

Automated Deduction (CADE-25), Felty, P. Amy and Middeldorp, A. (eds). Cham: Springer

International Publishing, pp. 378–388.

Devriese, D. & Piessens, F. (2011) On the bright side of type classes: Instance arguments in

Agda. In ACM SIGPLAN International Conference on Functional Programming (ICFP),

New York, NY, USA: ACM, pp. 143–155.

Dybjer, P. (1991) Inductive sets and families in Martin-Löf’s type theory and their set-

theoretic semantics. In Proceedings of the 1st Workshop on Logical Frameworks, Huet, G.

and Plotkin, G. (eds) pp. 213–230.

Goguen, H., McBride, C. & McKinna, J. (2006) Eliminating dependent pattern matching. In

Algebra, Meaning, and Computation: Essays dedicated to Joseph A. Goguen on the Occasion

of His 65th Birthday. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 521–540.

Hofmann, M. & Streicher, T. (1994) The groupoid model refutes uniqueness of identity proofs.

In Proceedings of the 9th Annual IEEE Symposium on Logic in Computer Science (LICS),

pp. 208–212.

Jouannaud, J.-P. & Kirchner, C. (1990) Solving Equations in Abstract Algebras: A Rule-Based

Survey of Unification In Computational Logic: Essays in Honor of Alan Robinson, Lassez, J.

L. (ed).

Kraus, N., Escardó, M., Coquand, T. & Altenkirch, T. (2013) Generalizations of Hedberg’s

theorem. In Typed Lambda Calculi and Applications, Hasegawa, M. (ed). Springer, pp.

173–188.

Kraus, N. & Sattler, C. (2015) On the hierarchy of univalent universes: U(n) is not n-truncated.

ACM Trans. Comput. Logic. 16(2), 18:1–18:12. New York, NY, USA: ACM.

Licata, D. (2011) Just kidding: Understanding identity elimination in homotopy

type theory. Available at: http://homotopytypetheory.org/2011/04/10/just-

kidding-understanding-identity-elimination-in-homotopy-type-theory/. (last ac-

cessed date 09/08/2016)

Licata, D. R. & Shulman, M. (2013) Calculating the fundamental group of the circle in

homotopy type theory. In Proceedings of 28th Annual IEEE/ACM Symposium on Logic in

Computer Science.

Luo, Z. (1994) Computation and Reasoning: A Type Theory for Computer Science, International

Series of Monographs on Computer Science, vol. 11.

Mangin, C. & Sozeau, M. (2015) Equations for hereditary substitution in Leivant’s predicative

system F: A case study. In Proceedings of the 10th International Workshop on Logical

Frameworks and Meta-Languages: Theory and Practice, Cervesato, I. and Chaudhuri K.

pp. 71–86.

Maranget, L. (2008) Compiling pattern matching to good decision trees. In Proceedings of

the 2008 ACM SIGPLAN Workshop on ML. New York, NY, USA: ACM, pp. 35–46.

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174


40 J. Cockx et al.

Martin-Löf, P. (1984) Intuitionistic Type Theory. Naples: Bibliopolis Number 1 in Studies in

Proof Theory, vol. 76.

McBride, C. (1998) Towards dependent pattern matching in LEGO. TYPES meeting.

McBride, C. (2000) Dependently Typed Functional Programs and their Proofs. PhD Thesis,

University of Edinburgh.

McBride, C. (2002) Elimination with a motive. In Types for Proofs and Programs: International

Workshop, TYPES 2000 Durham, UK, December 8–12, 2000 Selected Papers, Callaghan, P.,

Luo, Z., McKinna, J., and Pollack, R. (eds). Berlin, Heidelberg: Springer Berlin Heidelberg,

pp. 197–216.

McBride, C. (2005) Epigram: Practical programming with dependent types. In Advanced

Functional Programming Vene, V. and Uustalu. T. (eds). Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 130–170.

McBride, C. & McKinna, J. (2004) The view from the left. J. Funct. Program. 14(1), 69–111.

McBride, C., Goguen, H. & McKinna, J. (2006) A few constructions on constructors. In Types

for Proofs and Programs, Filliâtre, J.-C., Paulin-Mohring, C., and Werner, B. (eds). Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 186–200.

Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type

Theory. PhD Thesis, Chalmers University of Technology.

Norell, U., Abel, A. & Danielsson, N. A. (2012) Release notes for Agda 2 version 2.3.2. Avail-

able at: http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Version-2-3-2.

(last accessed date 09/08/2016)

Paulin-Mohring, C. (1993) Inductive definitions in the System Coq - rules and properties. In

Proceedings of the International Conference on Typed Lambda Calculi and Applications,

TLCA ’93. London, UK: Springer-Verlag, pp. 328–345.

Reed, J. (2013) Another possible without-K problem. Available at:

https://lists.chalmers.se/pipermail/agda/2013/005578.html. On the Agda

mailing list. (last accessed date 09/08/2016)

Sicard-Ramı́rez, A. (2013) –without-K option too restrictive?. Available at:

https://lists.chalmers.se/pipermail/agda/2013/005407.html. On the Agda

mailing list. (last accessed date 09/08/2016)

Sozeau, M. (2010) Equations: A dependent pattern-matching compiler. In Interactive Theorem

Proving, Kaufmann, M. and Paulson, L. C. (eds). Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 419–434.

Sozeau, M. (2015) Coq support for HoTT. In Workshop on Homotopy Type Theory / Univalent

Foundations.

The Coq development team. (2012) The Coq Proof Assistant Reference Manual. LogiCal

Project. Available at: http://coq.inria.fr. Version 8.4.

The Univalent Foundations Program. (2013) Homotopy Type Theory: Univalent Foundations

of Mathematics. Available at: http://homotopytypetheory.org/book, Institute for

Advanced Study. (last accessed date 09/08/2016)

https://doi.org/10.1017/S0956796816000174 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000174

	Introduction
	Dependent pattern matching: behind the scenes
	Case trees
	Structural recursion
	Unification of the indices

	A criterion for pattern matching without K
	Restricting the unification rules
	Examples and counterexamples
	Interaction with termination checking
	Soundness
	Comparison with the syntactic criterion
	Implementation

	Type theory
	A few homogeneous constructions on constructors
	Example: binary trees
	The general case

	Unification rules
	An internal representation of the unification rules
	Adapting the unification rules for practical use
	Specialization by unification

	Eliminating pattern matching without K
	Making pattern matching without K less restrictive
	Related work
	Future work
	Conclusion
	References

