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Abstract

In this paper, a class of generalized implicit inclusion problems is introduced, which can be regarded
as a generalization of variational inequality problems, equilibrium problems, optimization problems and
inclusion problems. Some existence results of solutions for such problems are obtained on noncompact
subsets of Hausdorff topological vector spaces using the famous FKKM theorem. As applications, some
existence results for vector equilibrium problems and vector variational inequalities on noncompact sets
of Hausdorff topological vector spaces are given.
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1. Introduction

Let X be a nonempty subset of a Hausdorff topological vector space E , and let f :
X × X→ R be a bifunction such that f (x, x)≥ 0 for all x ∈ X . Then the scalar
equilibrium problem consists of finding x̄ ∈ X such that

f (x̄, y)≥ 0, ∀y ∈ X.

It provides a unifying framework for many important problems such as optimization
problems, variational inequality problems, complementary problems, minimax
inequality problems and fixed point problems. It has been widely applied to the
study of problems arising in economics, mechanics and engineering (see Blum and
Oettli [3]). In recent years, lots of existence results concerning (vector) equilibrium
problems and (vector) variational inequalities have been established by many authors
in different ways. For more details we refer the reader to [1, 3–5, 8–31] and the
references therein.

This work was supported by the National Natural Science Foundation of China (70831005, 10671135)
and the Natural Science Foundation of Jiangxi Province (2007GZS2120).
c© 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 $16.00

261

https://doi.org/10.1017/S0004972710002091 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710002091


262 S.-H. Wang and N.-J. Huang [2]

In 2000, Di Bella [6] introduced and studied a class of inclusion problems, which
we denote by (IP), formulated as follows: find x̄ ∈ X such that

X ⊆ F(x̄), (IP)

where X ⊆ E is a nonempty convex subset, and F : X→ 2E is a multi-valued
mapping. By means of the continuous selection theorem and the famous Brouwer
fixed point theorem, Di Bella [6] obtained a general existence result for (IP).

THEOREM 1.1 [6, Theorem 1]. Let E be a real Hausdorff topological vector space;
V a linear subspace of E; X a convex subset of E, with ri(X) 6= ∅; K a compact subset
of X; F : X→ 2E a multi-valued mapping. Further, let F be a directed (by inclusion)
family of finite-dimensional linear subspaces of V meeting K , with V =

⋃
S∈F S and

satisfying the following conditions:

(i) for every S ∈F and every compact convex set Y , with K ∩ S ⊆ Y ⊆ X ∩ S
and dim(Y )= dim(X ∩ S), one has ri(Y ) \ F(x) 6= ∅ for all x ∈ Y \ K and
x /∈ conv(ri(Y ) \ F(x)) for all x ∈ Y ;

(ii) for every S ∈F and every y ∈ (X − X) ∩ S, the set {x ∈ X ∩ S : y ∈ x − F(x)}
is closed in X ∩ S;

(iii) for each x ∈ X ∩ V such that (ri(X) ∩ V ) \ F(x) 6= ∅, there exist y0 ∈ ri(X),
with x − y0 ∈ V and a neighbourhood U of x such that z − x + y0 /∈ F(z) for
all z ∈U ∩ K ∩ V .

Then, there exists x̄ ∈ K such that ri(X) ∩ V ⊆ F(x̄).

Di Bella [6] also pointed out that the inclusion problem includes the variational
inequality problem as a special case. In fact, the equilibrium problem also can be
regarded as a special case of the above inclusion problem by defining F : X→ 2X by

F(x)= {y ∈ X : f (x, y)≥ 0}, ∀x ∈ X.

In 2006, Fang and Huang [8] generalized the above inclusion problem to the
following extended inclusion problem (EIP), which is formulated to find x̄ ∈ X such
that

X ⊆ F(x̄, x̄), (EIP)

where X is a nonempty closed convex subset of a real Banach space E , and F :
X × X→ 2E is a multi-valued mapping. By means of the auxiliary problem of
(EIP) and the well-known Kakutani–Fan–Glicksberg fixed point theorem, Fang and
Huang [8] established an existence result for (EIP).

THEOREM 1.2 [8, Theorem 2.3]. Let X be a nonempty, bounded, closed and convex
subset of a real reflexive Banach space E and F : X × X→ 2E be a multi-valued
mapping. Assume that the following conditions hold:

(i) x ∈ F(y, x) for all x, y ∈ X;
(ii) for each z ∈ X and each finite-dimensional subspace D of E with X D = X ∩

D 6= ∅, the multi-valued mapping Fc(z, ·) : X D→ 2E is lower semicontinuous
with convex values;
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(iii) for each z ∈ X and each finite-dimensional subspace D of E with X D 6= ∅, the
set {x ∈ X D : X D ⊆ F(z, x)} is convex and closed;

(iv) if (xα, zα) ∈ X × X, (xα, zα) converges to (x, z) ∈ X × X weakly, and X ⊆
F(zα, xα) for all α, then X ⊆ F(z, x).

Then there exists x̄ ∈ X such that X ⊆ F(x̄, x̄).

Recently, using different methods, several authors further considered inclusion
and disclusion problems for multi-valued mappings such as systems of inclusion
problems, variational and quasivariational inclusion problems, variational disclusion
problems, vector quasivariational inclusion problems and their applications; see, for
example, [15, 22, 25, 26, 29] and the references therein.

