UNIFORM PARTITION AND THE BEST LEAST-SQUARES PIECEWISE POLYNOMIAL APPROXIMATION

François Dubeau

It is shown that the best least-squares piecewise n degree polynomial approximation of x^{n+1} over $[a, b]$ is obtained for a uniform partition. Moreover the approximation is continuous for n odd and discontinuous, with equal stepsizes at the nodes, for n even.

The problem considered here has been introduced by Stone [12] for $n=1$. In this paper Stone has considered the least-squares continuous piecewise linear approximation of a function $f(\cdot)$ over $[a, b]$. For a quadratic function $f(x)=p x^{2}+q x+r$, or essentially for $f(x)=x^{2}$, his result states that the optimal solution is obtained for the uniform partition and the global solution is given by the solution of a least-squares problem on each subinterval. For a general function $f(\cdot)$ he has proposed an iterative method for solving the necessary optimality conditions. The problem for $n=1$ has also been considered by Ream [10], Bellman [2], Gluss [6], Cantoni [3], Tomeck [13] and others. It is also related to the polygonal approximation of data for computer vision, graphics and image processing (see [7], [8] and [9]).

Let

$$
\prod_{N}=\left\{\Delta=\left\{x_{i}\right\}_{i=0}^{N} \mid a=x_{0}<\ldots<x_{i}<\ldots<x_{N}=b\right\}
$$

be the set of all partitions \triangle of $[a, b]$ into exactly N intervals. Let $\mathcal{P}^{n}\left[x_{i-1}, x_{i}\right]$ be the set of all polynomials of degree at most n defined over $\left[x_{i-1}, x_{i}\right]$ and let

$$
\mathcal{P}_{N}^{n}=\prod_{i=1}^{N} \mathcal{P}^{n}\left[x_{i-1}, x_{i}\right]
$$

The object of this note is to show that the minimum of

$$
F(\Delta, \vec{p})=\sum_{i=1}^{N} \int_{x_{i-1}}^{x_{i}}\left(x^{n+1}-p_{i}(x)\right)^{2} d x
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.
subject to $\Delta \in \Pi_{N}$ and $\vec{p}=\left(p_{1}(\cdot), \ldots, p_{N}(\cdot)\right) \in \mathcal{P}_{N}^{n}$, is obtained for the uniform partitiop $\Delta^{*}=\left\{x_{i}^{*}=a+i(b-a) / N\right\}_{i=0}^{N}$. Moreover the optimal $p_{i}^{*}(\cdot)$'s form a continuous approximation for n odd or a discontinuous approximation with equal stepsizes at the nodes for n even. The optimal $\vec{p}^{*}=\left(p_{1}^{*}(\cdot), \ldots, p_{N}^{*}(\cdot)\right)$ is called the best least-squares piecewise n degree polynomial approximation of x^{n+1} over $[a, b]$.

The necessary conditions for the optimality of p and Δ are:
(A)

$$
\int_{x_{i-1}}^{x_{i}}\left(x^{n+1}-p_{i}(x)\right) q(x) d x=0 \text { for all } q(\cdot) \in \mathcal{P}^{n}\left[x_{i-1}, x_{i}\right] \text { and } i=1, \ldots, N
$$

(B)

$$
\left[x_{i}^{n+1}-p_{i}\left(x_{i}\right)\right]^{2}-\left[x_{i}^{n+1}-p_{i+1}\left(x_{i}\right)\right]^{2}=0 \text { for all } i=1, \ldots, N-1
$$

Before considering (A) and (B), let us recall some properties of the Legendre polynomials $\hat{\pi}_{\ell}(\cdot)(\ell=0, \ldots, k)$ defined on $[-1,1]$. They form an orthogonal basis of $\mathcal{P}^{k}[-1,1]$ with respect to the usual scalar product

$$
(\widehat{p}(\cdot), \widehat{q}(\cdot))=\int_{-1}^{1} \hat{p}(\xi) \widetilde{q}(\xi) d \xi
$$

