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SMOOTHNESS OF SOLUTIONS OF STOCHASTIC EVOLUTION
EQUATIONS AND THE EXISTENCE
OF A FILTERING TRANSITION DENSITY

B. L. ROZOVSKII anp A. SHIMIZU

In this paper, we shall discuss the smoothness of solutions of stochas-
tic evolution equations, which has been investigated in N. V. Krylov and
B. L. Rozovskii [2] [3], to establish the existence of a filtering transition
density.

First, we introduce the filtering equation, which has been discussed
in [1] [3] [6] and [9]. Let us consider the system (x,y,) given by the
stochastic differential equation

dx, = a(x,, y,, t)dt + b(x,, y,, )dy,
dyt = A(xm Ve t)dt + B(yt"’ t)d”z
xo = 0’ y0= 5’ te[o’ T]’ T< +°° ’

where v = {v}icr0,r; is a (d + d;)-dimensional Brownian motion defined on
a complete probability space, and @, A,b and B are matrices of type
dx1l d X1, dxX(d+d) and d, X (d + d,) respectively. We denote by
FY the complete c-algebra o{y,0<7<1t}. Let us denote by P,[f] a
measurable modification of the conditional expectation E[f(x.,y.,t)|FF].

We put
C = (BB*)'2, B(x,y,8) = CA,
w, = | Cy, 0y, - | Pplde,
¥ =, + [ Plglds

and

p, = exp {—L P.[fldw. — %L PRI df} .
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196 B. L. ROZOVSKII AND A. SHIMIZU

Here, |-| denotes the norm in R* and @, is a d,-dimensional F}-Brownian
motion. Under the assumptions A)-A,) in §1 in [3], it is known that
?,[9] = P.ple?, ne C(RY), satisfies the next equation

0.1) do.[y] = @.[Lyldt + 9.[Myldy; ,

where Cy(R%) denotes the space of C~-functions with compact support,
L is a differential operator of second order, M is a differential operator
of first order, and the coefficients of the both operators L and M depend
on t, x and w. To state Equation (0.1) precisely, we need some preliminaries.
We denote by a,,(x, y, t) the (i, j)-component of the matrix }b(x, y, {)b*(x, y, t),
a,(x,y, ©) denotes the i-th component of the vector a and g,.(x,y, f) means
the k-th component of the vector f(x,y,t). Put

a(x’ Y, t) = C(y, t)B(y’ t)b*(x9 Y, t) ’

and let a;(x,y,t) be the (i, j)-component of the matrix a(x,y,?). Then,
the operators L and M can be written as follows:

d ( t) aZ
X, Yy
i, j=1 H yt axiaxj

My = My, My, - - -, M,)

a
L77 = Z ai(x9 Yes t)iﬂ + 7
=1 ox;

and
d
Mkﬂ = ‘Bk(x9 Yis t)?] + Zlaki(x, Yes t)a_i‘v ’ (k = 1’ 2’ Tty dl) .
= i
In this paper, we shall study the Cauchy problem of Equation (0.1)
with the initial condition
0.2) D.[5] = 5(2) for all e C°(R?),

where z is an arbitrarily fixed point in R% Making use of Sobolev’s
lemma (Theorem 2.2 in [3]), we can see that there exists a process 4 in
a space H}*(s, T'), which will be defined in § 1, such that

@3[77] = (‘I’n ﬂ)]a/z[ ’

where ]d/2[ is the smallest natural number bigger than d/2, and (-, -)iu.
is the inner product of the Sobolev space Wj*%(R%). Hence, Equation (0.1)
with initial condition (0.2) can be written in the form

©3) o= G+ [ G e + [ o, MDY,
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where [ = ]d/2[.¥> By the Girsanov’s theorem we see that Equation (0.3)
can be regarded as follows:

04) o = (o + || Gho Iz + [ oy M),

Here,

[ o dindwo, = 3 [ (o Minpdt,

where w, = (W})i-1,3,....4, is a F¢-Brownian motion .

From §1, the o-algebra FY will be denoted by F, for simplicity, and
w, will be replaced by the notation B..

