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CONTROL POINT INSERTION FOR 5-SPLINE CURVES

HEINZ H. GONSKA AND ANDREAS ROTH

Inserting new knots into J3-spline curves is a well-known technique in CAGD to gain extra
flexibility for design purposes. However, from a user's point of view, the insertion of knots
is somewhat unsatisfactory since the newly generated control points sometimes show up
in unexpected locations. The aim of this note is to show that these problems can be
circumvented by inserting the control vertices directly, thus also providing a more natural
user interface.

1. BASICS ON 5-SPLINE CURVES

In recent years, various algorithms have been designed to insert new knots into
the knot vector upon which a (closed or open) S-spline curve of order k is based. As
examples we mention the work of Cohen, Lyche, and Riesenfeld (the so-called Oslo
algorithm, see [5, 7]), Bohm's algorithm [1], and a paper by Bohm and Prautzsch [2].

For completeness, we mention the following basics. For the open case (and we will
be dealing exclusively with this one in the present paper), one starts off with a knot
vector t = (ti)"=1 , TO, k £ N. This is an ordered sequence of real numbers satisfying
the additional condition

U < ti+k for all 1 < i, i + k < n + k.

Based upon the knot vector t , a sequence of normalised 5-splines (Bi,fc,t), 1 ^ i < n,
of order k corresponding to the knot vector t can be constructed along the lines given
in de Boor's book [3]. The functions i?i,fc,t exhibit some extraordinary properties which
are of particular interest for CAGD purposes. If one makes the additional assumptions
that

tj = ... = ik and tn+1 = .. . = <„+*,

then the parametric curve
/ : [tk, tn+1] -» R2

given by the equation

= £ Pi--Bi,fc,t(i), x£[tk,tn+1],
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is the vector-valued version of the variation-diminishing spliiie operator which Schoen-
berg devised in 1965 as a generalisation of the famous Bernstein operators (see for
example Marsden [8] and the references cited there). The curve / yields a graph in
2-space which depends upon the control points P; £ R2, 1 ^ i ^ n. They in turn
define a control polygon which we denote by P = P1P2 • • • P n •

The curve described by / has some remarkable features as far as Computer Aided
Design and Approximation Theory are concerned.

1. If all points P;, 1 ^ i < n, lie on a straight line, then, for x £ [tk, tn+1],

f(x) will also lie on that same straight line.

2. The points P] and P n are the endpoints of the curve.

3. The graph of f(x), x 6 [tk, tn+i], lies in the convex hull of the points

P i ) P2> • • • , P n •
4. The curve f(x) is variation-diminishing in the sense that any straight line

in 2-space cuts the curve / no more often than it cuts the corresponding
polygon P .

A proof of properties 1, 2 and 3 is quite straightforward. An elegant proof of
property 4 is obtained by combining results in papers of de Boor and DeVore [4] and
of Goldman [6]. It is of particular interest that de Boor and DeVore demonstrated
the theoretical relevance of Bohm's knot insertion algorithm [1] in quite an impressive
manner. See [10] for a similar approach.

Such knot insertion algorithms are procedures doing the following job:

1. They refine the knot vector t = (it)T=a to a knot vector t = (ti)i_1 such
that

1.1. t is contained in t ,

1.2. all new knots are in the open interval (tk, tn+\),

1.3. U < ii+k for 1 < i < I.

2. They find the new .0-splines Bik^ corresponding to the new knot se-

quence t and represent the original curve f(x), i 1 = . . . = ik ^ x ^

l . . . = ii+k j in the form

> •*>,*,*(*),

that is in terms of the 'new' i?-spliiies corresponding to the 'new' knot
sequence t without changing the shape of the curve.

The result of such a procedure is that additional control vertices are generated

which, together with some old ones to be retained, and others to be discarded, still
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generate the same curve as originally given, but with extra flexibility gained through
the use of more control points.

While, from a theoretical point of view, the principle of knot insertion is very
interesting, from the viewpoint of a practical designer this is definitely not the best way
to generate extra control handles. Using knot insertion, the newly generated points T)j

sometimes show up in quite unexpected locations. It is thus the aim of the present note
to emphasise that it is also possible to insert control vertices directly (subject to some
minor side conditions, if necessary or desired) rather than knots, and have the system
automatically determine suitable knot locations (including multiplicities, if so desired).
It is shown by an example at the end of this paper that the approach described here
provides a much more user-friendly interface than the knot insertion approach.