The main objective of this paper is to present some further findings concerning
recent work mentioned above in the area of inclusion problems for multi-valued
mappings. We consider the following generalized implicit inclusion problem, denoted
(GIIP): find x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : y ∈ F(x̄, v), (GIIP)

where X and Y are two nonempty subsets of two Hausdorff topological vector
spaces E and Z , respectively, and T : X→ 2Y and F : X × Y → 2E are two multi-
valued mappings.

Here are two special cases of (GIIP):

(I) if E and Z are two real Banach spaces, E = Z , X = Y , and T = I (identical
mapping), then (GIIP) reduces to (EIP) of Fang and Huang [8];

(II) if E = Z , X = Y , T = I and F(x, y)= F(x) for all x, y ∈ X , then (GIIP)
reduces to (IP) of Di Bella [6].

In this paper, using the famous Fan–Knaster–Kuratowski–Mazurkiewicz (FKKM)
theorem, we prove some existence results for solutions of (GIIP) on noncompact
subsets of Hausdorff topological vector spaces. As applications, we show some
existence results for vector equilibrium problems and vector variational inequalities
on noncompact sets of Hausdorff topological vector spaces.

2. Preliminaries

In this section, we recall some definitions and lemmas for later use.

DEFINITION 2.1 [2]. Let X and Y be two topological spaces. A multi-valued
mapping T : X→ 2Y is said to be:

(i) upper semi-continuous (u.s.c.) at x ∈ X if, for each open set V in Y with
T (x)⊆ V , there exists an open neighbourhood U (x) of x such that T (x ′)⊆ V
for all x ′ ∈U (x);

(ii) lower semi-continuous (l.s.c.) at x ∈ X if, for each open set V in Y with T (x) ∩
V 6= ∅, there exists an open neighbourhood U (x) of x such that T (x ′) ∩ V 6= ∅
for all x ′ ∈U (x);
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(iii) u.s.c. (respectively, l.s.c.) on X if it is u.s.c. (respectively, l.s.c.) at every point
x ∈ X ;

(iv) continuous on X if it is both u.s.c. and l.s.c. on X ;
(v) closed if the graph of T is closed, that is, the set Gr(T )= {(x, y) ∈ X × Y : y ∈

T (x)} is closed in X × Y .

LEMMA 2.2 [2]. Let X and Y be two topological spaces, and F : X→ 2Y a multi-
valued mapping.

(i) If F is u.s.c. and compact-valued, then F is closed.
(ii) If F is compact-valued, then F is u.s.c. at x ∈ X if and only if, for any net

{xα} ⊆ X such that xα→ x and for every net {yα} ⊆ Y such that yα ∈ F(xα) for
all α, there exist y ∈ F(x) and a subnet {yβ} of {yα} such that yβ→ y.

DEFINITION 2.3. Let E and Z be two topological vector spaces, X ⊆ E a nonempty
convex subset and C ⊆ Z a nonempty convex cone. A multi-valued mapping F : X→
2Z is said be:

(i) C-convex if, for any x, y ∈ X and t ∈ [0, 1],

F(t x + (1− t)y)⊆ t F(x)+ (1− t)F(y)− C;

(ii) affine if, for any x, y ∈ X (X is a vector subspace of E) and t ∈ R,

F(t x + (1− t)y)= t F(x)+ (1− t)F(y).

DEFINITION 2.4 [7]. Let X ⊆ E be a nonempty subset of a vector space E .
A multi-valued mapping G : X→ 2E is said be a KKM mapping if, for any
finite subset {x1, x2, . . . , xn} ⊆ X , one has co{x1, x2, . . . , xn} ⊆

⋃n
i=1 G(xi ), where

co(D) denotes the convex hull of D.

The following lemma is very important in establishing our main results.

LEMMA 2.5 [7, FKKM theorem]. Let X be a nonempty subset of a Hausdorff
topological vector space E, and G : X→ 2E a KKM mapping. If, for any x ∈ X, G(x)
is closed and, for at least one point x ∈ X, G(x) is compact, then

⋂
x∈X G(x) 6= ∅.

3. Main results

THEOREM 3.1. Let E and Z be two Hausdorff topological vector spaces, X ⊆ E a
nonempty closed convex subset and Y ⊆ Z a nonempty subset. Let T : X→ 2Y and
F : X × Y → 2E be two multi-valued mappings. Suppose that:

(i) for any x ∈ X, there exists v ∈ T (x) such that x ∈ F(x, v);
(ii) for any x ∈ X, v ∈ T (x), the set {y ∈ X : y /∈ F(x, v)} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : ∃v ∈ T (x), y ∈ F(x, v)} is closed in X;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that y0 /∈ F(x, v) for all v ∈ T (x).
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Then (GIIP) is solvable, that is, there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : y ∈ F(x̄, v).

PROOF. Define a multi-valued mapping G : X→ 2D by

G(y)= {x ∈ D : ∃v ∈ T (x), y ∈ F(x, v)}, ∀y ∈ X.

Then it suffices to show that ⋂
y∈X

G(y) 6= ∅. (3.1)

Since
G(y)= D ∩ {x ∈ X : ∃v ∈ T (x), y ∈ F(x, v)},

then, by assumption (iii), it is easy to see that G(y) is closed in D. Since D is compact
to show (3.1), it suffices to show that the family of sets {G(y) : y ∈ X} has the finite
intersection property.