We shall make the same assumptions on the coefficients of the oper-
ators L and M as in [2], which will be stated in §1. By a solution of
Equation (0.4), we mean a function <, e Hi(s, T) with values in WEH(R?)
for each (f, w) and finite E[||y,|]1** for all ¢, which satisfies Equation (0.4)
for any pe Cy(R? and tels, T] with probability 1. N. V. Krylov and
B. L. Rozovskii [2] investigated the existence, the uniqueness and the
smoothness of solutions of Equation (0.4). In the introduction, we will
state our results for simplicity only in the case that the coefficients of
L and M are sufficiently smooth. That is, in addition to the assumptions
in [2], we assume here in the introduction that the coefficients of L and
M are C=-functions in x for each (¢, ), and that their derivatives do not
exceed a constant K in absolute value for any (4, x,w) and «. In this
case, the Krylov-Rozovskii’s result on the smoothness of solutions (Theorem
2.2 in [2]) can be stated as follows: Let m = 0. If E[|\r|k.»] is finite,
then the solution +, of Equation (0.4) belongs to the space ﬁ}‘*“*‘(s, ).
In this statement, it should be noticed that the smoothness of the solu-
tion depends on the smoothness of the initial data y. Under the initial
condition (0.2), we can assume y € W!(R%), but we can not suppose further
smoothness of y. Therefore, we should remove the condition on the smo-
othness of y to discuss the smoothness of the solution . Our result on
the smoothness of the solution of Equation (0.4) can be formulated as
follows: The solution +, of Equation (0.4) satisfies ¥ ,(x, ) € (. W(R?) for
each (¢, )€ (s, T1 X 2. Since we obtain this result without the smoothness
of 7, we shall obtain the following expression for the solution @* of
Equation (0.1) with initial condition (0.2): @* can be expressed in the form

* ¢ is a function in WY(R4) such that 7(2) = (, 7).
#% ||.||, denotes the norm of the Sobolev space Wi(R%).
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o[y = Im é(s, 2, t, x; o)p(x)dx , (t,z,x)e (s, T] X R* X R?,

for any ne Cy(R?), where ¢(s, 2, t, x; w) = (I — ), I is the identity oper-
ator and 4 is the Laplace operator.

§1. Notation and results

Let R¢ be the d-dimensional Euclidean space, T a fixed positive
number, (2, F, P) a complete probability space {F}.cnr; an increasing
family of complete c-algebras contained in F, d, a positive integer, and
{Bi}ieo,r; @ di-dimensional F,-Brownian motion. We shall fix a basis in
R® and denote by «,a;, 8,7 - - - arbitrary unit coordinate vectors as well
as the zero vector. If @ = 0, then D* denotes the identity operator, while
if « is the i-th basis vector, then D* = 9/dx".

We suppose that the coefficients a,(x, y,, £), ax,(x, ¥;, ) of the operators
L and M are differentiable in x, then it is obvious that the operators L
and M can be written as follows.

Ly = (—=1)'*'*""\D¥az*(x)Dy) ,
and
My = (—1)'"'Da;(x) ,

where ai*(x) are real functions defined on [0, '] X R? X £, ai(x) are func-
tions with values in R? defined on the same space, |-| is the norm of the
d-dimensional Euclidean space, and the argument o is omitted as a rule.
Here and throughout the paper, the summation convention is in force for
repeated indices. WZH(R?) is the Sobolev space of all real functions +
defined on R¢ with finite norm

......

where D=t ... D* are generalized derivatives of v, and |-| denotes the
norm of the space L*(R%).

We will mention the assumptions on the coefficients af?(x), ai(x) of
the operators L and M. We denote by B([0, T]) the Borel sets in [0, T7,
and by B(R? the Borel sets in R¢. For the rest of this paper, we shall
make the following assumptions:

Let us fix positive constants K, § and an integer m = 0.
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A) The functions a?*(x) and ai(x) are B([0, T) X B(R?) X F-measurable,
and they are F,-measurable for each (, x).

B) For all x,£e R? te [0, T] and w e 2, the inequality

2 3 ar@ee —| 3 a@e| z ol

lal=]p1=1

holds where &¢ is the i-th coordinate of & if a is the i-th coordinate
vector.

C) The functions a#(x), a?(x) and their derivatives in x up to m
inclusive are continuous in x for each (¢, w); these functions and their
derivatives do not exceed a constant K in absolute value (in length, for
the vectors a,x)) for any (f, x, w) and «a.