2. CONTROL P O I N T INSERTION

The control point insertion algorithm described below is based on Bohm's well-
known algorithm for inserting new knots in 5-spline curves.

Let t = (<i)^Zj be the given vector of knots, and P = P1P2 • • • P n the control
polygon. Given a new knot r such that tv~\ < r ^ tv , the new sequence t is defined

by

- I T, i = u,

The new control points D^, 1 < j' ^ n + 1, are given by

where

i — i • i — t •

Hence Dj subdivides the segment Pj-iPj at a ratio of a.j/{l — ctj).

In other words, inserting a new knot T makes k — 2 old control vertices P^ vanish
and yields k — 1 new ones. Each new point Dj is a convex combination of P^ and
Pj_i , hence lies on the line segment joining these two points. This means that new
control points can only be placed on the polygon P .

Let us assume that we have picked a new control point P on the polygon P . Then
our algorithm first searches n £ {2, . . , n} such that P lies on the segment joining P,,
and P^_i , and a 6 [0, 1] so that
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Let us first consider the case where PM_i ^ P ^ P M , hence a 6 (0, 1). If we

want P to show up as a new control vertex after using Bolim's algorithm, we have to

determine r in the equation

Solving for r gives T = a(t^k-i — tp) + ip • From 0 < a < 1 and <M < <M+jt~i, it is

clear that

(2.1) T € ( ^ , < M + » _ I ) .

Next, we find u so that

and also the corresponding T)j 's. In view of (2.1), we have

l i < i / ^ f . i + k — 1 , o r i / — k + l ^ f i ^ u — 1 .

Thus the new set of control vertices Dj is given by

^fc = P,,_fc,

Dn+1 = Pn,

and in particular

D^ = a^-P/ 1 + ( l - a M ) - P ^ _ 1 .

Hence DM = P , and the P picked on the original polygon is a member of the new set

of control vertices.

Example 2.1. Let n = 7, k = 4 and t = (0,0,0,0,1,2,3,4,4,4,4). Then the control

polygon is of the form P = Pi . . . P7 . Pick a new control point
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The newly generated knot T is then given by

r = {te-h)--+t3 = 1,

so that the new knot sequence is t = (0,0,0,0,1,1,2,3,4,4,4,4). Hence the knot r
generated by control point insertion may coincide with one in the original knot sequence
t.

The possible coincidence observed in the last example may be an undesirable fea-
ture from the user's point of view since the degree of differentiability of the splines
B2 4 £, . . . , B5 4 { is now only equal to one at r = 1 (in the definition of all splines
mentioned T = 1 = t$ = <6 is used as a double knot). For the user this phenomenon is
hardly predictable: he picks P , and a and r are generated by the algorithm. However,
during a typical interactive session, P will be picked using a lightpen or a mouse or
some other interactive media. Since this procedure is only accurate to a certain degree,
it will be hardly noticed by the user (if at all) if we slightly perturb a critical value of
a in the case that

T = tj for some j € {/j + 1, . . . , /u — k + 2}.

Although this triggers a minor shift of P , we did not observe any disadvantages.
Another question at hand is if control point insertion can be used to systematically

generate multiple knots. This is indeed the case: If we allow P to coincide with
Pi, i € {2, . . . , n — k + 1}, then any of the knots tk+i,..., tn can be given a multiplicity
greater then one. We note here that the knots ti = ... = tk and tn+i = .. . = tn+k
already have maximal multiplicity and thus should not be inserted again. The control
point insertion algorithm can be easily modified to handle this case as well.

The example below is taken from a demonstration session using a prototype im-
plementation of the above algorithm (Apple Macintosh/MacPascal).

Example 2.2. The original curve (fc = 4) was based on the knots
(0,0,0,0,1,2,2,2,3,4,4,4,4); note the non-differentiability of the curve at the point
P5 . Part of the control polygon of the original curve is indicated by the dotted line.

D3 was inserted as the new control point. Our system generated the additional
knot T = 1.3, as well the new control points D4 and D5 , all of them corresponding to
the new knot sequence (0,0,0,0,1,1.3,2,2,2,3,4,4,4,4). The points P 3 and P 4 (as
well as the dotted portions in the above picture) constitute part of the original control
polygon and would not be visible during further design of the curve. The same result
would have been obtained by first "guessing" 1.3 as a new knot, and then inserting it
using Bohm's algorithm.
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