For any finite subset {y1, y2, . . . , yn} ⊆ X , let K = co(D ∪ {y1, y2, . . . , yn}).
Then K is a compact convex subset of X . Now we consider the multi-valued mapping
H : K → 2K defined by

H(y)= {x ∈ K : ∃v ∈ T (x), y ∈ F(x, v)}, ∀y ∈ K .

Since
H(y)= K ∩ {x ∈ X : ∃v ∈ T (x), y ∈ F(x, v)},

by assumption (iii), it follows that H(y) is closed in K , for any y ∈ X .
Next, we shall show that H is a KKM mapping. Suppose that this is not the case.

Then there exist z1, z2, . . . , zm ∈ K and ti ≥ 0 for i = 1, 2, . . . , m with
∑m

i=1 ti = 1
such that z =

∑m
i=1 ti zi /∈

⋃m
i=1 H(zi ). Noting that K is convex, we have z ∈ K . Thus,

for every v ∈ T (z),
zi /∈ F(z, v), i = 1, 2, . . . , m.

It follows that
zi ∈ {y ∈ X : y /∈ F(z, v)}, i = 1, 2, . . . , m.

By assumption (ii), we know that the set {y ∈ X : y /∈ F(z, v)} is convex and so
z ∈ {y ∈ X : y /∈ F(z, v)}, that is, z /∈ F(z, v). Since v ∈ T (z) was arbitrary,

z /∈ F(z, v), ∀v ∈ T (z),

which contradicts assumption (i). Thus H is a KKM mapping.
Since K is compact, it follows from Lemma 2.5 that⋂

y∈K

H(y) 6= ∅. (3.2)

Letting x0 ∈
⋂

y∈K H(y), then

∀y ∈ K , ∃v ∈ T (x0) : y ∈ F(x0, v). (3.3)
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We assert that x0 ∈ D. Suppose to the contrary that x0 /∈ D. Then x0 ∈ K \ D ⊆
X \ D. It follows from assumption (iv) that

∃y0 ∈ D, ∀v ∈ T (x0) : y0 /∈ F(x0, v). (3.4)

Since D ⊆ K , we can see that (3.4) contradicts (3.3). This shows that x0 ∈ D. Notice
that {y1, y2, . . . , yn} ⊆ K . It follows from (3.3) that x0 ∈

⋂n
i=1 G(yi ), which implies

that the family of sets {G(y) : y ∈ X} has the finite intersection property. Hence⋂
{G(y) : y ∈ X} 6= ∅. This completes the proof. 2

EXAMPLE 3.2. Let E = Z = R and X = Y = R+ = [0,+∞). Let T : X→ 2Y and
F : X × Y → 2E be defined, respectively, by T (x)= [2x,+∞) and F(x, v)= [v −
x,+∞) for all x ∈ X, v ∈ Y . Then, we have the following conclusions.

(i) For any x ∈ X , there exists v = 2x ∈ T (x) such that

x ∈ [x,+∞)= [v − x,+∞)= F(x, v).

(ii) For any x ∈ X, v ∈ T (x)= [2x,+∞), the set

{y ∈ X : y /∈ F(x, v)} = {y ∈ R+ : y /∈ [v − x,+∞)} = [0, v − x)

is empty when v = x and is convex when v 6= x .
(iii) For any y ∈ X , let

H(y)= {x ∈ X : ∃v ∈ T (x), y ∈ F(x, v)}.

If x > y, then for any v ∈ T (x)= [2x,+∞), we know that v − x ≥ 2x − x =
x > y. It follows that y /∈ [v − x,+∞)= F(x, v). Thus x /∈ H(y); if x ≤ y, by
taking v = 2x ∈ T (x),

y ∈ [x,+∞)= [v − x,+∞)= F(x, v).

Thus x ∈ H(y). Therefore, for each y ∈ X , H(y)= [0, y], which is closed in X .
(iv) Take D = [0, 1] and y0 = 1. Then D ⊆ X is compact and y0 ∈ D. Moreover, for

any x ∈ X \ D = (1,+∞), v ∈ T (x)= [2x,+∞),

v − x ≥ 2x − x = x > 1= y0

and so y0 /∈ [v − x,+∞)= F(x, v).

Thus, all the conditions of Theorem 3.1 are satisfied. Now Theorem 3.1 implies
that there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : y ∈ F(x̄, v).

Indeed, we can see that x̄ = 0.
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From Theorem 3.1, we can obtain the following result.

COROLLARY 3.3. Let X, Y, E, Z , T, F be as given in Theorem 3.1. Suppose that
conditions (i), (ii), (iv) of Theorem 3.1 and the following condition are satisfied:

(iii)′ T and F are u.s.c. with nonempty compact values.

Then (GIIP) is solvable.

PROOF. We need only show that, for each y ∈ X , the set

H(y)= {x ∈ X : ∃v ∈ T (x), y ∈ F(x, v)}

is closed in X . Indeed, let {xα} ⊆ H(y) be an arbitrary net such that xα→ x0. We
need to show that x0 ∈ H(y). Since {xα} ⊆ X and X is closed, x0 ∈ X . In addition, for
each α, there exists vα ∈ T (xα) such that

y ∈ F(xα, vα). (3.5)

Since T is u.s.c. with nonempty compact values, it follows from Lemma 2.2(ii) that
there exist v0 ∈ T (x0) and a subnet {vβ} of {vα} such that vβ→ v0. Since F is
u.s.c. with nonempty compact values, it follows from Lemma 2.2(i) that F is closed.
In addition, for any β, y ∈ F(xβ , vβ) and (xβ , vβ)→ (x0, v0), so y ∈ F(x0, v0).
Therefore x0 ∈ H(y), which implies that H(y) is closed. This completes the proof. 2

From Theorem 3.1, we can obtain the following existence result for a solution
to (EIP).