Let s be a real number such that se[0, T], and we will introduce
the spaces Hf(s, T) and I-L"“(s, T). We denote by Hi(s, T) the space of
L*(R%)-valued functions y = v, (0) defined on [s, T] X £ such that

1) 1,(w) is measurable in (¢, w), and for each ¢ it is F,-measurable
in .

2) (w) e WHR?) for almost all (¢, w), and

il = (B[ 1 ae])” < +oo.

Here, measurability of ¢ = v, (0) is understood in the sense of measur-
ability of functions with values in a metric space L*(R%). It is well-known
that this measurability is equivalent both to strong and to weak measur-
ability.

By fI;‘“(s, T) we denote the subspace of H*!(s, T') consisting of func-
tions ¢ = ¥, (w) with values in W¥(R?) for each (¢, w)els, T] X 2, such
that E[||v.|2] < +o for all tes, T]. Let us consider the next stochastic
evolution equation

o Do = G Do + || (D (= D0 D), e
1.1) *

+ [ @, axwm.dB. + [ (£, e,

where scalar products are intended by the notation in the third term in
the right hand side, and n =1+ 1.

From now on, we assume that the coefficients aj(x) for |¢| =1 are
(n + 1)-times continuously differentiable in x for each (¢, »), and that their
derivatives in x do not exceed a constant K in length for any (¢, x, »)
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and «. By a solution of Equation (1.1), we understand a function + €
Jn+y(s, T) which satisfies Equation (1.1) for any 7€ Cy(RY and tels, T
with probability 1.

We should give a notice that the equality

(1'2) (A_jv, 77)j+k = (Uy 7])1: s A=1—-4 )

holds for any ve WXR?% and ne Wi**(R%) if j is an integer and % is a
non-negative integer such that j + 2>=0. When f=0 in (1.1), we can
see by (1.2) that a process v with initial data y satisfies (0.4) if and
only if A~y with initial data 4~'y satisfies (1.1).

Then, we shall obtain

THEOREM 1. Let n < m. Fix a non-negative integer k such that n +
k< m. Suppose that ai(x) for |a|= 1 have derivatives of order n+ k + 1 with
respect to x which are continuous in x for each (t, ») and uniformly bounded
in a,t,x and o in the sense of length of d-dimensional vectors, and that
r = 7(x, 0) belongs to Wr**(R?) for each o and El|y|z:..) is finite. Besides,
if [ e Hp¥s, T), then Equation (1.1) has a solution e Hp+*+1(s, T).
Especially when k = 0 and f = 0, Equation (1.1) has a solution, and hence
Equation (0.4) has a solution 1, e Ho+\(s, T).

Here, we will write the results on the uniqueness of solutions which
have been obtained in [2].

ProrosiTioN 1 ([2]; TuEOREM 2.1). Let n < m. We assume that ai(x)
for |a| = 1 have derivatives of order n + 1 with respect to x which are con-
tinuous in x for each (t, ») and uniformly bounded in a,t,x and o in the
sense of length of vectors. Let ' and «* be solutions of Equation (1.1).
Then E[|v; — ¥i|E] = 0 holds for all te (s, T].

ProrosiTioN 2 ([2]; Corollary 2.1). Letl + 1 < m. Suppose that ai(x)
for |a| = 1 have derivatives of order I 4+ 2 with respect to x which are con-
tinuous in x for each (t, w) and uniformly bounded in a,t,x and o in the
sense of length of vectors. Let ' and " be solutions of Equation (0.4).
Then, E[||v: — ¥i|2] = 0 holds for all te s, T].

Making use of Theorem 1 and Proposition 1, we shall obtain

THEOREM 2. Let n < m. Suppose that ai(x) for |a| = 1 have derivatives
of order n + 1 with respect to x which are continuous in x for each (i, w)
and uniformly bounded in a,t,x and » in the sense of length of vectors,
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and that y = r(x, w) belongs to W}(R*) for each w and El||r|}] is finite.
Then, Equation (0.4) has a solution +r, such that ¥(x, w) € W *R?) for each
twe( T X Q.

Theorem 2 and Proposition 2 imply

CoroLLARY TO THEOREM 2. Let 2n < m. Suppose that ai(x) for |a| =
1 have derivatives of order n + 2 with respect to x which are continuous
in x for each (t, w) and uniformly bounded in a,t, x and o in the sense of
length of vectors. Then, the Cauchy problem of Equation (0.1) with initial
condition (0.2)* has a unique solution @:-], which can be expressed in the
form

ol = [ 96 2tz ohwdx,  tes, 71,

where ¢(s, 2, t, x; w) € W ™(R?) for (z,t,0) e R X (s, T]1 X 2 as a function
of x.