To obtain an orthogonal basis for $\mathcal{P}^{k}\left[x_{i-1}, x_{i}\right]$ we consider the transformation
where

$$
\begin{gathered}
x \longrightarrow \xi=T_{i}(x):\left[x_{i-1}, x_{i}\right] \longrightarrow[-1,1] \\
T_{i}(x)=\frac{\left(x-x_{i-1}\right)-\left(x_{i}-x\right)}{\left(x_{i}-x_{i-1}\right)}
\end{gathered}
$$

and the polynomials $\pi_{\ell, i}(\cdot)=\hat{\pi}_{\ell} \circ T_{i}(\cdot)(\ell=0, \ldots, k)$. It follows that the polynomials $\pi_{\ell, i}(\cdot)(\ell=0, \ldots, k)$ form an orthogonal basis of $\mathcal{P}^{k}\left[x_{i-1}, x_{i}\right]$ with respect to the usual scalar product

$$
(p(\cdot), q(\cdot))=\int_{x_{i-1}}^{x_{i}} p(x) q(x) d x
$$

The main properties of the polynomials $\hat{\pi}_{\ell}(\cdot)$ and $\pi_{\ell, i}(\cdot)$ are summarised in the table on the next page (see [4] or [11, pp.126-127]).

Using the orthogonal basis $\left\{\pi_{\ell, i}(\cdot) \mid i=0, \ldots, n+1\right\}$ for $\mathcal{P}^{n+1}\left[x_{i-1}, x_{i}\right]$, we can write $x^{n+1}=\sum_{\ell=0}^{n+1} \alpha_{\ell, i} \pi_{\ell, i}(x)$ where

$$
\alpha_{\ell, i}=\int_{x_{i-1}}^{x_{i}} x^{n+1} \pi_{\ell, i}(x) d x / \int_{x_{i-1}}^{x_{i}} \pi_{\ell, i}^{2}(x) d x
$$

	$\widehat{\pi}_{\ell}(\cdot)$	$\pi_{\ell, i}(\cdot)$
1.	$\widehat{\pi}_{\ell}(-1)=(-1)^{l}$ and $\widehat{\pi}_{\ell}(1)=1$	$\pi_{\ell, i}\left(x_{i-1}\right)=(-1)^{2}$ and $\pi_{\ell, i}\left(x_{i}\right)=1$
2.	$\int_{-1}^{1} \xi^{\ell} \widehat{\pi}_{k}(\xi) d \xi=0$	$\int_{x_{i-1}}^{x_{i}} x^{\ell} \pi_{\ell, i}(x) d x=0$
	$(\ell=0, \ldots, k-1)$	$(\ell=0, \ldots, k-1)$
3.	$\int_{-1}^{1} \xi^{k} \widehat{\pi}_{k}(\xi) d \xi=\frac{2^{k+1}(k!)^{2}}{(2 k+1)!}$	$\int_{x_{i-1}}^{x_{i}} x^{k} \pi_{k, i}(x) d x=\frac{\left(x_{i}-x_{i-1}\right)^{k+1}(k!)^{2}}{(2 k+1)!}$
4.	$\int_{-1}^{1} \widehat{\pi}_{k}(\xi) d \xi=\frac{2}{2 k+1}$	$\int_{x_{i}}^{x_{i-1}} \pi_{k, i}^{2}(x) d x=\frac{\left(x_{i}-x_{i-1}\right)}{2 k+1}$
5.	$\int_{-1}^{1} \hat{\pi}_{k}(\xi) \hat{\pi}_{\ell}(\xi) d \xi=0$ for $k \neq \ell$	$\int_{x_{i-1}}^{x_{i}} \pi_{k, i}(x) \pi_{\ell, i}(x) d x=0$ for $k \neq \ell$

TABLE. Basic properties of $\widehat{\pi}_{\ell}(\cdot)$ and $\pi_{\ell, i}(\cdot)$.
for $\ell=0, \ldots, n+1$. In particular, using (3), we have

$$
\alpha_{n+1, i}=\frac{\left(x_{i}-x_{i-1}\right)^{n+1}[(n+1)!]^{2}}{(2 n+2)!}
$$

For a given partition $\Delta=\left\{x_{i}\right\}_{i=0}^{N}$, the solution of (A) is

$$
\begin{gathered}
p_{i}^{*}(x)=\sum_{\ell=0}^{n} \alpha_{\ell, i} \pi_{\ell, i}(x) \\
x^{n+1}-p_{i}^{*}(x)=\alpha_{n+1, i} \pi_{n+1, i}(x)
\end{gathered}
$$

and

It follows that

$$
\begin{aligned}
\int_{x_{i-1}}^{x_{i}}\left(x^{n+1}-p_{i}^{*}(x)\right)^{2} d x & =\int_{x_{i-1}}^{x_{i}}\left(\alpha_{n+1, i} \pi_{n+1, i}(x)\right)^{2} d x \\
& =\frac{\left(x_{i}-x_{i-1}\right)^{2 n+3}[(n+1)!]^{4}}{(2 n+3)[(2 n+2)!]^{2}}
\end{aligned}
$$

and

$$
F\left(\Delta, \vec{p}^{*}\right)=\frac{[(n+1)!]^{4}}{(2 n+3)[(2 n+2)!]^{2}} \sum_{i=1}^{N}\left(x_{i}-x_{i-1}\right)^{2 n+3}
$$