THEOREM 3.4. Let X be a nonempty closed convex subset of a Hausdorff topological
vector space E, and F : X × X→ 2E a multi-valued mapping. Suppose that:

(i) for any x ∈ X, x ∈ F(x, x);
(ii) for any x ∈ X, the set {y ∈ X : y /∈ F(x, x)} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : y ∈ F(x, x)} is closed in X;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that y0 /∈ F(x, x).

Then (EIP) is solvable, that is, there exists x̄ ∈ X such that

X ⊆ F(x̄, x̄).

PROOF. Letting Z = E , Y = X and T = I in Theorem 3.1, it is easy to check that all
the conditions of Theorem 3.1 are satisfied and so Theorem 3.1 yields the conclusion.
This completes the proof. 2

REMARK 3.5. The extended inclusion problem (EIP) has been studied by Fang and
Huang [8]. However, Theorem 3.4 is quite different from Fang and Huang [8,
Theorem 2.3] in the following ways:

(a) the space E need not be a Banach space;
(b) the subset X need not be bounded;
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(c) the method of proof is different. In fact, Theorem 3.4 is proved using the famous
FKKM theorem, while Fang and Huang [8, Theorem 2.3] is proved using the
auxiliary problem of (EIP) and the well-known Kakutani–Fan–Glicksberg fixed
point theorem.

EXAMPLE 3.6. Let E = R and X = R+ = [0,+∞). For any x, y ∈ X , let

F(x, y)=

{
[x,+∞) if x = y,
(−1, 1) otherwise.

If we take D = [0, 1] and y0 = 1, then D ⊆ X is compact and y0 ∈ D. Moreover, by a
simple computation, it is easy to see that all the conditions of Theorem 3.4 are satisfied
so (EIP) is solvable by Theorem 3.4. Indeed, we can see that x̄ = 0 is a solution.
However, we cannot use Fang and Huang [8, Theorem 2.3] to show the solvability of
(EIP) since X is unbounded.

From Theorem 3.4, we can obtain the following existence result for a solution
of (IP).

THEOREM 3.7. Let X be a nonempty closed convex subset of a Hausdorff topological
vector space E and F : X→ 2E a multi-valued mapping. Suppose that:

(i) for any x ∈ X, x ∈ F(x);
(ii) for any x ∈ X, the set {y ∈ X : y /∈ F(x)} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : y ∈ F(x)} is closed in X;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that y0 /∈ F(x).

Then (IP) is solvable, that is, there exists x̄ ∈ X such that

X ⊆ F(x̄).

PROOF. Let F(x, y)= F(x) for all x, y ∈ X in Theorem 3.4. Then it is easy to check
that all the conditions of Theorem 3.4 are satisfied. Thus, Theorem 3.4 yields the
conclusion. This completes the proof. 2

REMARK 3.8. In Theorem 3.7, if F is closed or F is u.s.c. with nonempty compact
values, then condition (iii) is satisfied.

REMARK 3.9. The inclusion problem (IP) has been studied by Di Bella [6]. However,
Theorem 3.7 is quite different from Di Bella [6, Theorem 1] in the following aspects:

(a) the assumptions are much simpler;
(b) the method of proof is different. In fact, Theorem 3.7 is proved using the famous

FKKM theorem, while Di Bella [6, Theorem 1] is proved using the continuous
selection theorem and the well-known Brouwer fixed point theorem.

From Theorem 3.7, we can obtain the following result.

THEOREM 3.10. Let X be a nonempty closed convex subset of a Hausdorff
topological vector space E, and S : X→ 2X a multi-valued mapping. Suppose that:
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(i) for any x ∈ X, S(x) is nonempty and convex;
(ii) for any y ∈ X, the set S−1(y)= {x ∈ X : y ∈ S(x)} is open in X;
(iii) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that y0 ∈ S(x).

Then S has at least one fixed point in X, that is, there exists x̄ ∈ X such that x̄ ∈ S(x̄).

PROOF. Suppose that the conclusion is false; then we have

x /∈ S(x), ∀x ∈ X. (3.6)

Define a multi-valued mapping F : X→ 2X by

F(x)= X \ S(x), ∀x ∈ X. (3.7)

It follows that for any x ∈ X, x ∈ F(x). Moreover, using the assumptions, it is easy to
establish the following:

(a) for any x ∈ X , the set {y ∈ X : y /∈ F(x)} = S(x) is nonempty and convex;
(b) for any y ∈ X , the set {x ∈ X : y ∈ F(x)} = X \ S−1(y) is closed in X;
(c) for any x ∈ X \ D, there exists some y0 ∈ D such that y0 /∈ F(x).

Hence, all the conditions of Theorem 3.7 are satisfied and it follows from Theorem 3.7
that there exists x̄ ∈ X such that

X ⊆ F(x̄)= X \ S(x̄).