Remark. Theorem 2 can be regarded as an extension of the existence
and smoothness theorem of fundamental solutions of parabolic differential
equations, whose proof has been given in [8].

§2. Proof of Theorem 1

First, we should give the preliminaries of the proof. We will give a
quick review on the result obtained by N. V. Krylov and B. L. Rozovskii
in [4] and [5]. Here, their result will be given in a simpler case than in
[4] and [5].

Let H be a real separable Hilbert space, and let V be a reflexive real
separable Banach space. {B},cqn,r; denotes a F,-Brownian motion with
values in the d-dimensional Euclidean space R? (In [4] and [5], the space
R? was replaced by a real separable Hilbert space E.). Suppose that V
C H= H* c V*, that the imbedding mappings are dense and continuous,
and that (v*, v) = (v*, v)** if v*e H. Here, V*(H*) denotes the space

* By a solution of the Cauchy problem (0.1) with (0.2), we mean a real valued function
@,[7] defined on [s, T] X 2 X C(R%) such that (i) for each (¢,w)e[s, T] X 2, ®;[7] is a linear
fnnctional on C(R?), the space of all bounded continuous functions on R¢, satisfying
|Di[7]| < B, supzere | 7(®)| for (t,x,7)e[s, T1 X 2 X C(R?), where p; is a version of p; con-
tinuous for all we 2, (ii) for each 7, @,[7] is (¢, w)-measurable, (iii) for each (¢, 7), D:[7]
is F;-measurable, (iv) for each (o,7), #;[7] is t-continuous and (v) @[] satisfies (0.1)

and (0.2).
**) (., +) denotes the inner product of the Hilbert space H.
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of linear functionals on V (resp. H), and {(v*, v) means the value of
vke V¥ at ve V.

Let A(-, t,0) and B(-,t, 0) = (B'(-, t, ®));-1,....;, be mappings defined on
V with values in V* and H* = H X H X --- X H (d,-fold) respectively for
all (¢, w). For each ve V, the functions A(v, ¢, w) and B(v, {, ») are meas-
urable in (¢, ) (with respect to the dt X dP-completed algebra), and F.-
measurable in o for fixed te[s, T1.

Let us consider the following It6’s equation

@1 o, =u, + j " A, 7, 0)de + I ‘B(u,r,w)dB., tels, T],

where B(u., z, 0)dB, in the right hand side in (2.1) means the inner product.
A function u,(w) with values in H, defined on [s, T'] X £ is called a solu-
tion of Equation (2.1) if it is measurable in (¢, w) and F,-measurable for
each tels, T, and if it belongs to L*[s, T'] X 2, V) N L¥R, C([s, T]; H))
and satisfies Equation (2.1) (as an equation in V*) for all te[s, T] with
probability 1.

We assume the following conditions (A.I)-(A.IV) on the functions
A(v, t, ) and B(v, t, ), which will be denoted by 4A(v) and B(v) respectively.

AJ) {A(V* + V%), v) is continuous in 1€ R'.

There exist positive constants N,e¢ and a non-negative function f(¢, w)
defined on [s, T'] X 2, F,-measurable for each fixed ¢e [s, T], belonging to
Li([s, T] X £) such that for all v,v* and v*e V, (¢, w) € [s, T] X 2 are satisfied
the next statements (A.II—(A.IV):

(AID)  2¢4@W) — 4W), V' — V%) + 20 | B'(v) — B (V) |x < N v — V',
(AI)  2{4(), v) + 224 IB'O)IE < —¢llvl} + /G o) + Nvi,
AIV)  A@)|* < f¢ o) + Nvlly .

Then, the next proposition has been established in [4] and [5] (The-
orem 1 in [4], Corollary II.2.1 and Theorem II.2.2 in [5]).

ProrositioN. Under the assumptions (AID—(AIV) and given initial
data u,c H, there exists a solution u, of Equation (2.1). Let u! and u?
be solutions of Equation (2.1), then E[||u} — ul|%] = 0 for each te[s, T.