But, from an inequality for weighted means (see [5] or [1]), we have

$$
\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-x_{i-1}\right)^{2 n+3} \geqslant\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-x_{i-1}\right)\right)^{2 n+3}=\left(\frac{b-a}{N}\right)^{2 n+3}
$$

with a strict inequality if the $\left(x_{i}-x_{i-1}\right)$ are not all equal. Then

$$
F\left(\Delta, \vec{p}^{*}\right) \geqslant F\left(\Delta^{*}, \vec{p}^{*}\right)
$$

Hence $F(\triangle, \vec{p})$ is minimised for the uniform partition and the $\vec{p}_{i}(\cdot)$'s are the best least-squares n degree polynomal approximation of x^{n+1} o over $\left[x_{i-1}, x_{i}\right]$.

Finally, for the uniform partition Δ^{*} we have

$$
x_{i}^{n+1}-p_{i}^{*}\left(x_{i}\right)=\alpha_{n+1, i} \pi_{n+1}(1)=\left(\frac{b-a}{N}\right)^{n+1} \frac{[(n+1)!]^{2}}{(2 n+2)!}
$$

and

$$
x_{i}^{n+1}-p_{i+1}^{*}\left(x_{i}\right)=\alpha_{n+1, i} \pi_{n+1}(-1)=(-1)^{n+1}\left(\frac{b-a}{N}\right)^{n+1} \frac{[(n+1)!]^{2}}{(2 n+2)!}
$$

Then
(i) the approximation is continuous for n odd, and also $x_{i}^{n+1}-p_{i}^{*}\left(x_{i}\right)=$ $x_{i-1}^{n+1}-p_{i}^{*}\left(x_{i-1}\right)$;
(ii) the approximation is discontinuous for n even with equal stepsizes at the nodes:

$$
x_{i}^{n+1}-p_{i}^{*}\left(x_{i}\right)=p_{i+1}^{*}\left(x_{i}\right)-x_{i}^{n+1}
$$

and also

$$
x_{i}^{n+1}-p_{i}^{*}\left(x_{i}\right)=-\left(x_{i-1}^{n+1}-p_{i}^{*}\left(x_{i-1}\right)\right) .
$$

References

[1] E.F. Bechenbach and R. Bellman, Inequalities (Springer-Verlag, Berlin, Heidelberg, New York, 1965).
[2] R. Bellman, 'On the approximation of curves by line segments using dynamic programming', Comm. ACM 4 (1961), 284.
[3] A. Cantoni, 'Optimal curve fitting with piecewise linear functions', IEEE Trans. Comput. (1971), 59-67.
[4] E.W. Cheney, Introduction to approximation theory (McGraw-Hill, New York, 1966).
[5] R. Cooper, 'Notes on certain inequalities: II', J. London. Math. Soc. 2 (1927), 159-163.
[6] B. Gluss, 'Further remarks on line segment curve-fitting using dynamic programming', Comm. ACM 5 (1962), 441-443.
[7] H. Imai and M. Iri, 'Computational-geometric methods for polygonal approximations of a curve', Comput. Vision Graphics Image Process 36 (1986), 31-41.
[8] Y. Kurozumi and W.A. Davis, 'Polygonal approximation by the minimax method', Comput. Graphics and Image Processing 19 (1982), 248-264.
[9] M.K. Leung and Y.-H. Yang, 'Dynamic strip algorithm in curve fitting', Comput. Vision Graphics Image Process. 51 (1990), 146-165.
[10] N. Ream, 'Note on: Approximation of curves by line segments', Math. Comp. 15 (1961), 418-419.
[11] F. Scheid, Numerical analysis, Schaum's outline series (McGraw-Hill, New York, 1968).
[12] H. Stone, 'Approximation of curves by line segments', Math. Comp. 15 (1961), 40-47.
[13] I. Tomek, 'Two algorithms for piecewise-linear continuous approximation of functions of one variable', IEEE Trans. Comput. 23 (1974), 445-448.

Département de Mathématiques
Collège militaire royal de Saint-Jean
Saint-Jean-sur-Richelieu
Québec
Canada, JOJ 1RO

[^0]: Received 23 November 1990
 This research has been supported by the Department of the National Defence of Canada and by "le Ministère de l'Education du Québec".