Thus S(x̄)= ∅, which contradicts assumption (i). Therefore, S has at least one fixed
point in X . This completes the proof. 2

REMARK 3.11. In Theorem 3.10, if X is a nonempty compact convex subset of E , by
taking D = X , condition (iii) is satisfied automatically and Theorem 3.10 reduces to
the classical Fan–Browder fixed point theorem.

The following example shows that Theorem 3.10 is quite different from the classical
Fan–Browder fixed point theorem.

EXAMPLE 3.12. Let E = R, X = R+ = [0,+∞) and S : X→ 2X be defined by

S(x)= [0, x3
+

1
8 ), ∀x ∈ X.

If we take D = [0, 1] and y0 = 1, then D ⊆ X is compact and y0 ∈ D. Moreover, it is
easy to check that all the conditions of Theorem 3.10 are satisfied and so Theorem 3.10
shows that S has at least one fixed point in X . However, we cannot use the classical
Fan–Browder fixed point theorem to show the existence of fixed points for S since
X = [0,+∞) is not compact.

In Theorem 3.1, if E is a real reflexive Banach space, then the compactness of D
can be weakened.
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THEOREM 3.13. Let Y and Z be the same as in Theorem 3.1. Let E be a real reflexive
Banach space, and X ⊆ E be a nonempty closed convex subset. Let T : X→ 2Y and
F : X × Y → 2E be two multi-valued mappings. Suppose that:

(i) for any x ∈ X, there exists v ∈ T (x) such that x ∈ F(x, v);
(ii) for any x ∈ X, v ∈ T (x), the set {y ∈ X : y /∈ F(x, v)} is empty or convex;
(iii) for any y ∈ X, the set {x ∈ X : ∃v ∈ T (x), y ∈ F(x, v)} is weakly closed in X;
(iv) there exists a nonempty bounded closed convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that y0 /∈ F(x, v) for all v ∈ T (x).

Then (GIIP) is solvable.

PROOF. Since E is a real reflexive Banach space, X ⊆ E is a nonempty closed convex
subset and D ⊆ X is a nonempty bounded closed convex subset, it follows that X is
closed and D is compact with respect to the weak topology of E . Thus endowing E
with the weak topology, it is easy to see that all the conditions of Theorem 3.1
are satisfied with respect to the weak topology of E and the result follows from
Theorem 3.1. 2

4. Applications

In this section we shall apply Theorem 3.1 to present some existence results for
vector equilibrium problems and vector variational inequalities on noncompact sets.

4.1. Weak vector equilibrium problems.

THEOREM 4.1. Let E1, E2 and Z be three Hausdorff topological vector spaces,
X ⊆ E1 a nonempty closed convex subset and Y ⊆ E2 a nonempty subset. Suppose
that:

(i) C : X→ 2Z is a multi-valued mapping such that, for any x ∈ X, C(x) is a convex
cone with nonempty interior, that is, int C(x) 6= ∅;

(ii) W : X→ 2Z , defined by W (x)= Z \ {−int C(x)} for all x ∈ X, is a closed
multi-valued mapping;

(iii) T : X→ 2Y is u.s.c. with nonempty compact values;
(iv) g : X × Y → X is continuous and h : X × X→ X is continuous in the first

argument;
(v) F : X × X→ 2Z is a multi-valued mapping satisfying the following conditions:

(a) F is u.s.c. with nonempty compact values;
(b) for any x ∈ X, there exists v ∈ T (x) such that F(g(x, v), h(x, x))*

−int C(x);
(c) for any x ∈ X, v ∈ T (x), F(g(x, v), h(x, y)) is C(x)-convex or affine in y;
(d) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that F(g(x, v), h(x, y0))⊆

−int C(x) for all v ∈ T (x).
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Then, the implicit multi-valued weak vector equilibrium problem is solvable, that is,
there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : F(g(x̄, v), h(x̄, y))*−int C(x̄).

PROOF. Define a multi-valued mapping G : X × Y → 2X as follows:

G(x, v)= {y ∈ X : F(g(x, v), h(x, y))*−int C(x)}, ∀x ∈ X, v ∈ Y.

Then, it is sufficient to show that T and G satisfy all the conditions of Theorem 3.1.

(1) By assumption (v)(b), for any x ∈ X , there exists v ∈ T (x) such that x ∈ G(x, v).
(2) For any x ∈ X , v ∈ T (x), the set

{y ∈ X : y /∈ G(x, v)} = {y ∈ X : F(g(x, v), h(x, y))⊆−int C(x)}

is empty or convex. Indeed, let K = {y ∈ X : y /∈ G(x, v)}. Suppose that K 6= ∅,
y1, y2 ∈ K , t ∈ (0, 1), and yt = t y1 + (1− t)y2. Then y1, y2 ∈ X and

F(g(x, v), h(x, yi ))⊆−int C(x), i = 1, 2. (4.1)

Since X is convex, yt ∈ X .

(I) If F(g(x, v), h(x, y)) is C(x)-convex in y, then

F(g(x, v), h(x, yt )) ⊆ t F(g(x, v), h(x, y1))

+ (1− t)F(g(x, v), h(x, y2))− C(x)
⊆ −int C(x)− int C(x)− C(x)
⊆ −int C(x).

(4.2)

(II) If F(g(x, v), h(x, y)) is affine in y, then

F(g(x, v), h(x, yt )) = t F(g(x, v), h(x, y1))

+ (1− t)F(g(x, v), h(x, y2))

⊆ −int C(x)− int C(x)
⊆ −int C(x).