The next lemma will be used to introduce operators A, and B, in
the proof of Theorem 1. Since the proof of Lemma is elementary, it will
be omitted.
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LeEmMA. Under the assumptions of Theorem 1, the following equalities
hold:

(DA, (—1)“laz? Do), = (az?D!D=D= - - . Do, (— 1) D<D= . . . Deny),
+ i Z (bntlaiz"‘“iJ“ﬂDﬂDal R Da”"[” (_l)lﬂl
j=1

Q1yte &y
Jaiyl=eee=lazyl=1

2.2)

X DD= .. D01« .. Dots o oo Dong)®
for any ¢ and ne W*'(R%), and
(D, aie7), = @<DFD™ -+ Do, D= - Do),
+ ;é, 5T R 4 SR O

A1yt ,an
lagyl=+ee=fazgl=1

(2.3)

X D .. Do Dot ... Do),

for any e Wi'(R%) and 7e W}(R®), where the functions b a1t =is¢ gnd
cvvisaigies hape derivatives in x up to order k inclusive uniformly bounded
with respect to t, x,w,a, B and a,, ai* are the i-th components of the vectors
az, and (-, -), denotes the inner product of L*(R%).

Now we are in position to prove Theorem 1.

Proof of Theorem 1. Put H = W (R?%) and V = Wi *(R?). In order
to appeal to the Krylov-Rozovskii’s result, we will introduce operators
A, and B,. Let us define as follows:

(Aid 7y = @PDFD - Devy, (=1)1D*D" - - Doy,
4+ i Z (brusrtzaigmb DEDe . o Do, (_1)Ia|
T a2 i ) A
X DaDa; “ e Dmt1 PR Dail e Danﬂ)k R
<A, 77> = <A;‘l", 77> + (47, 77)n+/c+1
and
(Bglp', 7])1:{ —_ (a’ﬁaDﬂDal v D“"\!f', D~ ... Danv)k
+3 X (ewewrewiDeDe ... Doy,

T e 2 . A

X Do DL Dris .. D""’?)k

for any ¢ and » in V, where ais, b ur =it gnd c*a*eeis* are the func-
tions which appeared in Lemma.

*  The set {i, 4, ---,%;} is contained in the set {1,2,3,-..,n}.
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Taking into consideration that the inequality

({4, )| < (const. [[Ylly + (| Fellase-2) 71l

holds, and that n 4- B — 1 > 0, we see that A(Y, {, 0) = A,J» is a mapping
defined on V with values in V* for each (¢, w). On the other hand, we
have

|(Bivr, 7| < comst. [[¥[ly 7]z

hence B'(y, t, ) = Bi4 is a mapping from V into H for each (¢, »).
Now, let us consider the following stochastic equation

24 (oD = s + [ A mdde + [ (B udB.

Equation (2.4) is equivalent to the next equation
t t
(o Dues = (s Duss + | <A de + [ (B usdB,

+ [t unnde,

because

[[ e ssade = [ Famoude, tels 71 and eV,

with probability 1 under the condition f eﬁ;‘”‘(s, T). In order to show
that Equation (2.4) has a unique solution in L*([s, T] X 2, V) N L¥Q,
C([s, T1; H)), we will make use of the above-mentioned Krylov-Rozovskii’s
result.

In our case, the condition (A, I) is obvious. To check (A, ID—(A, IV),
we will calculate the quantities (4, > and 3%, || Biv||%.

(A, ¥y < (a?DPD* - -« Do, (— 1) DD « - . D), + ¢ || ¥ |y 10|l
é - Z: (a;""D"l o DrkDﬂDal .. Dan’\ll"

lal=181=1
X Do DED*D ... D""«lr)o

2.5) + e il [l
< — 30 (a¥DPD™ ... DD ... Donp,
lal=181=1

X DD - DD - . . Do),
+ e vl + cz—:- 1l
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where ¢ is an arbitrary positive number.
On the other hand, we have

(B, Dl < 1@ DD+ DAD - Devg, D« DD - Drog|
+ i Z |(cai1ai2-~-a¢jiaDaD71 e DTthxl e Dan,‘k,
7=1

.....