(4.3)

From (4.2), (4.3), we can see that for each t ∈ (0, 1), yt ∈ K . Thus K is
convex.

(3) For any y ∈ X , the set

{x ∈ X : ∃v ∈ T (x), y ∈ G(x, v)}

= {x ∈ X : ∃v ∈ T (x), F(g(x, v), h(x, y))*−int C(x)}

is closed in X . Indeed, let

P = {x ∈ X : ∃v ∈ T (x), y ∈ G(x, v)}
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and let {xα} ⊆ P be an arbitrary net such that xα→ x0 ∈ X . Then, for each α,
there exists vα ∈ T (xα) such that

F(g(xα, vα), h(xα, y))*−int C(xα). (4.4)

Thus, for each α, there exists ωα ∈ F(g(xα, vα), h(xα, y)) such that

ωα /∈ −int C(xα).

It follows that
ωα ∈ Z \ {−int C(xα)} =W (xα), ∀α. (4.5)

Since T is u.s.c. with nonempty compact values, it follows from Lemma 2.2(ii)
that there exist v0 ∈ T (x0) and a subnet {vβ} of {vα} such that vβ→ v0. Further,
since F is u.s.c. with nonempty compact values, g is continuous and h is
continuous in the first argument, it follows from Lemma 2.2(ii) that there exist
ω0 ∈ F(g(x0, v0), h(x0, y)) and a subnet {ωγ } of {ωβ} such that ωγ → ω0. Thus
(xγ , ωγ )→ (x0, ω0) and, for each γ , ωγ ∈W (xγ ). Since W is closed, it follows
that

ω0 ∈W (x0)= Z \ {−int C(x0)}.

Noting that ω0 ∈ F(g(x0, v0), h(x0, y)),

F(g(x0, v0), h(x0, y))*−int C(x0).

Thus x0 ∈ P , which implies that P is closed.
(4) By assumption (v)(d), for each x ∈ X \ D, there exists some y0 ∈ D such that

y0 /∈ G(x, v) for all v ∈ T (x).

Thus, all the conditions of Theorem 3.1 are satisfied and it follows from
Theorem 3.1 that there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : y ∈ G(x̄, v),

that is,
∀y ∈ X, ∃v ∈ T (x̄) : F(g(x̄, v), h(x̄, y))*−int C(x̄).

This completes the proof. 2

COROLLARY 4.2. Let E1, E2, X, Y, Z be the same as in Theorem 4.1. Assume that
conditions (i)–(iv) of Theorem 4.1 and the following conditions are satisfied:

(v) f : X × X→ Z is a single-valued mapping satisfying the following conditions:

(a) f is continuous;
(b) for any x ∈ X, there exists v ∈ T (x) such that f (g(x, v), h(x, x)) /∈

−int C(x);
(c) for any x ∈ X, v ∈ T (x), f (g(x, v), h(x, y)) is C(x)-convex or affine in y;
(d) there exists a nonempty compact convex subset D ⊆ X such that, for

each x ∈ X \ D, there exists some y0 ∈ D such that f (g(x, v), h(x, y0)) ∈

−int C(x) for all v ∈ T (x).
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Then, the implicit weak vector equilibrium problem is solvable, that is, there exists
x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : f (g(x̄, v), h(x̄, y)) /∈ −int C(x̄).

REMARK 4.3. The implicit weak vector equilibrium problem has been studied by
Chen [4]. Under a suitable monotonicity assumption, Chen [4] obtained some
existence results for a solution of the implicit weak vector equilibrium problem using
the FKKM theorem. However, in Corollary 4.2, the existence result is established
without any monotonicity assumption.

THEOREM 4.4. Let E and Z be two Hausdorff topological vector spaces. Denote
by L(E, Z) the space of all continuous linear mappings from E to Z and by 〈`, x〉
the value of ` ∈ L(E, Z) at x ∈ E. Let X ⊆ E a nonempty closed convex subset, and
C : X→ 2Z a multi-valued mapping such that, for any x ∈ X, C(x) is a convex cone
with int C(x) 6= ∅. Take as given the mappings A : L(E, Z)→ L(E, Z), f : X→
Z , g : X→ X and T : X→ 2L(E,Z). Suppose that:

(i) for any x ∈ X, there exists v ∈ T (x) such that

〈Av, x − g(x)〉 + f (x)− f (g(x)) /∈ −int C(x);

(ii) for any x ∈ X, f is C(x)-convex;
(iii) for any y ∈ X, the set

{x ∈ X : 〈Av, y − g(x)〉 + f (y)− f (g(x)) ∈ −int C(x), ∀v ∈ T (x)}

is open in X;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that

〈Av, y0 − g(x)〉 + f (y0)− f (g(x)) ∈ −int C(x) for all v ∈ T (x).

Then the F-implicit weak vector variational inequality is solvable, that is, there exists
x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : 〈Av, y − g(x̄)〉 + f (y)− f (g(x̄)) /∈ −int C(x̄).

PROOF. Let Y = L(E, Z). Define a multi-valued mapping G : X × Y → 2X as
follows:

G(x, v) = {y ∈ X : 〈Av, y − g(x)〉 + f (y)− f (g(x)) /∈ −int C(x)},

∀x ∈ X, v ∈ Y.

Then, by an argument similar to Theorem 4.1, we can show that T and G satisfy all
the conditions of Theorem 3.1 and it follows from Theorem 3.1 that there exists x̄ ∈ X
such that

∀y ∈ X, ∃v ∈ T (x̄) : y ∈ G(x̄, v),
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that is,

∀y ∈ X, ∃v ∈ T (x̄) : 〈Av, y − g(x̄)〉 + f (y)− f (g(x̄)) /∈ −int C(x̄).

This completes the proof. 2

REMARK 4.5. Theorem 4.4 is a slight generalization of Lin [24, Theorem 2.2]. For
any x ∈ X , C(x) is assumed to be a proper closed convex pointed cone with apex at
the origin in Lin [24, Theorem 2.2], while it is assumed to be a convex cone in the
above Theorem 4.4.

4.2. Stampacchia vector equilibrium problems.

THEOREM 4.6. Let E1, E2 and Z be three Hausdorff topological vector spaces,
X ⊆ E1 a nonempty closed convex subset and Y ⊆ E2 a nonempty subset. Let
C : X→ 2Z , T : X→ 2Y and F : X × Y × X→ 2Z be three multi-valued mappings.
Suppose that:

(i) for any x ∈ X, C(x) is a convex cone;
(ii) for any x ∈ X, there exists v ∈ T (x) such that F(x, v, x)*−C(x) \ {0};
(iii) for any x ∈ X, v ∈ T (x), the set {y ∈ X : F(x, v, y)⊆−C(x) \ {0}} is empty or

convex;
(iv) for any y ∈ X, the set {x ∈ X : F(x, v, y)⊆−C(x) \ {0}, ∀v ∈ T (x)}, is open

in X;
(v) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that F(x, v, y0)⊆−C(x) \ {0} for
all v ∈ T (x).

Then the implicit multi-valued Stampacchia vector equilibrium problem is solvable,
that is, there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : F(x̄, v, y)*−C(x̄) \ {0}.

PROOF. Define a multi-valued mapping G : X × Y → 2X as follows:

G(x, v)= {y ∈ X : F(x, v, y)*−C(x) \ {0}}, ∀x ∈ X, v ∈ Y.

Then, by the assumptions, it is easy to see that T and G satisfy all the conditions of
Theorem 3.1 and it follows from Theorem 3.1 that there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : y ∈ G(x̄, v),

that is,
∀y ∈ X, ∃v ∈ T (x̄) : F(x̄, v, y)*−C(x̄) \ {0}.

This concludes the proof. 2
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REMARK 4.7. In Theorem 4.6, if for every x ∈ X and v ∈ T (x), f (x, v, y) is C(x)-
convex or affine in y, then condition (iii) is satisfied.

THEOREM 4.8. Let E and Z be two Hausdorff topological vector spaces, and X ⊆ E
a nonempty closed convex subset. Let C : X→ 2Z and F : X × X→ 2Z be two multi-
valued mappings. Suppose that:

(i) for any x ∈ X, C(x) is a convex cone;
(ii) for any x ∈ X, F(x, x)*−C(x) \ {0};
(iii) for any x ∈ X, F(x, y) is C(x)-convex or affine in y;
(iv) for any y ∈ X, the set {x ∈ X : F(x, y)⊆−C(x) \ {0}} is open in X;
(v) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that F(x, y0)⊆−C(x) \ {0}.

Then the multi-valued Stampacchia vector equilibrium problem is solvable, that is,
there exists x̄ ∈ X such that

F(x̄, y)*−C(x̄) \ {0}, ∀y ∈ X.

PROOF. In Theorem 4.6, let E1 = E , E2 = Y = {v} (a singleton set) and, for any
x, y ∈ X, v ∈ Y , T (x)≡ v, F(x, v, y)= F(x, y). Then, by the assumptions, it is easy
to see that all the conditions of Theorem 4.6 are satisfied and Theorem 4.6 yields the
conclusion. 2

COROLLARY 4.9. Let X, E and Z be the same as in Theorem 4.8. Let C ⊆ Z be a
convex cone and f : X × X→ Z a single-valued mapping. Suppose that:

(i) for any x ∈ X, f (x, x) /∈ −C \ {0};
(ii) for any x ∈ X, f (x, y) is C-convex or affine in y;
(iii) for any y ∈ X, the set {x ∈ X : f (x, y) ∈ −C \ {0}} is open in X;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that f (x, y0) ∈ −C \ {0}.

Then the Stampacchia vector equilibrium problem is solvable, that is, there exists
x̄ ∈ X such that

f (x̄, y) /∈ −C \ {0}, ∀y ∈ X.

REMARK 4.10. Corollary 4.9 generalizes Kazmi and Khan [21, Theorem 2.1] in the
following ways:

(a) the spaces E and Z are not necessarily Banach spaces;
(b) the subset X is not necessarily compact;
(c) the cone C is not necessarily solid (that is, int C 6= ∅) or closed or pointed;
(d) for any x ∈ X , f (x, x) is not necessarily equal to 0.

COROLLARY 4.11. Let X, E, C and Z be as given in Corollary 4.9. Let T : X→
L(E, Z) be a single-valued mapping. Suppose that:
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(i) for any y ∈ X, the set {x ∈ X : 〈T x, y − x〉 ∈ −C \ {0}} is open in X;
(ii) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that 〈T x, y0 − x〉 ∈ −C \ {0}.