(2.6)
X D ... D*D= ... Do ... Dt ... D]

+ ¢ [ Pvllz 17l -

Noting the n + k + 1 times differentiability of the coefficients ai*, we see
that the right hand side of (2.6) is not greater than

Z l(a;'«DaDH o DiEDA L L D""'\[r, D... DD .. Dan,?)ol

laT=1

+> X (@ DD Do,

I g 2 =
X cahaiz-..atjiaDaDh e Di’kDal .. ‘Dai1 e Daw .. Danv)ol
+ ¢l vz l7lla
< ,Z laiD=D'™* - - - D*D™ - - - D*ll lInlla + €l llx 7]l -

al=1

Here, ||-||, denotes the norm of the space L*(R?). Making use of Cauchy-
Schwartz-Bunjakovskii’s inequality

(a+b)2g(1+e)a2+(1+l)b2, e>0,
€

we have
IBipll < (L + &) |ai*DeD" - .- D*D=s ... Do
+e(t+ 1) v
< 3 DD’ - DD - Doy
e VI + o) 1l
and hence
o S Bl < 3 laDDr - DD= - Doyl

+ cee 1Vl + eoe) [l Il -

Let ¢ in (2.5) and (2.7) be sufficiently small, then we get the next inequality
from (2.5), (2.7) and the assumption B) in §1:
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@8) 2 Anb, b + DB < =8 I + ¢ [l

holds for any +» in V, where ¢’ and ¢’ are positive constants.
By (2.8), it is easily verified that the inequality
dy .
2<Az‘h - Ath, ‘V! - ‘I’2> + Z; ”Bw"x - Bf‘l’z“%
=¥ — Yl

holds for any +, and 4, in V. That is, the condition (A, II) is verified.
Noting the inequality
(A7 s Wasr el S 147l 10 lly
S M follnsr- 91l
Z M fillnar 11l

e 9 1 2
= 5 vl + > 1 fellE

2.9)

and choosing a sufficiently small ¢ > 0, we obtain from (2.8)

d1
2¢A, ) + ; | Bivr Iz
< =l + vk + < I fell -
Put f(¢, 0) = ||f.|4- Taking into consideration (2.10) and

A |* < const. [[¥]ly + [ fellase-1

we can verify the conditions (A.IIl) and (A.IV).

Hence the Krylov-Rozovskii’s result can be applied to Equation (2.4),
and we get that Equation (2.4) has a unique solution. Thus, we see that
Equation (2.4) has a solution 4, in the space Hpe+y(s, T).

In order to complete the proof, it is sufficient to show that any solu-
tion of Equation (2.4) is a solution of Equation (1.1). Making use of (1.2)
and Lemma, we can see that

A, A7y = (D, (=1)'ag?DPy)y + (fsu s Vone 'V,
holds with almost all (¢, »), and that
(B, A7) = (DY, a5)n s, Vupe V.

Hence, replacing » by 4A~*; in Equation (2.4), we obtain that any solution
of Equation (2.4) satisfies Equation (1.1). Thus, the proof is complete.

(2.10)
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§3. Proof of Theorem 2

Proof of Theorem 2. Let «, be the solution of Equation (1.1) with
f. = 0. That is, ¢, satisfies the equation

(oD = e + [ Dy (— D022 Dp)de + [ (D, azn),dB .

Note that A+, with initial data Ay satisfies Equation (0.4). Let j(t) be
smooth function such that j(s) = 0 and j(#) > 0 for > s. Putting u, =
Jj®v,, we can see by Itd’s formula

@ e = [ (DPu, (~D"az*D),de + [ (Du,, ain).dB,
¢ .
+ [ @ e

Here, we know that j'+ eflg‘“(s, T) and u, = 0. Hence, by Theorem 1,
we see that u = jy € ﬁ;‘”(s, T). Repeating this argument, we get

[[iwdev.e By, T .

Finally, we obtain
“m o rf(fl)drl oo deyp e Hp(s, T), h=m-—n—1.

Thus, we see that +, ¢ W™(R?) for each (t,w)e[s, T] X L.
Finally, we will prove Corollary to Theorem 2.

Proof of Corollary to Theorem 2. Under the assumptions of Corollary,
we see by Theorem 2 and Proposition 2 that Equation (0.4) has a unique
solution € HYs, T) satisfying ¥ (x, @) € W %R for each (¢, w) e (s, T] X
2. Put ¢(s, 2, t, x;0) = (I — A, = A,. Then, ¢(s, 2, t, x; 0) € Wi *(R?)
for each (s, 2, ¢, ) as a function of x. Noting (1.2), we have

O] = Gha ) = A6, 1) = G, = [ 806, 2., 2 ol
Thus, the proof is complete.
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