Then the Stampacchia vector variational inequality is solvable, that is, there exists
x̄ ∈ X such that

〈T x̄, y − x̄〉 /∈ −C \ {0}, ∀y ∈ X.

PROOF. Define a mapping f : X × X→ Z as follows:

f (x, y)= 〈T x, y − x〉, ∀x, y ∈ X.

Then it is easy to check that f satisfies all the conditions of Corollary 4.9 and it follows
from Corollary 4.9 that there exists x̄ ∈ X such that

f (x̄, y) /∈ −C \ {0}, ∀y ∈ X.

that is,
〈T x̄, y − x̄〉 /∈ −C \ {0}, ∀y ∈ X.

This completes the proof. 2

REMARK 4.12. Corollary 4.11 generalizes Fang and Huang [9, Theorem 2.1] in the
following aspects:

(a) the spaces E and Z are not necessarily Banach spaces;
(b) the subset X is not necessarily compact;
(c) the cone C is not necessarily solid.

4.3. Strong vector equilibrium problems.

THEOREM 4.13. Let E1, E2 and Z be three Hausdorff topological vector spaces,
X ⊆ E1 a nonempty closed convex subset and Y ⊆ E2 a nonempty subset. Let
C : X→ 2Z , T : X→ 2Y and F : X × Y × X→ 2Z be three multi-valued mappings.
Suppose that:

(i) for any x ∈ X, C(x) is a convex cone;
(ii) for any x ∈ X, there exists v ∈ T (x) such that F(x, v, x)⊆ C(x);
(iii) for any x ∈ X, v ∈ T (x), the set {y ∈ X : F(x, v, y)* C(x)} is empty or convex;
(iv) for any y ∈ X, the set {x ∈ X : ∃v ∈ T (x), F(x, v, y)⊆ C(x)} is closed in X;
(v) there exists a nonempty compact convex subset D ⊆ X such that, for each x ∈

X \ D, there exists some y0 ∈ D such that F(x, v, y0)* C(x) for all v ∈ T (x).

Then the implicit multi-valued strong vector equilibrium problem is solvable, that is,
there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : F(x̄, v, y)⊆ C(x̄).
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PROOF. Define a multi-valued mapping G : X × Y → 2X as follows:

G(x, v)= {y ∈ X : F(x, v, y)⊆ C(x)}, ∀x ∈ X, v ∈ Y.

Then, using the assumptions, it is easy to see that T and G satisfy all the conditions of
Theorem 3.1 and it follows from Theorem 3.1 that there exists x̄ ∈ X such that

∀y ∈ X, ∃v ∈ T (x̄) : y ∈ G(x̄, v),

that is,
∀y ∈ X, ∃v ∈ T (x̄) : F(x̄, v, y)⊆ C(x̄).

This completes the proof. 2

Similarly, arguing as in the proof of Theorem 4.8, we have the following result.

THEOREM 4.14. Let E and Z be two Hausdorff topological vector spaces, and
X ⊆ E a nonempty closed convex subset. Let C : X→ 2Z and F : X × X→ 2Z be
two multi-valued mappings. Suppose that:

(i) for any x ∈ X, C(x) is a convex cone;
(ii) for any x ∈ X, F(x, x)⊆ C(x);
(iii) for any x ∈ X, the set {y ∈ X : F(x, y)* C(x)} is empty or convex;
(iv) for any y ∈ X, the set {x ∈ X : F(x, y)⊆ C(x)} is closed in X;
(v) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that F(x, y0)* C(x).

Then the multi-valued strong vector equilibrium problem is solvable, that is, there
exists x̄ ∈ X such that

F(x̄, y)⊆ C(x̄), ∀y ∈ X.

COROLLARY 4.15. Let E and Z be two real Banach spaces, X ⊆ E a nonempty
closed convex subset, and C ⊆ Z a closed convex cone. Take as given the mappings
T : E→ L(E, Z) and g : X→ X. Suppose that:

(i) for any x ∈ X, 〈T x, x − g(x)〉 ∈ C;
(ii) for any x ∈ X, the set {y ∈ X : 〈T x, y − g(x)〉 /∈ C} is empty or convex;
(iii) T and g are continuous on X;
(iv) there exists a nonempty compact convex subset D ⊆ X such that, for each

x ∈ X \ D, there exists some y0 ∈ D such that 〈T x, y0 − g(x)〉 /∈ C.

Then the implicit strong vector variational inequality is solvable, that is, there exists
x̄ ∈ X such that

〈T x̄, y − g(x̄)〉 ∈ C, ∀y ∈ X.

PROOF. Define a mapping f : X × X→ Z as follows:

f (x, y)= 〈T x, y − g(x)〉, ∀x, y ∈ X.
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Then, by the assumptions, it is easy to check that f satisfies all the conditions of
Theorem 4.14 and it follows from Theorem 4.14 that there exists x̄ ∈ X such that

f (x̄, y) ∈ C, ∀y ∈ X,

that is,
〈T x̄, y − g(x̄)〉 ∈ C, ∀y ∈ X.

This completes the proof. 2

REMARK 4.16. Corollary 4.15 generalizes Huang and Li [18, Theorem 3.2] in the
following aspects:

(a) the subset X is not necessarily a cone;
(b) the mapping T is not necessarily continuous on the whole space E .
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